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Temperature-dependent resistivity in bilayer graphene due to flexural phonons
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We have studied electron scattering by out-of-plane (flexural) phonons in doped suspended bilayer graphene.
We have found the bilayer membrane to follow the qualitative behavior of the monolayer cousin. In the bilayer,
a different electronic structure combine with a different electron-phonon coupling to give the same parametric
dependence in resistivity and, in particular, the same temperature (T ) behavior. In parallel with the single layer,
flexural phonons dominate the phonon contribution to resistivity in the absence of strain, where a density-
independent mobility is obtained. This contribution is strongly suppressed by tension, and in-plane phonons
become the dominant contribution in strained samples. Among the quantitative differences, an important one
has been identified: room-temperature mobility in bilayer graphene is substantially higher than in monolayer
graphene. The origin of quantitative differences has been unveiled.
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I. INTRODUCTION

Bilayer graphene continues to attract a great deal of
attention because of both fascinating fundamental physics1

and possible applications.2 Recent realization of suspended
monolayer3,4 and bilayer1 graphene samples made possible
a direct probe of the intrinsic, unusual properties of these
systems. In particular, intrinsic scattering mechanisms limiting
mobility may now be unveiled.5 It has been recently shown
that, in suspended nonstrained monolayer graphene, room-
temperature mobility is limited to values observed for samples
on substrate due to scattering by out-of-plane, i.e., flexural,
acoustic phonons.6 This limitation can, however, be avoided
by applying tension. Bilayer graphene has a different low-
energy electronic behavior as well as different electron-phonon
coupling. It is then natural to wonder what the situation is in
the bilayer regarding electron scattering by acoustic phonons
and, in particular, by flexural phonons (FPs).

In this paper, the T -dependent resistivity due to scattering
by both acoustic in-plane phonons and FPs in doped, sus-
pended bilayer graphene, has been investigated. We have found
the bilayer membrane to follow the qualitative behavior of
the monolayer parent.6,7 Explicitly, at experimentally relevant
T , the nonstrained samples show quadratic in T resistivity with
logarithmic correction � ∼ T 2 ln(T ) and constant mobility.
Electron scattering by two FPs gives the main contribution
to the resistivity in this case, and is responsible for the T 2

dependence. Suspended samples may also be under strain
either due to the charging gate8 or due to the experimental
procedure to get suspended samples, or even by applying
strain in a controlled way.9,10 Under uniaxial or isotropic
strain u, the T dependence of resistivity due to FPs becomes
quartic at high strain u � u∗, � ∼ T 4/u3, and quadratic at
low strain u � u∗, � ∼ T 2/u, where u∗ ≈ 10−4T [K]. These
contributions are weaker than those coming from scattering by
in-plane phonons, and in strained samples, the latter dominate
resistivity, as has been found for monolayer graphene.6 An
interesting quantitative difference with respect to suspended
monolayer graphene has been found. In the latter, room-
temperature mobility μ is limited to values obtained for

samples on substrate due to FPs, μ ∼ 1 m2/(Vs).6 In bilayer
graphene, quantitative differences in electron-phonon coupling
and elastic constants lead to room-temperature enhanced
μ ∼ 10 − 20 m2/(Vs), even in nonstrained samples.

The paper is organized as follows. In Sec. II, we introduce
long-wavelength acoustic phonons in the framework of elas-
ticity theory. We show how the dispersion relation of FPs is
affected by the presence of tension over the sample. Then,
we review the electronic low-energy description of bilayer
graphene and deduce the electron-phonon coupling within
this approach in Sec. III. The variational approach used in
order to study the T -dependent resistivity due to scattering by
in-plane and FPs and a summary of our results in different
regimes of T and strain are presented in Sec. IV. Section V
is devoted to discuss the implications of these results, the
differences between monolayer and bilayer graphene, and
some experimental consequences. Finally, we expose our
conclusions in Sec. VI. Some technical aspects are treated
in detail in appendices. In Appendix A, we present the
collision integral due to scattering by acoustic phonons, and
its linearized form is derived. Details on the calculation
of the resistivity using the variational method are given in
Appendix B.

