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Polarizability and hyperpolarizability of BN zigzag nanotubes calculated
by the coupled perturbed Kohn-Sham scheme
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Linear and nonlinear electric dipole susceptibilities are evaluated for infinite periodic zigzag BN nanotubes
utilizing primarily the coupled perturbed Kohn-Sham scheme recently implemented in the CRYSTAL code. The
effect of different functionals, basis set, and computational parameters is examined. Most of the calculations are
done at the B3LYP/6-31G* level. For electronic linear polarizabilities, substantial differences compared to the
uncoupled sum-over-states scheme are found. Much larger radii were considered than in earlier studies, thereby
permitting accurate comparison with corresponding properties of the hexagonal monolayer. In addition, we
confirmed the dielectric shell model for the linear polarizability, but with a significantly different shell thickness
than previously thought. Vibrational (ionic) contributions to the nonlinear susceptibilities are calculated. In doing
so, the finite-field–nuclear-relaxation (FF–NR) method was employed for the transverse components of the (6,0),
(9,0), and (12,0) nanotubes. Aside from being computationally more efficient than other procedures, this method
includes anharmonicity effects through first order and, as shown, is readily applied to key dynamic as well as static
properties (and yields the static linear polarizability as well). Our calculated nonlinear vibrational susceptibilities
sometimes exceed, or even greatly exceed, the corresponding static electronic susceptibility. In such cases, the
relative magnitude of the vibrational contribution grows substantially with tube radius over the range considered.
Future plans include extending these FF–NR calculations to large nanotubes and to the longitudinal (periodic)
direction as well.
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I. INTRODUCTION

Since their discovery,1 carbon nanotubes (CNTs) have
attracted the attention of the scientific community for their
unique electrical, mechanical, and thermal properties.2 Almost
immediately thereafter there began a search for noncarbon
nanotubes. Based on the analogy between graphite and
hexagonal boron nitride (h-BN), the existence of BN nanotubes
(BNNTs) was proposed theoretically3,4 in 1994 and found
experimentally the next year.5 Although h-BN and graphite
are isoelectronic, and have very similar structures, the cor-
responding nanotubes show significant differences in their
properties. In particular, BNNTs have greater thermal stability6

and, thanks to a wide band gap (� 5.5 eV), a less dramatic
dependence of the electrical properties on rolling direction
and tube radius. The stability of the properties with respect to
tube size is an important advantage of BNNTs over CNTs. For
the latter, poor control of tube chirality and tube size leads to
poor control of tube properties. As a result, BNNTs have been
the object of extensive experimental7–13 and theoretical14–18

studies because of their possible applications in such
fields as super-tough composite materials and nanoelectronic
devices.

A single-walled BN nanotube (SWBNNT) is formed by
rolling an h-BN monolayer into a cylinder along an (n1,n2)
lattice vector. The n1 and n2 indices determine the radius
and chirality, which are the key parameters that characterize
the structure.19,20 Multiwalled nanotubes can be obtained
with two or more SWBNNTs of different radii but the

same axes. Despite a flurry of theoretical investigations on
SWBNNTs in recent years14–17,21 (all dealing with tubes of
radius smaller than 15 Å), there remain a number of open,
or not fully resolved, issues concerning their electric field
response. The most recent treatments of the polarizability
of BNNTs (Refs. 16, 17, and 21) were carried out using
density functional theory (DFT) with either the local density
approximation (LDA) or generalized gradient approximation17

(GGA) and supercell geometry. These calculations employ
a plane-wave basis (or projector-augmented plane waves)
and do not include exact exchange. To our knowledge,
only the linear polarizability (referred to hereafter simply as
polarizability) has been considered thus far. In view of the
well-known overshoot of polarizabilities obtained for LDA
and GGA functionals in quasi-1D systems,22–26 a comparison
with Hartree-Fock (HF) and, particularly, with the hybrid
B3LYP functional is of interest. These aspects are studied
here using the CRYSTAL code, which employs a local Gaussian
atomic orbital basis, and has the capability for carrying
coupled perturbed HF and Kohn-Sham (CPHF and CPKS)
calculations.

It is known from LDA calculations by Guo et al.16 that
there is a substantial vibrational (sometimes called ionic)
contribution to the static polarizability of BNNTs. Their results
were obtained by finite differences using finite-field electric-
enthalpy theory for nanotubes of radius up to 15 Å. Aside
from this treatment, we utilize an alternative computational
procedure known as the finite-field–nuclear-relaxation (FF–
NR) method.27 The latter also yields, with little extra effort,
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the static vibrational hyperpolarizabilities as well as the
vibrational contribution to most key dynamic nonlinear optical
processes. This method, unlike the treatment employed by
Guo et al., does not require explicit evaluation of vibrational
force constants but, nonetheless, accounts for effects due
to vibrational and electrical anharmonicity, at least through
the first order of perturbation theory. Morevoer, there is an
advanced version (not utilized here) that, in principle, gives
a complete accounting of anharmonicity contributions.28 The
FF–NR method has been used previously for ordinary small
to medium size molecules, but this is the first application to
a nanotube or any other periodic system. Although currently
implemented in the CRYSTAL program only for nonperiodic
nanotube directions, a formulation for periodic directions is
available29 and is currently being added to the code. Finally,
in order to separate the electronic and vibrational contribu-
tions, static electronic hyperpolarizabilities are required. For
the representative (6,0), (9,0), and (12,0) zigzag nanotubes
considered in this initial application, they are obtained by the
analytical CPKS (Refs. 30–32) procedure, as well as the FF
method, in order to provide a check on both.

