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Mechanics of quantum and Sharvin conductors
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Previously, the authors reported direct evidence of channel saturation and conductance quantization in atomic-
sized gold constrictions through mechanical perturbation studies, and also showed that peaks in conductance
histograms are insufficient in evaluating their mechanical stability [Armstrong et al., Phys. Rev. B 82, 195416
(2010)]. In the present study, gold constrictions spanning the range from quantum to semiclassical (Sharvin)
conductance regimes are mechanically probed with picolevel resolution in applied force and deformation, along
with simultaneous measurements of conductance. While reconfiguration from one constriction size to another is
known to occur by apparently random discrete atomic displacements, results reveal a remarkable simplicity—the
magnitude of discrete atomic displacements is limited to a small set of values that correspond to elementary
slip distances in gold rather than Au-Au interatomic distance. Combined with measurements of the spring
constant of constrictions, results reveal two fundamental crossovers in deformation modes with increasing
contact diameter—first, from homogeneous shear to defect-mediated deformation at a diameter that is in close
agreement with previous predictions [Sørensen et al., Phys. Rev. B 57, 3283 (1998)]; and second, the discovery
of another crossover marking surface- to volume-dominated deformation. A remarkable modulus enhancement is
observed when the size of the constrictions approaches the Fermi wavelength of the electrons, and in the limit of a
single-atom constriction it is at least two times that for bulk gold. Results provide atomistic insight into the stability
of these constrictions and an evolutionary trace of deformation modes, beginning with a single-atom contact.
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I. INTRODUCTION

The physical properties of electronic devices composed
of a single atom or a few atoms or molecules deviate
from their bulk counterparts, requiring semiclassical and
ultimately a quantum-mechanical framework for their descrip-
tion. Investigation of these devices provides information on
either the extent to which these deviations occur or entirely
new phenomena at progressively smaller length scales.1–26

In particular, as the size of the conductor decreases, the
conductance regime changes from classical, to semiclassical
(Sharvin), to quantum. At the same time, the effect of
atomic discreteness becomes ever more discernible in the
experiments. For example, atomic reconfigurations within
the conductor cause stepwise changes in conductance. These
discrete changes in conductance are not to be confused
with conductance quantization; simultaneous measurements
of conductance and force on gold constrictions show that the
stepwise changes in conductance occur lockstep with stepwise
changes in the measured force, signaling the occurrence of
atomic rearrangement within the conductor.20,21,27–37 Given
that these atomic-scale devices are acutely sensitive to minute
perturbations (electrical, thermal, magnetic, chemical, me-
chanical, etc.), a fundamental understanding is needed of their
mechanical stability, the forces holding them together, and the
ability to measure them.20,21,27,31,33–52

In particular, through the earliest experimental work
of Agraı̈t and co-workers,31,35 simultaneous measurements
of conductance and force in gold constrictions show that
a stepwise change in conductance is accompanied by a
stepwise change in force, indicating a concomitant atomic
rearrangement within the constriction. Theoretical results
and simulations by Dreher et al.,21 Hasmy,53 Todorov and
Sutton,29,30 and Sørensen et al.32 reveal the mechanistic
understanding of atomistic processes occurring within the

atomic-sized constrictions. Their work reveals correlations
between structure and conductance and makes insightful
predictions, highlighting the importance of understanding the
behavior of atomic-sized samples and leading to the present
study.

In a recent study, the authors used picometer-level me-
chanical perturbations to show direct evidence of channel
saturation and conductance quantization in atomic-sized gold
constrictions.20 These results also explained the origin of
peaks in conductance histograms and showed that peaks are
insufficient in evaluating the mechanical stability of atomic
configurations. It was shown that there exists a quasicontinu-
ous distribution of atomic configurations, each with a slightly
different conductance. Mechanical stability of these atomic
configurations requires knowledge of their spring-constant
and deformation characteristics; this information cannot be
obtained from conductance histograms. In the present study,
the dependence of the spring constant on the constriction
size was measured and used to derive the modulus. Results
show a remarkable modulus enhancement as the size of
the constrictions approaches the Fermi wavelength of the
electrons, and in the limit of a single-atom constriction,
the enhancement is at least two times that for bulk gold.
Furthermore, the magnitude of discrete atomic displacements
occurring during reconfiguration from one constriction size
to another is measured. Even though there are virtually
countless ways in which constrictions may transition from one
atomic configuration to another, results reveal a remarkable
simplicity—the discrete atomic displacements always occur in
units of elementary slip distances for gold. Results reveal two
fundamental crossovers in deformation modes with increasing
contact diameter, the first one from homogeneous shear to
defect-mediated deformation and the second from surface- to
volume-dominated deformation.
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II. EXPERIMENTAL DETAILS