II. ACOUSTIC PHONONS

At long wavelengths, the elastic behavior of monolayer
graphene is well approximated by that of an isotropic contin-
uum membrane,11,12 the free energy of which reads as13,14

F = 1

2
κ

∫
dx dy(∇2h)2 + 1

2

∫
dx dy

(
λu2

ii + 2μu2
ij

)
. (1)

The first and second terms in Eq. (1) represent the bending
and stretching energies, respectively. Summation over indices
is assumed. In-plane distortions are denoted by u(r) and
out-of-plane by h(r), with r = (x,y), such that the new position
is �X(r) = (x,y,0) + [ux(r),uy(r),h(r)]. To lowest order in
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gradients of the deformations, the strain tensor appearing in
Eq. (1) is

uij = 1
2 [∂iuj + ∂jui + (∂ih)(∂jh)], (2)

and, owing to the same argument, the factor
√

g =
√

1 + |∇h|2
in the measure is neglected. The parameter κ is the bending
rigidity and λ and μ are in-plane elastic constants. Typ-
ical parameters for graphene are κ ≈ 1 eV and μ 
 3λ ≈
9 eV Å

−2
,12,15,16 with mass density ρ = 7.6 × 10−7 kg/m2.

In the case of bilayer graphene, as long as we are not at
too high T to excite optical phonons, we may, from the elastic
point of view, regard bilayer graphene as a thick membrane
with mass density and elastic constants twice as high as those
for the single layer.17

The dynamics of the displacement fields is studied here in
the harmonic approximation by introducing the Fourier series
u(r) = V− 1

2
∑

q uqe
iq.r and h(r) = V− 1

2
∑

q hqe
iq.r, where V

is the volume of the system.

A. In-plane phonons

The decoupled in-plane phonon modes are obtained in the
usual way by changing to longitudinal uL

q = uq · q/q and
transverse uT

q = uq · (êz × q/q) displacement fields. The dis-
persion relations have the usual linear behavior in momentum
and are given by

ωL
q = vLq,

(3)
ωT

q = vT q,

with vL =
√

2μ+λ

ρ
and vT =

√
μ

ρ
. Typical values for monolayer

and bilayer graphene are vL 
 2.1 × 104 m/s and vT 
 1.4 ×
104 m/s.

B. Flexural phonons

1. Nonstrained case

The quadratic behavior in out-of-plane displacements of
the strain tensor in Eq. (2) implies that FP modes are driven by
the bending rigidity term. The resulting FP dispersion relation
is quadratic, i.e.,11,18

ωF
q = αq2, (4)

with α =
√

κ
ρ

. The typical value is α 
 4.6 × 10−7 m2/s.

2. Strained case

Suspended samples may be under tension either due to the
load imposed by the back gate or as a result of the fabrication
process, or both. The case of a clamped graphene membrane
hanging over a trench of size L, relevant for conventional
two-contacts measurements in suspended samples, has been
considered in Ref. 19.

Once the membrane is under tension, a static deformation
configuration is expected at equilibrium. The phonon modes
may be obtained by assuming that both in-plane u(r) and
flexural h(r) fields have dynamic components that add to
their static background: u(r) = ust (r) + udyn(r) and h(r) =

hst (r) + hdyn(r). For the case of the clamped membrane con-
sidered in Ref. 19, we have ust (r) = [ux,st (x),0] with ux,st (x)
a linear function of x, while hst (x) may be approximated by a
parabola.