There has been much discussion in the literature concerning
the linear versus quadratic behavior of the transverse com-
ponent of the nanotube polarizability (per unit length) as a
function of the tube radius. It originates with a paper by
Benedict et al.,33 who developed a treatment for single-walled
carbon tubes based on a thin conducting cylindrical shell
model that leads to a quadratic dependence. Very recently,
Lan et al.17 have proposed a more appropriate model for
SWBNNTs wherein the conducting shell is replaced by a
dielectric shell with uniform dielectric constant. Their model
reproduces the linear dependence on radius found in earlier
LDA calculations.14,21,34 Here, we test the adequacy of this
form using our own B3LYP calculations for nanotubes with
radii up to 24 Å. The extension to much larger radii than
previously considered turns out to be essential for obtaining
an accurate extrapolation to the monolayer limit, which further
confirms the numerical accuracy of our method.

The computational techniques employed to determine the
electronic and vibrational (hyper)polarizabilities are given in
the next section. As far as the electronic properties are con-
cerned, the CPHF and CPKS implementations in CRYSTAL have
been described elsewhere.30,35–38 Thus, we focus here on the
parameters that control the accuracy of the self-consistent field
(SCF) treatment and the geometry optimization, along with the
choice of basis set. A brief review of the Berry phase treatment
of the static vibrational polarizability is presented along with a
fuller exposition of the FF–NR method. The latter is applicable
as well to static and dynamic vibrational hyperpolarizabilities.
Although the FF–NR method is well known to quantum
chemists, additional details are provided for the materials
physics community. Our results are reported and discussed in
Sec. III. Aspects covered include geometry, band gap, effect
of orbital relaxation and exact exchange on the polarizability,
dependence of the transverse polarizability on the tube radius,
and FF–NR transverse vibrational (hyper)polarizabilities. The
concluding section contains a summary of our major findings
together with some plans for future work.

II. COMPUTATIONAL METHODS AND DETAILS

Our CPHF and CPKS calculations of electronic (hy-
per)polarizabilities were performed with a development
version37 of the periodic ab initio CRYSTAL09 code.39 The
CPKS procedure is a (linear and quadratic) response formu-
lation of time-dependent DFT. Thus, in principle, it includes
all contributions to the (hyper)polarizability such as excitonic
effects. In practice, our results are subject to the limitations of
the hybrid B3LYP functional that is used here.

DFT exchange-correlation contributions were evaluated
by numerical integration over the unit-cell volume. Radial
and angular points of the integration grid are generated
through Gauss-Legendre radial quadrature and Lebedev two-
dimensional angular point distributions. In our calculations, a
(75 974) pruned grid (XLGRID keyword in the CRYSTAL09
manual),40 corresponding to 75 radial and 974 angular points,
was employed. The integration accuracy can be estimated by
the error in the electronic charge per unit cell �e = 2.8 ×
10−3|e| [out of a total of 288 electrons for the (12,0) BNNT],
obtained by using a 6-31G* basis set with the exponent of the
most diffuse valence shell energy optimized at the equilibrium
geometry. Other details on the grid generation and its influence
on the accuracy and cost can be found in Refs. 41–43.

Evaluation of the Coulomb and exact exchange infinite
series is controlled by five parameters40 (T1, T2, T3, T4, T5),
the values of which are set to T1 = T2 = T3 = T4 = 1

2T5 = TI .
The effect of TI and S, the shrinking factor used to generate the
commensurate net of points at which the Fock and KS matrix
is diagonalized and the CPHF and CPKS equations are solved,
is shown in Table I for the same (12,0) tube, basis set and
geometry as above. It turns out that a very rapid convergence
with increasing value of these two parameters is achieved. In
this paper, TI = 8 and S = 16 are used.

Convergence of the SCF zeroth-order energy and CPHF and
CPKS iterations is controlled by the TE and TCP parameters,
respectively. The SCF cycles are terminated when the differ-
ence � between the values of the total energy (E, in Hartree)
or polarizability (α, in Bohr3), for two successive cycles, is less
than 10−TE or 10−TCP , respectively. In this paper, TE = 10 and
TCP = 4 and 1 for the first- and second-order CPHF and CPKS
cycles, respectively. Sometimes, the iterations produced large
oscillations of the Fock and KS matrices, in which case these
matrices were damped by mixing at the m and m − 1 cycles

TABLE I. Effect of the shrinking factor (S) and of the tolerance
parameter for truncation of the Coulomb and exchange series (TI ) on
the (12,0) BN nanotube electronic polarizability tensor (in Å3 and per
BN unit). Calculations performed at the equilibrium geometry with
B3LYP/6-31G*. S = 16 and TI = 8 are used when not specified.

