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Flexural phonons and thermal transport in multilayer graphene and graphite
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We present a theory for the lattice thermal conductivity κL of multilayer graphene (MLG) and graphite, which
is based on an exact numerical solution of the Boltzmann equation for phonons. Dominant contributions to κL

from out-of-plane or flexural phonons are found, which is consistent with previous findings for single-layer
graphene (SLG). However, the interaction between graphene layers in MLG and graphite breaks a selection rule
on phonon-phonon scattering, causing their κLs to be much lower than that of SLG. C13 isotopes are shown
to be an important scattering mechanism, accounting for an ∼15% additional drop in the κL of these systems.
We demonstrate that the κL values converge to that of graphite after only about five layers, a consequence
of weak interlayer coupling. These findings are qualitatively consistent with recent measurements of κL for
MLG.
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I. INTRODUCTION

Graphene and graphite, along with other carbon-based
structures such as diamond and carbon nanotubes, have
among the highest thermal conductivities of any known
materials. In these systems, heat is carried by phonons, and
around room temperature, the lattice thermal conductivity
κL is limited by phonon-phonon interactions caused by the
anharmonicity of the interatomic potential.1 In diamond, the
strong covalent bonding and light carbon atoms produce large
phonon velocities and an extremely restricted phase space for
phonon-phonon scattering, causing large amounts of heat to
be transported by the two transverse acoustic (TA) and one
longitudinal acoustic (LA) phonon branches.2,3 One might
expect graphene to be the two-dimensional (2D) analogue to
this, with the majority of heat carried by one TA and one
LA branch. However, along with these modes that vibrate in
the plane of the graphene layer, there are also out-of-plane
vibrations—the so-called flexural modes. The lowest flexural
phonon branch (labeled ZA) exhibits an unusual quadratic
dispersion ω ∼ q2, making the group velocity vanish as
q → 0. As a result, it was natural to assume that the flexural
modes carry little heat.4–8

Recently, we showed that the opposite is true9,10: The
reflection symmetry about the graphene plane leads to a
selection rule that strongly inhibits phonon-phonon scattering.
This, combined with their large thermal population, causes the
ZA phonons to provide the dominant contribution to κL, one
much greater than the in-plane contributions combined. This
surprising result is consistent with recent thermal transport
measurements on graphene structures.9,11–13

Graphene is the building block for graphite, so it is
natural to ask, (1) How are the magnitudes of κgraphene

and κgraphite related? and (2) How does κgraphene evolve
into κgraphite with an increasing number of graphene lay-
ers? Experimentally, these questions have not been con-
clusively answered yet. The measured room temperature
values of κL for graphene are in the range κgraphene ≈ 600–
5800 Wm−1K−1,14–18 whereas κgraphite ≈ 2000 Wm−1K−1.19

Recent measurements of κL for multilayer graphene (MLG)
show that κL decreases with an increasing layer number N
but that values for N = 4 and N ≈ 8 lie below that of
κgraphite.20

In this paper, we present a theory of thermal transport and
κL for MLG and graphite in the context of our new picture
of phonon transport, where the flexural mode contributions
dominate κL. We show that the interaction between graphene
layers breaks the graphene selection rule on phonon-phonon
scattering and leads to a substantial reduction in the flexural
mode contributions to κL, which in turn decreases mono-
tonically with an increasing number of graphene layers.
This mandates that κgraphene > κgraphite. Furthermore, we
find that with increasing layer number, the graphite limit is
rapidly reached: κL evolves from κgraphene to κgraphite within
only about five layers. These findings are in qualitative
agreement with the recently measured trends for κL in
MLG.20

II. INTERLAYER COUPLING

Layered graphene systems have strong in-plane covalent
bonding of carbon atoms and weak Van der Waals coupling
between planes. An optimized Tersoff empirical interatomic
potential,21,22 which gives improved fits to the acoustic phonon
dispersions in graphite, is used to describe the in-plane
bonding. A Lennard-Jones potential is used for the interplanar
bonding,