Let us consider the general static displacement vec-
tor field dst (r) = [ux,st (r),uy,st (r),hst (r)] and the associated
strain tensor uij,st (r) = 1

2 (∂iuj,st + ∂jui,st + ∂ihst ∂jhst ). In-
plane phonons are not affected by the static component, but
the FP dispersion changes considerably. This is a consequence
of new harmonic terms appearing due to coupling between
in-plane static deformation and out-of-plane vibrations in the
full strain tensor in Eq. (2). The resulting FP dispersion relation
may be obtained using a local approximation expected to hold
for L � 	 = vF τ � k−1

F , where vF is the Fermi velocity, kF

the Fermi momentum, and τ a characteristic collision time.
The result reads as

ωF
q (r) = q

√
κ

ρ
q2 + uii,st (r)

λ

ρ
+ uij,st (r)

2μ

ρ

qiqj

q2
. (5)

For the particular case of isotropic strain where uxx = uyy and
uxy = 0, the dispersion relation can be cast in the form

ωF
q (r) = q

√
κ

ρ
q2 + uii,st (r)

λ + μ

ρ
. (6)

Here, we will give particular emphasis to the clamped
membrane case where the FP dispersion is given by

ωF
q = q

√
κ

ρ
q2 + ū

λ + 2μ

ρ
− ū

2μ

ρ
sin2 φq, (7)

with ū ≡ uxx and φq = arctan(qy/qx). In order to keep the
problem within analytical treatment, we will use an effective
isotropic dispersion relation, obtained by dropping the angular
dependence contribution

ωF
q 
 q

√
α2q2 + ūv2

L. (8)

Since we are mainly interested in transport, such an approx-
imation has the advantage that backward scattering is still
correctly accounted for.

III. ELECTRON-PHONON INTERACTION

A. Low-energy description for bilayer graphene

At low energies, the two-band effective model provides
a good approximate description for π electrons in bilayer
graphene.11 The 2 × 2 Hamiltonian can be cast in the form
Heff = ∑

k ψkHkψk, with

Hk = h̄2

2m

(
0 (kx − iky)2(

kx + iky

)2
0

)
, (9)

where the two-component spinor ψ
†
k = [a†

k,b
†
k] stems from

the two sublattices not connected by the interlayer hopping
t⊥ ≈ 0.3 eV. The coupling t⊥ between layers sets the effective
mass 2m = t⊥/v2

F , with vF ≈ 106 m/s the Fermi velocity in
monolayer graphene. Equation (9) is valid at valley K , and
at valley K ′ we have Hk → HT

k . Here, we are interested
in electron scattering processes induced by emission or
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absorption of long-wavelength acoustic phonons and, hence,
intervalley scattering is not allowed. Thus, we may concentrate
on one valley only. The Hamiltonian can be diagonalized
introducing the rotated operators

dk = 1√
2

(
eiθk e−iθk

eiθk −e−iθk

)
ψk, (10)

where θk = arctan(ky/kx), with d
†
k = [e†k,h

†
k] defined such that

e
†
k stands for electronlike (positive energy) excitations and h

†
k

for holelike (negative energy) excitations, from which we get

H =
∑

k

ε(k)[e†kek − h
†
khk], (11)

with ε(k) = h̄2k2/(2m).
In this paper, we will compare the results obtained for

bilayer graphene with those valid in monolayer graphene.
The latter is described using the effective Dirac-type
Hamiltonian,11 which holds in the low-energy sector in which
we are interested here.

B. Coupling between electrons and phonons

The coupling between electrons and the vibrations of the
underlying lattice either in bilayer or monolayer graphene has
two main sources. Long-wavelength acoustic phonons induce
an effective local potential called deformation potential and
proportional to the local contraction or dilation of the lattice11

V1(r) = g0uii(r),

where g0 is the bare deformation potential constant, the value
of which is in the range g0 ≈ 20–30 eV.20 The respective
interaction Hamiltonian is diagonal in sublattice indices and
reads as

H1 =
∑

k

ψ
†
k[V1(k,k′)I]ψk′ , (12)

where I is the 2 × 2 identity matrix and V1(k,k′) is the Fourier
transform of the deformation potential