Gold films (200 nm thick) were magnetron sputtered on
silicon substrates in an Ar partial pressure of 3 mtorr in a UHV
chamber whose base pressure was ∼10−8–10−9 torr. The Au
sputtering target was 99.999% pure. Atomic force microscope
(AFM) silicon cantilever tips were sputter-coated with Au
films (60 nm thick) for force-deformation measurements.
During deposition, the cantilevers were periodically rotated
relative to the sputtering gun to enhance the uniformity of the
gold coating.

A modified AFM (Ambios Q-Scope Nomad) was used
for simultaneous measurements of conductance and force-
deformation at room temperature in an inert atmosphere.
The AFM assembly consisted of a dual piezo configuration,
one for coarse and another for fine alignment of the substrate
relative to the cantilever tip. With this configuration, the
minimum step size was 4 pm and the noise was ∼5 pm. A
range of cantilever spring constants was used (20–70 N/m) to
determine the spring constant of various sized constrictions
(the need for using cantilevers with different stiffness is
discussed later). The cantilevers were precisely calibrated
using reference cantilevers available from Veeco Probes (Force
Calibration Cantilevers CLFC-NOBO). The photodetector
was calibrated using the well-established optical deflection

technique. Conductance traces were recorded at a bias voltage
of 250 mV. For all experiments, the piezo was extended
or retracted at a rate of 5 nm/s. The experimental setup is
described in further detail elsewhere.20

III. RESULTS AND DISCUSSION

Figures 1(a)–1(c) show typical examples of simultaneously
measured force and conductance traces during the deformation
of the constrictions. Their size spans the conductance regimes
from being quantized in single-atom to few-atom contacts
[inset of Fig. 1(a)] to semiclassical in Figs. 1(a)–1(c). The
example traces in Figs. 1(a)–1(c) are obtained by elongating
the piezo, which in turn causes the gold-coated AFM tip
to push against the gold film to form progressively larger
contacts. Figure 1(d) shows an example in which an initially
large constriction is progressively broken down to a single
atom through piezo retraction. Notice that regardless of the
conductance regime, in general each atomic reconfiguration
causes a stepwise change in force and a stepwise change in
conductance. However, occasionally no observable change in
conductance is observed corresponding to a stepwise change
in force. This is shown in a trace in the inset of Fig. 1(b). It
shows that an atomic reconfiguration has occurred in the vicin-
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FIG. 1. (Color online) Simultaneously measured conductance and force vs the deformation of the constrictions in different conductance
regimes. (a)–(c) corresponds to piezo elongation, which causes the Au-coated AFM tip to push against the Au film to form progressively larger
constrictions. The inset in (a) shows the zoom-in view of measured conductance and force in the regime of quantized conductance. Inset in (b)
shows a trace that exhibits no observable change in conductance corresponding to a stepwise change in force. Part (d) corresponds to piezo
retraction that causes an initially large constrictions to be pulled apart to progressively smaller sizes. The piezo elongation or retraction speed
is 5 nm/s.
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ity of the constriction without altering the cross-section area of
the conductor. This behavior has previously been predicted by
simulation studies.32 This has implications related to the effec-
tive length of the constriction, which is discussed in detail later.

After reviewing over a thousand traces, it is estimated that
observation of a force jump without a corresponding jump
in conductance [inset of Fig. 1(b)] occurs ∼1% of the time.
Additional examples of this are shown in Figs. S1(a–d) of the
supplementary material.54 Looking into the reverse, namely,
observation of a jump in conductance without a corresponding
jump in force, it is found that this also occurs ∼1% of the
time. Examples of this are shown in Figs. S2(a–d) of the
supplementary material.54 One mechanism responsible for
this occurrence is the possibility that an atom may have
thermally migrated to the constriction, which would change
conductance but would not result in a discrete change in force.
Low-temperature measurements are currently being initiated,
but they are beyond the scope of the present study. Also, notice
that unlike bulk materials in which load-deformation curves are
separated into an initially elastic region followed by permanent
deformation, on the atomic scale the deformation is marked
by successive elastic regions separated by catastrophic events
during which sudden atomic reconfigurations occur.