VLJ (rij ) = 4ε[(σ/rij )12 − (σ/rij )6], (1)

where the parameters ε and σ are adjusted to best fit the c-
axis phonon dispersion for graphite23 and rij is the distance
between atoms i and j. The values ε = 4.6 meV and σ =
0.3276 nm give a separation between carbon planes of δ =
0.335 nm, which is in agreement with the measured value.19

We include only coupling between adjacent carbon planes.
The phonon dispersions for N-layered graphene (graphite)

are calculated by diagonalizing the dynamical matrices
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FIG. 1. (Color online) A portion of the low-frequency part of the
phonon dispersion showing the T Ai , LAi , and ZAi branches. Purple
(dark gray) curves are for both N = 2 and N = 4; green (light gray)
curves are for N = 3.

Dκκ ′
αβ (q) = 1

M

∑
l′

	αβ(0κ,l′κ ′)eiq·Rl′ (2)

to obtain the phonon frequencies ωλ for each 2D or
three-dimensional (3D) wavevector q on a grid throughout
the Brillouin zone, where λ = (q,j ) and j labels the phonon
branch. In Eq. (2), lκ designates the κth atom in the lth unit
cell whose lattice vector is Rl , M is the mass of the carbon
atoms, and α and β are Cartesian components. Also in (2),
	αβ(0κ,l′κ ′) are second-order interatomic force constants
(IFCs), which are determined by the combined Tersoff and
Lennard-Jones potentials. For N-layer graphene, the phonon
frequencies at each 2D q point considered are obtained by
numerically diagonalizing the 6N × 6N dynamical matrix
using a standard LAPACK (Linear Algebra PACKage) routine
for Hermitian matrices. For graphite, a corresponding 12 ×
12 dynamical matrix is diagnonalized using the same routine
for each 3D q point considered.

Our focus is on the low-frequency part of the phonon
spectrum, a portion of which is shown in Fig. 1, because these
branches carry most of the heat and only in this range is the
phonon dispersion different from that in graphene. N-layered
graphene and graphite each have three acoustic branches
with phonon frequencies ωλ → 0 as phonon wavevector q →
0. In-plane transverse and longitudinal branches (T A1 and
LA1) have linear dispersion near the Brillouin zone center,
whereas an out-of-plane, flexural branch (ZA1) has quadratic
dispersion, except for very small q.24,25 For the multilayers
(N > 1), the weak interlayer coupling produces N − 1
low-lying optic phonon branches for each acoustic branch,
which we label T Ai>1, LAi>1, and ZAi>1. The T Ai>1 and
LAi>1 branches deviate from T A1 and LA1 only very near
the �-point, whereas the flexural branches ZAi>1 deviate
significantly from the ZA1 branch throughout much of the
Brillouin zone.

III. BREAKING OF SELECTION RULE

The intrinsic resistance to heat flow in graphene-based
structures is limited by three-phonon scattering, which dom-
inates κL around and above room temperature.1 The phase
space for this scattering is defined from all three-phonon
processes satisfying the conservation of energy and momen-
tum: ωj (q) ± ωj ′ (q′) = ωj ′′ (q′′) and q ± q′ = q′′ + K, where
K is a reciprocal lattice vector, which is zero for normal
processes and nonzero for umklapp processes. The strength
of a three-phonon scattering process is governed by the matrix
elements:10

	λλ′λ′′ =
∑

κ

∑
l′κ ′

∑
l′′κ ′′

∑
αβγ

	αβγ

(
0κ,l′κ ′,l′′κ ′′)

× eλ
ακe

λ′
βκ ′e

λ′′
γ κ ′′e

iq′ ·Rl′ eiq′′ ·Rl′′ . (3)