α‖ α⊥

SOS CPKS SOS CPKS

4 4.108 4.712 2.952 1.680
S 8 4.049 4.644 2.952 1.680

16 4.048 4.644 2.952 1.680
7 4.050 4.645 2.953 1.680

TI 8 4.048 4.644 2.952 1.680
9 4.049 4.644 2.952 1.680
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TABLE II. Effect of basis set on the (12,0) BN nanotube properties. �E (in μHa) is the energy difference with respect to the richest basis
set [6-31G**(f)], BG is the band gap (in eV), and the electronic polarizabilities are in Å3 per BN unit. S = 16, TI = 8, and B3LYP are used.
All calculations performed at the equilibrium geometry determined for each basis set. The values in parentheses are the percentage differences
with respect to the richest basis.

α‖ α⊥

Basis �E BG SOS CPKS SOS CPKS

6-31G 643.6 5.98 3.922 (−5) 4.571 (−4) 2.718 (−11) 1.653 (−3)
6-31G* 136.1 5.94 4.048 (−2) 4.645 (−2) 2.952 (−3) 1.680 (−1)
6-1111G* 13.6 5.93 4.046 (−2) 4.634 (−2) 2.978 (−2) 1.684 (−1)
6-31G** 89.2 5.93 4.091 (−1) 4.698 (−1) 2.996 (−1) 1.691 (−1)
6-31G**(f) 5.94 4.133 4.743 3.038 1.706

with the FMIXING parameter40 of 30% and 50% for the SCF
and CPHF and CPKS calculations, respectively.

The sufficiency of the 6-31G* basis set for determination of
total energy, band gap (BG), and polarizability was explored
as documented in Table II. Polarizabilities differ by less than
2% from those obtained with much richer basis sets; for this
reason, the 6-31G* basis was used for subsequent steps of this
study.

The dependence of the (12,0) electronic polarizability on
the DFT functional (again, for the same basis set and geometry
as above) is shown in Table III. The uncoupled sum-over-states
(SOS) values are also reported in the table in order to see the
influence of orbital relaxation. These results will be discussed
in the next section.

The fractional atomic coordinates and unit-cell
parameters44–46 were optimized within a quasi-Newton
scheme using analytical energy gradients combined with the
Broyden-Fletcher-Goldfarb-Shanno algorithm for Hessian
updating.47–50 Convergence was checked on gradient
components and nuclear displacements. For both, a threshold
of 0.000 03 a.u. was chosen.

For the complete set of nanotubes considered in this study,
the total static polarizability was determined from

α0 = αe +
∑

j

Z
2
j

ν2
j

, (1)

where αe is the electronic (clamped ion) contribution. The vi-
brational (ionic) contribution is given, in the double harmonic
approximation, by the second term on the right-hand side. In

this term, Z
2
j is a mass weighted effective mode Born charge

and νj is a vibrational frequency. Born charges were calculated

using a Berry phaselike scheme,51,52 while frequencies were
obtained by diagonalizing the dynamical matrix, found by
numerical differentiation of the analytical energy gradients
(see Ref. 41 for details).

For the (6,0), (9,0), and (12,0) nanotubes, the total static
polarizability in the transverse direction was also evaluated by
means of the FF–NR method.27,28 The FF–NR computational
scheme for static (hyper)polarizabilities can be summarized as
follows.27 If we denote the equilibrium geometry in a static
electric field (F) by RF and without the field by R0, then a
Taylor series expansion for the field-dependent dipole moment
at the two geometries yields

(�μt )R0 = μt (F,R0) − μt (0,R0)

=
∑

u

αe
tuFu + 1

2

∑
u,v

βe
tuvFuFv

+ 1

6

∑
u,v,w

γ e
tuvwFuFvFw + · · · (2)

and

(�μt )RF = μt (F,RF) − μt (0,R0)

=
∑

u

a
μ
tuFu + 1

2

∑
u,v

b
μ
tuvFuFv

+ 1

6

∑
u,v,w

g
μ
tuvwFuFvFw + · · · . (3)

In Eq. (2), the superscript “e” refers to the clamped ion
electronic value (evaluated at the equilibrium geometry). This
value can be separately obtained experimentally as well as
theoretically. Experimentally, one may carry out a nonresonant

TABLE III. Effect of the Hamiltonian on the (12,0) BN nanotube electronic polarizability tensor. Computational details and units are as in
captions to previous tables.