Figures 2 and 3 explain various quantities of interest
that can be derived from such traces. To explain, Fig. 2(a)
schematically shows a gold constriction between a gold-coated
cantilever tip and a gold film; the size of the constriction
is shown greatly exaggerated relative to the cantilever and
the film. As the piezo elongates (defined by its position
Lpiezo), the force on the constriction increases [reflected in
the greater deflection of the cantilever for the constriction
labeled “A” in Fig. 2(a)]. At some critical force F1, an atomic
reconfiguration occurs to form a new constriction [labeled
“Constriction-B” in Fig. 2(a)], and the force drops abruptly
from F1 to F2. An example of stepwise change in force
δF (=F2 − F1) accompanying an atomic reconfiguration is
shown in Fig. 2(b), corresponding to the trace shown in
Fig. 1(a). Also accompanying this atomic reconfiguration is
a discrete change in length for the constriction δζcontact and a
stepwise change in conductance δG, as shown in Fig. 2(c).
Note that the contact deformation ζ in Fig. 2(c) can be
directly obtained from the relationship ζ = Lpiezo − Lcantilever;
at the instant of an atomic reconfiguration (∼1013 Hz) marked
by the vertical arrows in Figs. 2(b) and 2(c), δLpiezo =
0 and the discrete change in length of the constriction
δζcontact = −δLcantilever. The inset in Fig. 2(c) also shows SEM
micrographs of various gold-coated AFM tip geometries used
in the present study. There are two ways to calculate the
spring constant of each constriction. First, since the spring
constant of the cantilever can be determined precisely (see
experimental details), the spring constant of the constriction
can be derived from the relationship Kcontact = (Kcantilever ×
Kmeasured)/(Kcantilever − Kmeasured). Here, Kmeasured is the
combined response of the cantilever and the constriction,
which is obtained from the slope of the force versus piezo
elongation (or retraction) trace for each constriction, as shown
in Fig. 2(b). A range of cantilever spring constants was used
(20–70 N/m) to determine the spring constant of various
sized constrictions. This is necessitated by the fact that in
the limit of Kmeasured → Kcantilever, a small error in Kmeasured
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FIG. 2. (Color online) (a) Schematic showing a gold constriction
between a gold-coated cantilever tip and a gold film. The size of the
constriction is exaggerated relative to the cantilever and the film. (b)
and (c) Continuous and discrete changes in force, conductance, and
length of various sized constrictions as they assume different atomic
configurations. See text for explanation. The inset in (c) shows SEM
micrographs of various Au-coated cantilever geometries.

FIG. 3. (Color online) The force on the constrictions as a function
of contact deformation ζcontact, whose slopes equals the spring constant
of various atomic configurations. The abrupt change in force δF and
the accompanying abrupt change in contact length δζcontact are also
labeled.
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can lead to a large uncertainty in determining Kcontact. This
is shown in the supplementary material (Fig. S3) using the
example of Kcantilever equal to 24 N/m.54 An alternate (and
equivalent) route to measure the spring constant of individual
constrictions is to use traces such as those shown in Figs. 2(b)
and 2(c), and replot the force on the constrictions as a function
of contact deformation ζcontact, whose slopes then directly
provide the spring constant of various atomic configurations.
This is shown in Fig. 3 to highlight that the spring constant
of various atomic configurations may have different values
(for example, Ku, Kv, Kw, etc.). Even two closely spaced
configurations, such as those labeled v and w in Fig. 3, may
have different spring constants. In Fig. 3, the abrupt change
in force δF and the accompanying abrupt change in contact
length δζcontact during atomic reconfiguration are also labeled.
The perceptible slope of conductance plateaus represents a
small but finite change in conductance within the elastic limits
of various atomic configurations; a detailed investigation of
strain dependence of conductance for quantum conductors is
discussed elsewhere.20 In the present study, both approaches to
calculate the spring constants were used, and they gave similar
results (although the former is less cumbersome).