The 	αβγ (0κ,l′κ ′,l′′κ ′′) are third-order anharmonic IFCs,
and the eλ

ακ are phonon eigenvectors. We showed previously9,10

that reflection symmetry about a single graphene sheet (or
any 2D crystal) requires that the nth order anharmonic
IFCs vanish: 	α1...αn

(l1κ1; ...; lnκn) = 0, when the number of
out-of-plane components in the string α1. . .αn is odd. This
leads to a selection rule that forbids any n-phonon scattering
process involving an odd number of out-of-plane phonons. For
three-phonon scattering, the matrix element, Eq. (3), vanishes
for processes such as ZA + ZA ↔ ZA and ZA + TA ↔
LA, eliminating ∼60% of the scattering phase space for ZA
phonons and significantly increasing their intrinsic scattering
times. This, combined with their large thermal populations, is
why the ZA phonons provide the dominant contribution to κL

in graphene.
In MLG and graphite, reflection symmetry applied to the

nth order interlayer IFCs gives

	α1...αn
(l′1κ

′
1; ...l′iκ

′
i ; ...; l

′
nκ

′
n)

= (−1)m	α1...αn
(l1κ1; ...liκi ...; lnκn), (4)

where m is the number of out-of-plane components in α1. . .αn

and l′iκ ′
i designates the atom into which liκi is mapped

across the reflection plane (chosen to be in the middle of the
structure). Because at least one liκi resides in a different layer,
Eq. (4) simply reduces the number of distinct IFCs but does
not require any to vanish. As a result, the graphene selection
rule does not hold, and the previously forbidden scattering
becomes allowed, providing additional resistance to phonon
flow.

IV. THERMAL TRANSPORT THEORY

We calculate κL for N-layer graphene and graphite using an
exact numerical solution to the phonon Boltzmann transport
equation (BTE), previously described elsewhere for single-
walled carbon nanotubes (SWCNTs)26,27 and graphene.9,10

The solution of the BTE gives the nonequilibrium phonon
distribution functions resulting from the temperature gradient
applied across the graphene structure. These functions are
directly related to τλ, the phonon lifetimes in mode λ. Here,
the BTE is cast in terms of a set of coupled equations for
these τλ:

τλ = τ 0
λ + τ 0

λ�λ. (5)
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In Eq. (5),

�λ =
∑
λ′λ′′

(+)
�

(+)
λλ′λ′′ (ξλλ′′τλ′′ − ξλλ′τλ′)

+ 1

2

∑
λ′λ′′

(−)
�

(−)
λλ′λ′′(ξλλ′′τλ′′ + ξλλ′τλ′ ), (6)

where ξλλ′ = vλ′ωλ′/vλωλ, with vλ being the velocity compo-
nent along the transport direction, and the sums are over the
phase space for three-phonon scattering, satisfying energy and
momentum conservation conditions, mentioned before Eq. (3).
The �

(±)
λλ′λ′′ are the intrinsic anharmonic scattering rates

�
(±)
λλ′λ′′ = h̄π

4M3

{
n0

λ′ − n0
λ′′

n0
λ′ + n0

λ′′ + 1

}
|	(±)

λ,±λ′,−λ′′ |2

× δ(ωλ ± ωλ′ − ωλ′′), (7)

with n0
λ being the Bose factor and −λ ⇒ (−q,j ). The

τ 0
λ in Eq. (5) are the lifetimes within the relaxation time

approximation solution of the BTE:

1/τ 0
λ ≡

∑
(+)

�
(+)
λλ′λ′′ + 1/2

∑
(−)

�
(−)
λλ′λ′′ + 1/τbs

λ . (8)

τ 0
λ is directly determined by the intrinsic anharmonic scattering

rates and by any other extrinsic scattering processes. In this
paper, we include boundary scattering of phonons along the

transport direction taken to be of length L. The choice of
τ bs
λ = L/2|vλ| gives the correct limiting values of the thermal

conductivity in the ballistic (L → 0) and diffusive (L → ∞)
limits.28

The BTE in Eq. (5) is solved using an iterative scheme. To
begin this process, a grid of points is defined throughout the
Brillouin zone. For each λ, the phase space of λ′ and λ′′ values
is found numerically using a root-finding algorithm, and the
anharmonic scattering rates are calculated from Eq. (7). This
allows determination of τ 0