α‖ α⊥

BG SOS CPKS SOS CPKS

LDA 4.16 5.505 5.313 3.766 1.761
PBE 4.21 5.490 5.355 3.763 1.787
B3LYP 5.94 4.048 4.644 2.952 1.680
PBE0 6.36 3.798 4.492 2.788 1.652
HF 13.20 1.927 3.322 1.555 1.405
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measurement at sufficiently high frequency that the vibrational
contribution to the (hyper)polarizability is negligible. Then, in
order to obtain the static value in Eq. (2) [and Eqs. (4)–(6)
below], the nonresonant measurement must be extrapolated to
zero frequency. The coefficients aμ, bμ, and gμ give the static
electronic plus vibrational (hyper)polarizability in the nuclear
relaxation (NR) approximation (see, again, Ref. 27):

a
μ
tu = αe

tu(0; 0) + αNR
tu (0; 0), (4)

b
μ
tuv = βe

tuv(0; 0,0) + βNR
tuv (0; 0,0), (5)

g
μ
tuvw = γ e

tuvw(0; 0,0,0) + γ NR
tuvw(0; 0,0,0). (6)

By comparison with the Bishop and Kirtman perturbation
treatment,53 the nuclear-relaxation term on the right-hand side
of Eq. (4) is the double harmonic value of the vibrational
polarizability. In principle, Eqs. (1) and (4) should give
identical results. On the other hand, the static hyperpolar-
izabilities in Eqs. (5) and (6) also contain the first-order
perturbation contributions due to anharmonic force constants
and anharmonic electrical property derivatives (the first-order
vibrational contribution to alpha vanishes and γ NR contains, in
addition, a second-order term). It is important to note that the
anharmonic parameters are never explicitly evaluated. Similar
expansions may be carried out for αe:(

�αe
tu

)
R0

= αe
tu(F,R0) − αe

tu(0,R0)

=
∑

v

βe
tuvFv + 1

2

∑
v,w

γ e
tuvwFvFw + · · · , (7)

(
�αe

tu

)
RF

= αe
tu(F,RF) − αe

tu(0,R0)

=
∑

v

bα
tuvFv + 1

2

∑
v,w

gα
tuvwFvFw + · · · , (8)

as well as for βe:(
�βe

tuv

)
R0

= βe
tuv(F,R0)−βe

tuv(0,R0) =
∑
w

γ e
tuvwFw+· · · ,

(9)

(
�βe

tuv

)
RF

= βe
tuv(F,RF) − βe

tuv(0,R0) =
∑
w

g
β
tuvwFw + · · · ,

(10)

where

bα
tuv = βe

tuv(0; 0,0) + βNR
tuv (−ω; ω,0)ω→∞, (11)

gα
tuvw = γ e

tuvw(0; 0,0,0) + γ NR
tuvw(−ω; ω,0,0)ω→∞, (12)

g
β
tuvw = γ e

tuvw(0; 0,0,0) + γ NR
tuvw(−2ω; ω,ω,0)ω→∞. (13)

The subscript ω → ∞ in Eqs. (11)–(13) refers to the
infinite optical frequency approximation. Strictly speaking,
it means that the ratios (ωj/ω)2 = (νj/ν)2 are assumed
to be negligible compared to unity. Again, the first-order
anharmonic contributions (if nonzero) are fully accounted for.
Finally, although not included above (or in this paper), the
FF–NR method has recently been extended so as to yield the
intensity-dependent refractive index, i.e. γ NR(−ω; ω, − ω,ω),
also known as the degenerate four-wave mixing coefficient.54

The required electronic (hyper)polarizabilities at the field-
dependent (and field-free) geometry are evaluated here by the

CPKS method. CPKS values at the field-free geometry are
compared with the finite-field calculations as a check on the
latter.

III. RESULTS AND DISCUSSION

A. Band gap and orbital relaxation effect for (12,0) nanotube

As noted in the previous section, Table III shows the
uncoupled sum-over-states (SOS) and CPHF and CPKS
static electronic polarizabilities per BN unit obtained for
the representative (12,0) nanotube using several different
functionals. The SOS values vary from 5.505 Å3 (LDA)
to 1.927 Å3 (HF) for α‖ (longitudinal component of the
polarizability), and from 3.766 Å3 (LDA) to 1.555 Å3 (HF) for
α⊥ (transverse component). They correlate strongly with the
band gap, given in the same table. The parallel component,
in particular, is almost directly proportional to the inverse
band gap. Orbital relaxation, which is included in the CPHF
and CPKS schemes, substantially weakens this relationship
by dramatically reducing the differences between functionals,
as documented previously in Ref. 36 for a given set of
compounds. Here, for example, in the case of α‖, the HF
value increases strongly from 1.927 to 3.322 Å3, whereas the
LDA value decreases by a small amount (5.505 to 5.313 Å3).
As a result, the LDA-HF ratio is reduced by about a factor
of 1.7. With or without orbital relaxation, the Perdew-Burke-
Ernzerhof (PBE) values are almost the same as LDA. Likewise,
the two hybrid functionals yield similar results. Their behavior
is intermediate between HF and the nonhybrid functionals, as
might be expected. For α⊥, the situation is reversed from α‖.
That is to say, when orbital relaxation is taken into account, the
LDA value for the perpendicular component undergoes a large
reduction (3.766 to 1.761 Å3), whereas the HF value changes
by only 10% (1.555 to 1.405 Å3) and is reduced. The similarity
between the two hybrid and the two nonhybrid functionals is
preserved as is the intermediate behavior of the former.