First, consider the magnitudes of discrete atomic dis-
placements during atomic reconfigurations. From hundreds
of traces such as the one shown in Fig. 2(c), Fig. 4 plots
δζcontact versus the conductance of the constriction; the inset
in Fig. 4 shows a zoom-in view of the plot at lower values of
Go. Figure 4 is obtained by plotting the values of δζcontact

that various constrictions assume upon undergoing atomic
reconfiguration. For example, with reference to Fig. 2(c),
where the conductance jumps from an initial value of 29Go

to 33 Go [marked by the vertical arrow in Fig. 2(c)], the
constriction is seen to undergo a discrete change in length
equal to 0.198 nm; Fig. 4 plots this value of δζcontact at 33 Go.
There are several interesting features of this plot. First, the
plot is clearly characterized by permissible and prohibited
bands of δζcontact; the average permissible values of 〈δζ 〉
are indicated by the horizontal lines. As opposed to being
multiples of the Au-Au bond length of 0.288 nm, all the
permissible values of 〈δζ 〉 represent elementary slip distances
(or multiples thereof) on the {111} close-packed planes, with

FIG. 4. (Color online) Plot of δζcontact vs the conductance of the
constrictions formed by piezo elongation; the inset shows a zoom-in
view at lower values of Go. See text for an explanation.

the constriction axis along the 〈110〉, 〈111〉, or 〈100〉 directions.
The present study reveals the existence of various levels due
to picometer resolution in measured displacements, whereas
previously, only a single band centered at an average value
of 0.152 nm was reported for compression.34 Notice the four
sharply separated permissible 〈δζ 〉 levels in the inset of Fig. 4.
The distances of 0.049, 0.079, and 0.088 nm correspond to
hcp→fcc slip distances on {111} planes with the constriction
axis along the [110], [111], and [100] directions, respectively;
the value of 0.098 nm corresponds to fcc→hcp slip distance
with the constriction axis along the [110] direction; see Ref. 34
for crystallography related to these values for gold. Figure 4
shows that these four sharply defined levels transition into
a diffuse band with an average value of ∼0.168 nm, and
this crossover occurs at a conductance value of 19 Go. The
diameter corresponding to this conductance value is equal to
1.45 nm (using the Sharvin formula, discussed later). Even
though this value is for the case of pushing the cantilever
into the gold film, this crossover diameter agrees remarkably
well with the theoretically predicted constriction diameter
of 1.5 ± 0.3 nm for crossover from homogeneous shear to
defect-mediated deformation for gold in tension.32 The defect-
mediated deformation causes the sharply defined discrete
displacement levels to form a diffuse band. Also, the average
value of 〈δζ 〉 for this band is close to the elementary slip
distance of 0.166 nm on the {111} planes along the 〈112〉
direction in gold, which further confirms dislocation-mediated
deformation. In Fig. 4, as the size of the constrictions becomes
larger, there is a higher probability for simultaneous slip on
{111} planes. This explains the existence of the 0.504 nm
band, which is three times 〈δζ 〉 equal to 0.168 nm; however,
the absence of another band at twice the value of 0.168 nm is
interesting and needs to be studied further. Also, notice that
the band at 0.393 nm is four times 〈δζ 〉 equal to 0.098 nm,
and lies in the size regime in which crossover from surface- to
volume-dominated deformation occurs, as discussed below.

Next, consider the vertical arrows, labeled I(7 Go),
II(19 Go), III(37 Go), and V(100 Go) in Fig. 4; the absence
of an arrow labeled “IV” is explained in the following. These
arrows mark a threshold conductance value above which a new
level of 〈δζ 〉 becomes permissible. For example, constrictions
whose size is greater than 37 Go (marked by arrow III) may
undergo a discrete change in length at a new value of 〈δζ 〉
equal to 0.393 nm in addition to the permissible values of
〈δζ 〉 that are available to them below 37 Go. The conductance
values in the parentheses adjacent to the arrows have special
significance. As shown schematically in Fig. 4, a value of
7Go corresponds to the formation of a complete ring of gold
atoms around a single atom for a total of seven atoms; the
conductance of a single atom of gold saturates at 1 Go.20,22