λ from Eq. (8). τ
(0)
λ = τ 0

λ is used
then in Eq. (6) for the zeroth iteration. Plugging this into
Eq. (5) yields τ

(1)
λ . The iteration scheme is continued until the

calculated κL from Eq. (9) (given later) differs negligibly on
successive iterations. For MLG, the graphene BTE solution9,10

is generalized to include interlayer coupling, with a unit cell
size of 2N. For graphite, the unit cell contains four atoms and a
3D q-space must be used. Our approach automatically includes
normal and umklapp processes. This is particularly important
for graphene-based systems, where quadratic ZA dispersion
makes normal scattering of low-frequency phonons far more
prevalent than is the case for systems that have only linear
acoustic branches.10

The BTE solution yields the nonequilibrium distribution
functions from which the phonon scattering times τλ are
obtained. The κL for each system is determined from

κL =
{ 1

(2π)2(Nδ)

∑
j

∫ (
∂n0

λ/∂T
)
h̄ωλv

2
λτλd q N−layer graphene

1
(2π)3

∑
j

∫ (
∂n0

λ/∂T
)
h̄ωλv

2
λτλdq graphite

(9)

In the upper and lower expressions, the integral is 2D and
3D, respectively.

V. RESULTS AND DISCUSSION

In all calculations, the thermal transport is in the � →
M direction, and the lateral dimension has been taken to be
infinite.29 The breaking of the graphene selection rule for the
multilayers causes the phase space for three-phonon scattering
to become very large and to increase rapidly with N. This
presents a significant numerical challenge that has limited our
consideration to N � 5. Figure 2 shows κL vs N (black circles)
scaled by the calculated value: κgraphene ≈ 3500 Wm−1K−1 for
sample length L = 10 μm at temperature T = 300K (the typical
sample lengths have L in the range of 1–10 μm14–16,18,20). Also
shown are the scaled per-branch-type contributions to the total
κL for each system, κZA, κT A, and κLA (red, green, and blue
circles), where κZA = ∑N

i=1κZAi
, etc. The contribution from

high-lying optic branches is small and not shown. For graphite,
the enormous three-phonon phase space has precluded a fully
convergent result. Nevertheless, from the trend values obtained
from the BTE solution for increasingly fine q-point grids, we
have obtained an approximate thermal conductivity κgraphite,
which we estimate to be within ∼10% of the converged value

(dashed black line). The dashed red, green, and blue lines
correspond to the per-branch-type values in graphite.

Over the full range of N, the ZA contribution is far larger
than that from TA or LA: the thermal transport is dominated
by the low-frequency out-of-plane ZAi phonons, consistent
with our previous findings for graphene9,10 and large-diameter
SWCNTs.27 Furthermore, κT A and κLA hardly vary with N,
whereas κZA decreases by almost 50% in going from N
= 1 to N = 5. The substantial reduction of κL for MLG
occurs in part because of the raised frequencies of the ZAi>1

phonon modes and the stiffening of the low-frequency ZA
dispersion.24,25 However, the primary reason for the drop in κL

is the breaking of the graphene selection rule. To demonstrate
this, we note that κbilayer = 0.73κgraphene.30 Recalculating κbilayer

with all three-phonon processes that violate the graphene
selection rule artificially removed increases the ratio to κbilayer

= 0.92κgraphene. This shows that the selection rule violation
accounts for ∼70% of the drop in κL.