V1(k,k′) = V−1g0

∫
dr ei(k′−k)·ruii(r). (13)

Equation (12) is valid both for monolayer and bilayer
graphene. Since we are interested in doped systems, we
take into account screening by substituting V1(k,k′) with
V1(k,k′)/ε(k − k′), where we take a Thomas-Fermi–type
dielectric function

ε(q) = 1 + e2D(EF )

2ε0q
, (14)

and D(EF ) is the density of states at the Fermi energy,
which is given by D(EF ) = 2EF

πh̄2v2
F

= 2kF

πh̄vF
in the case of

monolayer graphene and by D(EF ) = t⊥
πh̄2v2

F

in the case of

bilayer graphene.
It is convenient to define g ≡ g0/ε(kF ) for single-layer

graphene, which gives a density-independent screened defor-
mation potential

g ≈ g0

e2/(πε0h̄vF )
≈ g0

8.75
≈ 2–3.5 eV. (15)

Note that the value just obtained is in complete agreement with
recent ab initio calculations, which give g ≈ 3 eV.21 It will
become clear in Sec. IV C 1 that g, as defined in Eq. (15), is the
relevant deformation potential electron-phonon parameter in
single-layer graphene. For bilayer graphene, g(q) = g0/ε(q)
gives

g(kF ) ≈ g0

e2t⊥/
(
2πε0h̄

2v2
F kF

) ≈ g0

11.25

√
n

≈ (2–3)
√

n eV, (16)

with n in 1012 cm−2. We may then write a q-dependent de-
formation potential electron-phonon parameter, which has the
form gM (q) = gq/kF for monolayer graphene and gB(q) =
g2h̄vF q/t⊥ for bilayer graphene.

Phonons can also couple to electrons in monolayer and
bilayer graphene by changes in bond length and bond angle
between carbon atoms. In this case, the electron-phonon
interaction can be written as due to an effective gauge field22–25

eAelastic = β

a

[
1

2
(uxx − uyy), − uxy

]
,

where β ≈ −∂ log t/∂ log a ∼ 2–3,20 with t the in-plane
nearest-neighbor hopping parameter and a the carbon-carbon
distance (t0 ≈ 3 eV and a0 ≈ 1.4 Å). In the case of bilayer
graphene, the resulting interaction Hamiltonian is obtained
by introducing the gauge potential into Eq. (9), following the
minimal coupling prescription, and keeping only first-order
terms in electron-phonon coupling. Then, we arrive at

H2 = h̄

2m

∑
k,k′

ψ
†
k

[
0 (π−

k + π−
k′ )A−

k,k′

(π+
k + π+

k′ )A+
k,k′ 0

]
ψk′ ,

(17)

where π±
k = ke±iθk , A±

k,k′ = V2,x(k,k′) ± iV2,y(k,k′), and the
vector V2 = (V2,x,V2,y) is defined as

V2,x(k,k′) = h̄β

a
V−1

∫
dr ei(k′−k)·r 1

2
[uxx(r) − uyy(r)],

(18)

V2,y(k,k′) = −h̄β

a
V−1

∫
dr ei(k′−k)·ruxy(r).

An estimate of the electron-phonon coupling strength due to V2

is given by kFh̄2β/(ma) ≈ (8–12)
√

n eV, with n in 1012 cm−2.
In the case of single-layer graphene, the resulting interaction
Hamiltonian reads as

H2 = vF

∑
k,k′

ψ
†
kσ · V2(k,k′)ψk′ , (19)

where σ = (σx,σy) is the vector of Pauli matrices, and the
two-component spinor ψ

†
k = [a†

k,b
†
k] is reminiscent of the

two sublattices of the honeycomb lattice. An estimate of
the respective electron-phonon coupling strength is given by
vFh̄β/a ≈ 10–15 eV.