Similarly, values of 19 Go and 37 Go represent the completion
of the second and the third rings around the gold atom,
corresponding to 19 and 37 atoms, respectively. While the
fourth ring (61 atoms) is expected to appear at 61 Go, it is
missing in Fig. 4, whereas the fifth ring with a total of 91
atoms appears experimentally at ∼100 Go, as marked by arrow
V. As shown in the following, the missing fourth ring lies
in between the crossover from surface- to volume-dominated
deformation behavior, and this transition region is demarcated
in Fig. 4. Note that the number of channels in an atom is equal
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FIG. 5. (Color online) (a) Spring constants Kcontact of the constric-
tions as a function of their conductance and also their area calculated
using Sharvin’s semiclassical formula. The contacts are formed by
piezo elongation. Each data point represents an average over 20
measurements; the inset shows their standard deviation. For contacts
with conductance less than 10 Go, each point is an average over three
measurements. The solid and dotted lines are theoretical values of
the spring constant for different Leff/D ratios, using a modulus of
78.5 GPa for bulk gold and derived using Sharvin formula.

to its valence electrons.22 Thus for gold, one atom can have
a maximum of 1 Go of conductance. Figure 4 schematically
shows rings of atoms around a single gold atom for various
crossovers only as an idealization. Note that at III, number of
atoms on the surface is ∼50%.

Figure 5 plots the spring constant Kcontact as a function
of conductance (lower abscissa) and area (upper abscissa)
of the constriction. In Fig. 5, the solid and dotted lines are
theoretical values of the spring constant (K = EA/L) based
on a modulus E of 78.5 GPa for bulk gold and derived using
the Sharvin formula for different ratios Leff/D of length to
the diameter of the constrictions.55,56 The Sharvin formula
relates the conductance Gs to the area A of the constriction by
the relationshipGs = (2e2/h)(πA/λ2

F ) = Go(πA/λ2
F ); here,

(2e2/h) = Go is the quantum of conductance, e is the
quantum of charge, h is Planck’s constant, and λF is the
Fermi wavelength (=0.52 nm for gold). The Sharvin formula
allows the area of the constriction to be estimated for a
given conductance, as shown on the upper abscissa in Fig. 5
(assuming a circular cross section). However, a priori, the
effective length Leff of the constrictions is not known, and
the solid and dotted lines plot the spring constants assuming
different ratios of length to the diameter. Figure 5 clearly shows
that up to a certain size of the constriction, the experimentally
measured data points closely follow the trend line represented
by Leff = D and then transition to the trend line for Leff =
(3/4)D for larger constrictions. This crossover can be seen
to occur at conductance values between ∼47 Go and 67 Go,
corresponding to constriction cross-section areas between
∼4.1 and 5.7 nm2 (or a constriction diameter of 2.27–2.67 nm).
This crossover region corresponds well with the crossover
region shown in Fig. 4.

FIG. 6. The size dependence of the modulus of the constrictions
assuming Leff = D. The dotted line is an aid to the eyes.

Recall that in Fig. 5, the theoretical trend lines for
spring constants for various Leff/D ratios were plotted by
assuming the modulus value for bulk gold. Conversely, one
can arbitrarily assume a ratio for Leff/D to assess the size
dependence of the modulus. Figure 6 plots the size dependence
of the modulus by assuming Leff = D. The significance of
assuming Leff = D is that it represents the limiting case of a
single-atom contact, where the diameter of the atom equals
its length. Figure 6 shows that there is a large modulus
enhancement up to two times the value for bulk gold in the
limit of a single-atom constriction. As the diameter of the
constriction increases, there is a minimum in modulus at a
diameter of ∼1.0 nm, corresponding to a constriction area
∼0.78 nm2 and a conductance of ∼9Go. With a further increase
in the size of the constriction, the modulus approaches the
bulk value. This occurs at a constriction diameter of ∼2.7 nm,
corresponding to the conductance of ∼67Go. It is consistent
with the missing transition for 〈δζ 〉 at 61Go in Fig. 4 for the
fourth gold ring, corresponding to the crossover from surface-
to volume-dominated deformation.