About 80% of the total decrease in κL occurs in going
from the graphene to the bilayer. By N = 5, κL has essentially
saturated to ∼65% of κgraphene (κL drops by only 2% in going
from N = 4 to N = 5). Thus, κL evolves from graphene to
graphite within the first approximately five layers. The black
dotted curve is a guide to the eye that highlights this behavior.
This rapid transition occurs because the interlayer interactions
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FIG. 2. (Color online) Calculated κL for MLG vs layer number
N for N = 1–5 (black circles). Also shown are the per-branch
contributions for ZA (red triangles), TA (green squares), and LA (blue
diamonds) branches. The corresponding calculatedgraphite values are
shown by the horizontal lines.

are weak and short ranged, causing a given graphene layer to
only feel adjacent layers.

Figure 3 shows κL for N = 1, 2, and 4 as a function of L in the
range L = 1–10 μm. For small L, transport is ballistic and κL

is independent of N. The observed stronger L dependence for
graphene arises from the large intrinsic scattering times τλ for
many ZA phonons, which allows them to travel ballistically
across the sample. This is a consequence of the graphene
selection rule. The TA and LA phonon contributions (not
shown) have little L dependence over this range,10 reflective of
diffusive transport arising from their smaller τλ. For MLG, the
L dependence of κL becomes noticeably weaker, because the
breaking of the graphene selection rule provides new scattering
channels for ZA phonons, which gives them a more diffusive
behavior.

In real graphene and graphite samples, phonon scattering
by isotopic impurities lowers κL. Similar to the derivation
for cubic crystals,31 we can show that the graphene isotopic
impurity scattering rates are 1/τ iso

F (ω) = πgS0ω
2DF (ω)/2 and

1/τ iso
in (ω) = πgS0ω

2Din(ω)/4, where g is the mass variance
parameter (for carbon crystals, g = 7.54 × 10−5 for 1.1% C13

impurities in C12, as shown in Ref. 2), S0 is the area per carbon
atom, and DF (ω) and Din(ω) are the densities of states per unit
area for flexural (F) and in-plane (in) phonons. Using these
expressions, we find a 10 ∼ 15% reduction in the graphene
and MLG κL shown in Figs. 2 and 3.

Our calculated κL for graphene is in reasonable agreement
with measured values. Including the isotope scattering, we
find κL ≈ 2600 Wm−1K−1 for L = 5 μm, which is just below
the range of measured values for similar length samples from
Refs. 14 and 15 (∼3000–5800 Wm−1K−1) and within the
range found in Refs. 16 and 18 (∼1500–3500 Wm−1K−1).
Large uncertainties18 have thus far precluded experimental
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FIG. 3. (Color online) Calculated κL for graphene (N = 1, solid
black curve), bilayer graphene (N = 2, dashed red curve), and
quadrilayer graphene (N = 4, dotted blue curve) as a function of
sample length L for T = 300K. On this scale, the N = 3 and N = 5
curves cannot be distinguished from that for N = 4.

identification of a length dependence such as indicated in
Fig. 3. For MLG, a large decrease in κL is observed with an
increasing number of layers.20 This is qualitatively consistent
with our theory, which predicts that the large drop comes from
suppression of flexural phonon contributions. Conceptually,
the out-of-plane vibrations should be more strongly affected
by interlayer interactions than the in-plane modes, because the
latter’s vibrations are parallel to the layers. Finally, our finding
that κL saturates to the graphite value after only about five
layers is qualitatively consistent with the measured saturation
of about eight layers.20

VI. CONCLUSIONS

A theory of κL in MLG and graphite has been developed
that highlights the dominant contributions of the flexural
phonons. We have shown that the interlayer coupling breaks
the graphene selection rule, leading to strong suppression of the
flexural phonon contributions to κL and correspondingly large
reductions in κL itself, establishing that κgraphene > κgraphite.
The κL decreases monotonically with an increasing number of
layers and lies significantly below the graphene κL. Finally,
κL converges to the graphite value after only about five layers,
reflecting the very limited range of the interlayer interactions.
These findings are in reasonable agreement with a number of
recent experiments on SLG and MLG.
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