The above data show that the uncoupled SOS scheme,
although still in use,18 can be a rather poor approximation
depending upon the functional and the component of the
polarizability. From here on, we shall solely use the the
CPKS method with the B3LYP functional, which provides
quite reasonable band gaps55 and (hyper)polarizabilities for
well-localized systems.30,31 The calculated band gap in the
(12,0)-SWBNNT considered here is about 5.9 eV (it ranges to
6.3 eV in the h-BN monolayer limit), in good agreement with
the experimental values of 5.8–5.9 eV observed by Arenal
et al.8 for SWBNNTs and by Jaffrennou et al.9,10 and Lee
et al.11,12 for multiwalled BNNT samples. Note that for B3LYP,
it is important to take into account orbital relaxation as we have
just seen.

B. Geometry optimization

The columns of Table IV labeled RB and RN give the
optimized distance from the tube axis for the B and N atoms in
the (n,0) zigzag BNNTs, also known as zigzag BNNTs. These
distances may be compared with the unrelaxed distance Ru.
The latter is obtained by simply rolling up the BN monolayer,
in which case both B and N atoms are at the same distance
from the tube axis. For small values of n, RN − RB can
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TABLE IV. Calculated properties for the (n,0) series of BN nanotubes and the h-BN monolayer. δE and �E are defined in the text. Values
reported are in μHa per BN unit (integers in parentheses indicate powers of 10). RB and RN are the distances (in Å) from the tube axis of the
B and N atoms, respectively; Ru is the unrelaxed radius. BG is the band gap in eV. α‖ and α⊥ are the longitudinal and transverse components
of the electronic and static polarizabilities per BN unit. The label ∞ indicates the asymptotic limit obtained by extrapolation as described in
the text. The values in parentheses are estimated uncertainties on the last digit. The B3LYP hybrid density functional and 6-31G* basis set are
used, with S = 16 (S = 15 for the layer) and TI = 8. The row labeled Layer* gives the average of the monolayer parallel and perpendicular
polarizabilities per BN unit, which should be equal to the large radius limit (∞ row) of the transverse nanotube polarizability.

α‖ α⊥

n δE �E Ru RB RN BG αe α0 αe α0

3 −4.21(4) 6.94(4) 1.20 1.26 1.45 3.12 4.936 8.730 1.354 1.641
6 −4.12(3) 1.82(4) 2.40 2.41 2.51 4.39 4.764 7.770 1.453 1.713
9 −1.36(3) 8.12(3) 3.63 3.60 3.66 5.48 4.694 7.335 1.575 1.870
12 −6.99(2) 4.58(3) 4.79 4.80 4.84 5.94 4.644 7.293 1.680 2.024
16 −3.61(2) 2.64(3) 6.39 6.39 6.43 6.24 4.623 7.240 1.799 2.213
20 −2.21(2) 1.73(3) 7.98 7.99 8.02 6.36 4.613 7.201 1.895 2.373
24 −1.48(2) 1.23(3) 9.58 9.59 9.61 6.36 4.607 7.188 1.974 2.509
30 −9.06(1) 8.13(2) 11.98 11.99 12.00 6.35 4.603 7.179 2.068 2.679
36 −6.45(1) 5.77(2) 14.37 14.38 14.39 6.35 4.599 7.170 2.140 2.814
44 −4.17(1) 3.97(2) 17.57 17.57 17.58 6.35 4.597 7.160 2.214 2.959
50 −3.32(1) 3.11(2) 19.96 19.97 19.98 6.35 4.594 7.151 2.258 3.047
60 −2.34(1) 2.21(2) 23.96 23.96 23.97 6.35 4.594 7.152 2.317 3.167
∞ 0 0 6.35 4.59(1) 7.11(3) 2.70(6) 4.00(3)
Layer* 2.703 4.001
Layer 6.34 4.591 7.111 0.815 0.890

be as large as 0.2 Å (n = 3), but falls rapidly to 0.1 Å at
n = 6 and then to 0.04 Å at n = 12. Boron is always in
the inner part of the tube and RB differs the least from Ru.
Figure 1 shows the convergence of the two nonequivalent
B-N distances to the monolayer value as the size of the tube
increases. �E in Table IV is the difference in energy per BN
unit (in μHa) between the BNNT equilibrium structure and
the equilibrium structure of the h-BN monolayer (monolayer
more stable); the column labeled δE is the corresponding
energy difference between the BNNT equilibrium structure
and the value obtained by rigidly rolling up the equilibrium

B-
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FIG. 1. (Color online) Behavior of the two nonequivalent BN
distances as a function of n for (n,0) nanotubes. The horizontal line
is the h-BN layer value.

h-BN monolayer. In the following, if not differently stated, the
nanotube radius will be considered as the average of the B and
N cylinder radii.