Figure 7 plots δζcontact versus conductance for the case of
initially large constrictions being pulled apart to progressively
smaller sizes through piezo retraction; see, for example, the
trace in Fig. 1(d). In contrast to Fig. 4, where constrictions
were pushed into progressively larger diameters through piezo
elongation, the permissible and prohibited bands of δζcontact

in Fig. 7 are less well defined; this difference arises simply
because of the fact that in the former case, the constriction’s
neck cannot be stretched, whereas in pulling, a constriction
has the possibility to elongate without changing its effec-
tive cross-section area (which determines its conductance).
Consequently, a range of Leff/D ratios may be expected for
piezo retraction, as shown in the following. Another salient
feature of Fig. 7 is the absence of any level for δζcontact

below 0.098 nm. By comparison, the inset in Fig. 4 shows
three well-defined levels below 0.098 nm. However, threshold
conductance values above which a new level of 〈δζ 〉 becomes
permissible can still be roughly seen, as marked by the vertical
arrows. Figure 8(a) plots the spring constant as a function of
size for this data set. The zoom-in view in the inset of Fig. 8(a)
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FIG. 7. (Color online) Plot of δζcontact vs the conductance of the
constrictions formed by piezo retraction; the inset shows a zoom-in
view at lower values of Go. See text for explanation.

shows that only in the limit of single-atom constriction (marked
by the vertical arrow at 1Go) do the experimental spring
constant values fall on the Leff = D trend line. This is followed
by a transition to the trend line for Leff = 2D for constrictions
up to ∼ 5 Go (as marked by the vertical arrow), beyond which
the spring constants follow a range of Leff/D ratios. In contrast
to the data in Fig. 5, where the spring constant data transition
to a lower Leff/D ratio within a well-defined transition region,
the data in Fig. 8(a) trend toward higher Leff/D ratios of up to
6–8 for larger-sized constrictions. Analogous to the procedure
described in Fig. 6, the size dependence of the modulus is
plotted in Fig. 8(b). Again, the salient feature of this plot is
the apparently large enhancement in modulus in the limit of
a single atom that is up to five times that of the modulus for
bulk gold. However, the modulus is calculated by assuming
Leff = 6D. If one were to take another ratio for Leff/D (say,
Leff = D), the calculated values of the modulus in the limit of
a single atom would be much smaller. Therefore the validity of
modulus enhancement has to be ascertained, and the following
approach provides a benchmark for validating its existence.

Figures 9(a) and 9(b), respectively, map Leff/D ratios as
a function of contact diameter using the spring-constant data
shown in Fig. 5 (for the case of constrictions formed by piezo
elongation) and Fig. 8(a) (for the case of piezo retraction),
assuming the modulus value for bulk gold. Figure 9(a) shows
that in the limit of a single atom, the Leff/D actually
becomes less than 1 (shown encircled). This is physically
impossible, as Leff = D is the smallest possible value that a
single-atom constriction can take. This shows that the modulus
enhancement indeed exists and is at least two times the
value in the bulk (the lower bound). On the other hand, the
data in Fig. 9(b) might suggest the absence of any modulus
enhancement, since the value of the Leff/D ratio does not
drop below 1 in the limit of a single-atom constriction (shown
encircled). However, in describing the Leff/D ratio, Leff is the
effective length over which the deformation occurs, as shown
schematically in Fig. 9(b). Thus, for example at Leff/D = 1,
the definition implies that the deformation only occurs over
a length equal to the diameter of the constriction, and would
have no impact beyond that. This is obviously unrealistic, and
in the limit of a single atom, the deformation surely extends

0 30 60 90 120 150 180

0

100

200

300

400

500

600
0 3 6 9 12 15

0 10 20 30
0

25

50

75

100

(a)

S
p
ri
n
g
 c

o
n
st

a
n
t 
o
f 
co

n
st

ri
ct

io
n
 (
N

/m
)

Conductance (2e
2
/h)

 L=D
 L=2D
 L=3D
 L=4D
 L=5D
 L=6D
 L=7D
 L=8D

Area of constriction (nm
2
)

1Go 5Go

0 1 2 3 4 5

0

100

200

300

400

500

600

(b)

M
o
d
u
lu

s 
(G

P
a
)

Diameter of constriction (nm)