The electron-phonon interaction Hamiltonian is the sum
of the two terms shown above, He-p = H1 + H2. Phonons
enter through the strain tensor uij , which we have seen can be
written in terms of static and dynamic components, the static
ones being zero for zero load. There are purely static terms
that do not contribute to electron-phonon scattering and will
be dropped (see Ref. 19). By quantizing the dynamic part of
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the displacement fields,26 and introducing usual destruction
and creation operators aν

q and (aν
q)† for in-plane phonons q

and polarization ν = L,T , we can write the q component of
the in-plane displacement as

uL/T
q =

√
h̄

2ρων
q

[
aL/T

q + (
a

L/T
−q

)†]
. (20)

For FPs, we introduce the bosonic fields aF
q and (aF

q )†, and
write the q component of the out-of-plane displacement as

hq =
√

h̄

2ρωF
q

[
aF

q + (
aF

−q

)†]
. (21)

The electron-phonon interaction Hamiltonian may then be
written either in monolayer or bilayer graphene as

He-p =
∑
k,k′

(a†
kak′ + b

†
kbk′)

⎧⎨
⎩

∑
ν,q

V ν
1,q

[
aν

q + (
aν

−q

)†]
δk′,k−q +

∑
q,q′

V F
1,q,q′

[
aF

q + (
aF

−q

)†][
aF

q′ + (
aF

−q′
)†]

δk′,k−q−q′

⎫⎬
⎭

+
∑
k,k′

⎧⎨
⎩

∑
ν,q

V ν
2,qa

†
kbk′

[
aν

q + (
aν

−q

)†]
δk′,k−q +

∑
q,q′

V F
2,q,q′a

†
kbk′

[
aF

q + (
aF

−q

)†][
aF

q′ + (
aF

−q′
)†]

δk′,k−q−q′ + H.c.

⎫⎬
⎭ . (22)

For monolayer graphene, the matrix elements read as

V L
1,q = g0

ε(q)
iq

√
h̄

2VρωL
q

,

V F
1,q,q′ = − g0

ε(|q + q′|)qq ′ cos(φq − φq′)
h̄

4Vρ
√

ωF
q ωF

q′

,

V F
1,q = g0

ε(q)
iqi∂ihst

√
h̄

2VρωF
q

,

V L
2,q = h̄vF β

2a
iqei2φq

√
h̄

2VρωL
q

, (23)

V T
2,q = −h̄vF β

2a
qei2φq

√
h̄

2VρωT
q

,

V F
2,q,q′ = −h̄vF β

4a
qq ′ei(φq−φq′ ) h̄

2Vρ
√

ωF
q ωF

q′

,

V F
2,q = h̄vF β

2a
iq

[
eiφq∂xhst + e−iφq∂yhst

]√
h̄

2VρωF
q

,

with V T
1,q = 0 (see also Refs. 7 and 18), and where we have

again used the local approximation. In the case of bilayer
graphene, only the matrix elements for the gauge potential
change, becoming dependent on fermionic momenta k and k′.
As can be seen by comparing Eqs. (17) and (19), they take
exactly the same form as in Eq. (23) with the replacement
vF → h̄(πk + πk′)/(2m).

IV. TEMPERATURE-DEPENDENT RESISTIVITY

Our aim here is to study the T -dependent resistivity in
suspended bilayer graphene as a result of the electron-phonon
interaction derived above. We assume the doped regime EF �
h̄/τ , where 1/τ is the characteristic electronic scattering rate
(due to phonons, disorder, etc). The doped regime immediately
implies k−1

F � vF τ ≡ l, where l is the characteristic mean-
free path, thus justifying the use of Boltzmann transport

theory (even though graphene’s quasiparticles are chiral,
the semiclassical approach still holds away from the Dirac
point 27,28).