C. Dependence of the static polarizability on tube radius

In Table IV, we also report the longitudinal and transverse
components of the static electronic polarizability for the
(n,0) nanotubes as a function of n. For the longitudinal
(α‖) component, the static electronic and total [Eq. (1)]
polarizabilities converge rapidly with n (or the nanotube radius
R) to the corresponding monolayer values. Our extrapolations
to n → ∞ were done using a cubic (quadratic) polynomial in
1/n for the perpendicular (parallel) components of nanotubes
with n � 24. We have extended previous calculations from
radii smaller than 15 Å to radii as large as 24 Å so as to clearly
exhibit the large R behavior. This is feasible with our approach
since proper definition of the perturbative operator allows us
to avoid the use of supercells, which are required with the use
of a “sawtooth” potential as in previous work.14,16 Nanotubes
of 24-Å radius are comparable to those studied by Grujicica
et al.7 for their suitability as fluid-flow conduits in nanovalve
applications.

As far as the transverse or perpendicular (α⊥) component
is concerned, it has been noticed by Guo et al.16 that there
is a simple relation between the large radius limit of this
component and the two different components of a single BN
sheet. This can be justified by circular averaging or, as shown
here, by the fact that the average polarizability is the same
for both the sheet (monolayer) and the tube (and the same
is true for the longitudinal component of both structures).
If we consider the molar (per BN unit) perpendicular and
parallel polarizabilities of the nanotube (α⊥

n and α
‖
n) and of the
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monolayer (α⊥
l and α

‖
l ), we can write, in the limit of infinite

nanotube radius,{
2α⊥

n + α
‖
n = α⊥

l + 2α
‖
l ,

α
‖
n = α

‖
l ,

(14)

which leads to

α⊥
n = 1

2 (α⊥
l + α

‖
l ). (15)

For α⊥
n , our extrapolations of the CPKS static electronic and

total value yield results that are in good agreement with
Eq. (15) (see line Layer* in Table IV). The nanotube radii
considered previously14,16,17 were not sufficiently large to
verify this relation with high accuracy as we have done here.
Limiting the extrapolation to the set of BNNTs with R < 15 Å
leads to about 5% error.

The behavior of the transverse static electronic polar-
izability as a function of nanotube radius has been the
subject of much discussion14,16,17,33 because of its bearing on
models constructed to describe this property. Benedict et al.33

proposed a conducting shell model for single-walled carbon
nanotubes, which leads to a simple relationship between the
unscreened and screened electronic polarizability per unit
length [note that the polarizability is always given in this
paper per BN unit except in Eqs. (16) and (17) below] or,
equivalently, between αSOS and αCPKS (the superscript “e” is
omitted for convenience):

α⊥
CPKS = α⊥

SOS

1 + 2α⊥
SOS

R̃2

. (16)

Here, R̃ = R + δR is the effective radius. On this basis,
Benedict et al. claim that, in the limit of large radius, α⊥

CPKS
becomes proportional to R2.

A more complicated relationship is obtained if the con-
ducting shell is replaced by a dielectric shell with effective
dielectric constant ε, which has been proposed as much more
appropriate for the case of BNNTs. In that event, Lan et al.17

obtain

α⊥ = R2
o

(
R2

o − R2
i

)
(ε2 − 1)

2
[
R2

o(ε + 1)2 − R2
i (ε − 1)2

] , (17)

where Ro = R + δR/2 and Ri = R − δR/2. It is easy to show
that this equation predicts a linear dependence on the radius in
the large-R limit.

A plot of our α⊥
B3LYP (per unit length) versus R is shown in

Fig. 2 (the equilibrium lattice parameter is almost independent
of the nanotube size, varying from 4.345 to 4.337 Å for 12 �
n � 60). The linear R dependence predicted by the model of
Lan et al. is clearly confirmed for R � 12 Å. We then fit the
entire curve to Eq. (17) to obtain an effective dielectric constant
of ε = 6.19 and a shell thickness δR = 2.08 Å. Our value for
ε is reasonably close to the GGA (PBE) result (ε = 5.90) of
Lan et al., but substantially smaller than their shell thickness
(δR = 2.50 Å). The difference in the fitting parameters arises
from the difference in the functionals. In order to see that is the
case, Lan’s curve is also shown in Fig. 2, along with (CPKS)
results that we have obtained using the PBE functional instead
of B3LYP. Clearly, our PBE curve is almost indistinguishable
from that of Lan. As a final remark, we also note that, for

small R, the nonlinear dependence upon the radius is also well
duplicated by Eq. (17).

D. FF–NR vibrational (hyper)polarizabilities

The FF–NR method was employed to evaluate the nuclear-
relaxation approximation for the so-called ionic (= vibra-
tional) contribution to the transverse static and dynamic
(hyper)polarizabilities of representative (6,0), (9,0), and (12,0)
BN nanotubes. Calculations for larger nanotubes, as well as
their analysis, is beyond the scope of this paper and will be
presented elsewhere. We have, however, chosen to examine the
smaller nanotubes here in order to demonstrate the viability of
the FF–NR method for application to materials of this type,
which does not seem to have been previously recognized. The
results obtained also serve to indicate the variety and potential
significance of the vibrational properties that are accessed.