S
in

g
le

 A
u
 a

to
m

FIG. 8. (Color online) (a) Spring constant Kcontact of the constric-
tions as a function of their conductance and also their area calculated
using Sharvin formula. The contacts are formed by piezo retraction.
Each data point represents an average over 25 measurements; for
contacts with conductance less than 10 Go, each point is an average
over three measurements. The inset shows the zoom-in view at lower
values of conductance, which shows Leff/D ratio of 1 in the limit of
single-atom contact, increasing to 2 for conductance up to 5 Go, and
then taking a range of higher ratios for larger sized constrictions. The
solid and dotted lines are theoretical values of the spring constant for
different Leff/D ratios, using a modulus of 78.5 GPa for bulk gold
and derived using Sharvin formula. (b) The size dependence of the
modulus of the constrictions assuming Leff/6D.

beyond one atomic diameter.32 As shown earlier with the aid
of an example trace in the inset of Fig. 1(b), forces can cause an
atomic reconfiguration away from the constriction. Although
the compression data in Fig. 9(a) clearly show that the lower
bound of modulus enhancement is at least two times that for
bulk gold, without precise information on contact geometry
and deformation away from the constriction for Fig. 9(b), it is
not possible to ascertain the upper bound of this enhancement.

Previous studies based on density-functional theory and dy-
namic simulations predict bond strengthening at a comparable
scale, which is seen from modulus enhancement in the present
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FIG. 9. (Color online) (a) Map of Leff/D ratio as a function of
contact diameter using the spring constants shown in Fig. 5 for the
case of constrictions formed by piezo elongation, and (b) for the case
of piezo retraction in Fig. 8(a), assuming modulus value of bulk gold.

study.29,57 As to the extent of modulus enhancement, note that
Sharvin analysis deviates in the limit of a single atom, but
the estimate one gets provides a conservative rather than an
exaggerated estimate of the enhancement. The atomic diameter
of a gold atom is known precisely, and using that value, the
estimated modulus enhancement from the measured spring
constants would be 2.5 times that for bulk gold (instead of two
times using the Sharvin estimate). Similarly, using diameter
values estimated from single-atom gold chains,58 a modulus
enhancement by a factor of 3 would be obtained. However
all the data are base-lined using the Sharvin estimate simply
because it gives the most conservative estimate of modulus
enhancement. Also, note that over repeated measurements,

the spring constant gets measured over different orientations
of atomic configurations and saturates at ∼100 GPa for large
diameters. This value is slightly higher than the modulus of
polycrystalline gold (∼78 GPa) and is close to the modulus
of 110 GPa along the 〈111〉 direction (the lowest value of the
modulus for gold being 40 GPa along the 〈100〉 direction).
A value of the modulus closer to the 〈111〉 direction is
also in accord with Hasmy’s molecular-dynamics simulations,
which predict 〈111〉 as the favorable reconstruction.53 Finally,
the definition of the modulus in the context of atomic-sized
samples is best seen from the point of view of the slope of the
net attractive or repulsive forces versus interatomic distances
(as opposed to the classical mechanics definition).

IV. CONCLUSIONS

Results show a remarkable modulus enhancement as the
size of the constrictions approaches the Fermi wavelength of
the electrons, and in the limit of a single-atom constriction it
is at least two times that for bulk gold. The observed modulus
enhancement by a factor of 2 represents the lower bound.
Precise information on contact geometry and deformation
away from the constrictions is needed to establish the upper
bound of modulus enhancement.

While reconfiguration from one constriction size to another
is known to occur by apparently random discrete atomic
displacements, results show that the magnitude of these
displacements is not arbitrary but is limited to a small set of
values defined by the gold crystallography rather than Au-Au
interatomic distance.

Two fundamental crossovers in deformation modes are
observed with increasing contact diameter. The first crossover
is from homogeneous shear to defect-mediated deformation at
a constriction diameter (∼1.45 nm) that not only corresponds
with the previously predicted value (1.5 ± 0.3 nm) for
tension,32 but is even more sharply demarcated for compres-
sion. Another crossover is observed at constriction diameters
between 2.0 and 3.2 nm, marking the transition from surface-
to volume-dominated deformation.

The results provide atomistic insight into the mechanics
of these constrictions and reveal the evolutionary trace of
deformation modes, beginning with a single-atom contact.
Whether the reversible deformation of individual constrictions
follows linear elasticity or nonlinear elasticity remains to be
further investigated and is beyond the scope of the present
studies.
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