In our calculations, a static field perpendicular to the
nanotubes was applied and a full geometry optimization was
performed for each nanotube, starting from the zero-field
equilibrium geometry R0. Then, the electronic dipole moment
μ, CPKS polarizability α, and CPKS first hyperpolarizability
β were calculated,38 as a function of field, for both the
field-free geometry R0 and the optimized field-dependent
geometry RF. A fitting of the CPKS properties gives the
vibrational (nuclear-relaxation) contributions to static and
dynamic (hyper)polarizabilities according to Eqs. (4)–(6) and
(11)–(13). Six different field values were considered in the
interval 5 × 10−4–1 × 10−2 a.u. The fitting procedures that
were used are described below. From now on, the Cartesian
indices tuvw of Eqs. (4)–(6) and (11)–(13) are omitted since
all (hyper)polarizabilities refer to the diagonal element of the
tensor along the field direction z. Equation (3) yields the
static nuclear-relaxation (hyper)polarizabilities. Because the
field-free nanotube has a center of inversion, the first hy-
perpolarizability (bμ) vanishes. Thus, a plot [see Fig. 3 for
the (12,0) nanotube] of [μ(F,RF) − μ(0,R0)]/F versus field
yields aμ as the intercept and gμ as the coefficient of the
quadratic term (the linear term vanishes). For an initial test,
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˚

FIG. 2. (Color online) Transverse polarizability per unit length
of BN nanotubes as a function of tube radius.
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TABLE V. Electronic and vibrational contributions to the trans-
verse (hyper)polarizabilities for the (6,0), (9,0), and (12,0) nanotubes
obtained by the FF–NR method using Eqs. (2)–(13) as described in
the text (see equations for definition of symbols). The static electronic
contribution to the second hyperpolarizability obtained analytically
with the CPKS method (γ e

CPKS) is also reported for comparison.
Polarizabilities in Å3; hyperpolarizabilities in a.u.

n 6 9 12

αe
FF(0; 0) 1.454 1.576 1.679

aμ 1.713 1.870 2.024
γ e

CPKS(0; 0,0,0) 632.3 929.6 1337
γ e

FF(0; 0,0,0) 635.5 929.1 1361
gμ 1785 4433 9498
gα 772.6 1645 3199
gβ 460.8 722.6 1043
γ NR(0; 0,0,0) 1152 3503 8161
γ NR(−ω; ω,0,0)ω→∞ 140.3 715.4 1862
γ NR(−2ω; ω,ω,0)ω→∞ −171.5 −207.0 −294.0

we replaced μ(F,RF) by μ(F,R0), as in Eq. (2), and verified
that the finite-field electronic (hyper)polarizabilities agreed
well with the CPKS values. The finite-field results for αe

shown in Table V are exactly the same (to the number of
significant figures given) as the CPKS values reported in
Table IV, whereas for γ e, the two differ at most by 1.8%,
i.e., γ e

FF = 1361 versus γ e
CPKS = 1337 a.u. in the case of the

(12,0) nanotube. As shown below, the vibrational contributions
to the static γ are much larger than this uncertainty.

The values for aμ determined from fitting our computed
data to Eq. (3) [cf. Fig. 3(a) for the (12,0) nanotube] can be
compared with α0 in Table IV. Since both quantities corre-
spond to the double harmonic approximation, the excellent
agreement obtained provides a check of both methods of
calculation. From Eq. (6), we obtain the vibrational (nuclear
relaxation) γ NR(0; 0,0,0). It is noteworthy that this quantity
is substantially larger than the static pure electronic γ e (see
Table V) and grows much more rapidly with n over the range
(n = 6–12) considered here. In particular, γ NR is roughly twice
as large as γ e for n = 6, whereas the same ratio is more than
6 for n = 12.

A plot of [αe(F,RF) − αe(0,R0)] versus field is shown
in Fig. 3(b) for n = 12. In this case, the linear term
again vanishes due to symmetry and one obtains a pure
quadratic function (with zero intercept), which yields gα

and γ NR(−ω; ω,0,0)ω→∞ according to Eq. (12). Table V
shows that the relative importance of the latter, i.e., the
vibrational dc-Kerr effect term, also increases with n faster
than the static electronic γ e. At n = 12, this vibrational
term is the larger of the two by a factor of about 1.40 and
continuing to grow more so with increasing n. As expected,
the magnitude of the nuclear-relaxation contribution to the
dc-Kerr effect, although quite substantial, is less important than
the corresponding contribution to the static vibrational γ . This
is due to the fact that the number of static fields that describe
the nonlinear process is reduced from three (static) to two
(dc-Kerr).56

Finally, Fig. 3(c) shows a plot of [β(F,RF) − β(0,R0)]
versus field, again, for the (12,0) nanotube. This curve is

μ
R
/F

 

13.65

13.7

13.75

13.8

μR /F = aμ+(1/6)*g μ*F^2

a μ = 13.6614 +/- 0.0004
g μ = 9498+/- 57

α
R

-0.05

0

0.05

0.1

0.15

0.2
α R  = g α*(1/2)*F^2

g α = 3199 +/- 9

β
R

0.0

2.0

4.0

6.0

8.0

10.0

12.0

F
0 2 4 6 8 10 12

β R  = g β*F

β R  = 1.074+/-10

(a)

(b)

(c)

FIG. 3. (Color online) Dependence of the μR

F
= (�μz)RF

F
, αR =

(�αe
zz)RF , and βR = (�βe

zzz)RF functions for the (12,0) zigzag
nanotube, as defined in Eqs. (2), (8), and (10), on the applied
electric-field F value (in 10−3 a.u.). The fitting parameters are given
in the inset of each figure.

linear with zero intercept. From the slope, we find gβ =
γ e(0; 0,0,0) + γ NR(−2ω; ω,ω,0)ω→∞ = 1074 a.u., which,
after subtracting the static electronic γ e, yields the nuclear-
relaxation contribution to dc second-harmonic generation. Our
results for the latter property are also reported in Table V,
where it is seen to be significant but further reduced (in
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comparison with the nuclear-relaxation dc-Kerr value) since a
single static field describes this process. It is, furthermore, not
growing faster than the static electronic γ e.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the electronic and nuclear
electric-field response of BN nanotubes at the CPKS B3LYP/6-
31G* level of treatment using the CRYSTAL code. For the
longitudinal and transverse linear response (polarizability
= α), a set of (n,0) zigzag nanotubes ranging from n = 3
to 60 were considered; for the transverse nonlinear response
(second hyperpolarizability = γ ), which has not previously
been investigated, a few representative tubes within the range
n = 6–12 were examined.

It was established that the orbital relaxation included in the
CPKS method, but not in a sum-over-states calculation, makes
an important contribution to the electronic αe, which depends
upon the particular component (parallel or perpendicular).
The effect of orbital relaxation depends upon the particular
component (parallel or perpendicular) and one may anticipate
that it will be even more important for γ . In the case of
αe, the B3LYP CPKS values are substantially different from
those obtained with nonhybrid functionals (LDA, PBE) and
intermediate between the latter and Hartree-Fock.

From the results for large radius nanotubes (much larger
than previously studied), we were able to make an accurate
comparison, in the limit n → ∞, between the nanotube and a
planar sheet. Thus, it was verified that the geometries are the
same and that the transverse static α of the nanotube is equal
to the average of the parallel and perpendicular components
of the sheet. This result was found for both the electronic and
vibrational contributions. In addition, we confirmed that αe

per unit length depends linearly on the tube radius for large
n, as predicted by Lan et al. based on a dielectric shell model
of the BN nanotube. On the other hand, our calculated shell
thickness is substantially smaller than theirs due to the use of
different basis sets: Gaussian-type atomic orbitals here versus
plane waves with pseudoptential in the paper of Lan et al.

The nuclear (i.e., vibrational or “ionic”) electric-field
response was determined by two different methods: (i) from
Born effective charges and vibrational frequencies; and
(ii) by the finite-field–nuclear-relaxation (FF–NR) technique.
The latter is applied here for the first time to a nanotube or
any other periodic material. In principle, both approaches
should yield identical results for the static α, although the
FF–NR method avoids calculation of the dynamical matrix.
For the representative (6,0), (9,0), and (12,0) nanotubes, we
confirmed that the same (transverse) static vibrational α is
obtained in practice as well. By using the FF–NR method, we
were also able to obtain static and dynamic (infinite optical
frequency approximation) vibrational hyperpolarizabilities.
These hyperpolarizabilities include all first-order corrections
for mechanical and electrical anharmonicity (as well as a
second-order correction for the static γ ). Our results highlight
the significance of the nuclear response, which increases in
importance with the radius of the nanotube. In particular,
for the (12,0) nanotube, the vibrational contribution to the
transverse static γ is more than 6 times larger than the
corresponding static γ e; for the dc-Kerr effect, it is about
1.4 times larger.

There are, clearly, a number of issues that deserve fur-
ther attention. These include the behavior of the electronic
hyperpolarizability, as well as the relative importance of
the nuclear response, as a function of tube radius. In both
cases, only a few representative small nanotubes and only the
transverse component were considered. An implementation
for the longitudinal electronic response is already present in
the CRYSTAL code. That is not true for the FF–NR treatment of
the vibrational response. However, the methodology needed
for periodic directions is available, at least for quasi-1D
systems,29,57 and implementation is in progress.
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32V. Lacivita, M. Rérat, B. Kirtman, M. Ferrero, R. Orlando, and

R. Dovesi, J. Chem. Phys. 131, 204509 (2009).
33L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 52,

8541 (1995).
34L. Wirtz, M. Lazzeri, F. Mauri, and A. Rubio, Phys. Rev. B 71,

241402 (2005).

35M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, J. Comput. Chem.
29, 1450 (2008).
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