A. The variational approach

The Boltzmann equation is an integrodifferentialequation
for the steady-state probability distribution fk.29 It can be
generally written as

ṙ · ∇rfk + k̇ · ∇kfk = ḟk
∣∣
scatt, (24)

where the terms on the left-hand side are due to, respectively,
diffusion and external fields, while on the right-hand side,
scattering provides the required balance at the steady state.
(See Appendix A for an explicit form of ḟk

∣∣
scatt in the case

under study.) The Boltzmann equation is quite intractable in
practice, and its linearized version is used instead:

ṙ · ∇rf
(0)
k + k̇ · ∇kf

(0)
k = δḟk

∣∣
scatt, (25)

where δḟk
∣∣
scatt is the linearized collision integral. (See Ap-

pendix A for an explicit form of δḟk
∣∣
scatt in the case under

study.) By expanding the distribution probability around its
equilibrium value f

(0)
k = 1/{exp[(εk − μ)/kBT ] + 1},

fk = f
(0)
k − ∂f

(0)
k

∂εk
�k, (26)

and using the equilibrium property that ḟ
(0)
k

∣∣
scatt = 0, it can be

seen that δḟk
∣∣
scatt is linear in �k, and that it can be written as a

linear application in terms of the linear scattering operator Pk:

δḟk
∣∣
scatt = Pk�k ≡ −

∑
k1,...,kn

Pk,k1,...,kn

× (�k ± �k1 , . . . , ± �kn
), (27)

where Pk,k1,...,kn
is a generalized transition rate per unit

energy.29 (See Appendix A for an explicit form of Pk,k1,...,kn

in the case under study.) By writing the linearized Boltzmann
equation (25) in the form

Xk = Pk�k,
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and defining the inner products

〈�,X〉 =
∑

k

�k
(
ṙ · ∇rf

(0)
k + k̇ · ∇kf

(0)
k

)
(28)

and

〈�,P�〉 =
∑

k,k1,...,kn

�kPk,k1,...,kn
(�k ± �k1 , . . . , ± �kn

)

= 1

(n + 1)

∑
k,k1,...,kn

(�k ± �k1 , . . . , ± �kn
)2Pk,k1,...,kn

,

(29)

the variational principle asserts that of all functions �k
satisfying 〈�,X〉 = 〈�,P�〉, the solution of the linearized
Boltzmann equation gives to the quantity 〈�,P�〉/{〈�,X〉}2

its minimum value.29 In particular, the resistivity � can be
written as

� = 1

gd

〈�,P�〉
{〈�,X(E = 1,∇rf (0) = 0)〉}2

, (30)

being thus expected to be a minimum for the right solution,29

where gd is the system’s degeneracy (for monolayer and
bilayer graphene, it is gd = gsgv = 4 due to spin and valley
degeneracies). The quantity X(E = 1,∇rf

(0) = 0) refers to
the left-hand side of Eq. (25) in a unit electric field and no
spatial gradients (for example, zero-temperature gradient). It
is easy to show that 〈�,X〉 = E · J, where

J =
∑

k

evk�k
∂f

(0)
k

∂εk

is the current per nondegenerate mode (per spin and valley in
monolayer and bilayer graphene). The quantity {〈�,X(E =
1,∇rf

(0) = 0)〉}2 is therefore nothing but Vj2, where j = J/V
is the current density.

A well-known solution to the Boltzmann equation exists
when scattering is elastic, the Fermi surface isotropic, and
the transition rate can be written as Pk,k′ = P(k,θk,k′ ), where
θk,k′ = θk − θk′ is the angle between k and k′.29 Under these
conditions, the solution reads as

�k = vk ·
(
eE − εk

T
∇T

)
τ (k),

where τ (k) is the isotropic scattering rate, and we have written
∇rf

(0)
k = ∂f

(0)
k /∂εk∇T . Clearly, the latter solution for �k can

be cast in the form �k ∝ k · u,29,30 where u is a unit vector
in the direction of the applied fields. So, in more complicated
cases where there is a departure from the isotropic conditions
and/or from elastic scattering, it is a good starting point to use
Eq. (30) with �k ∝ k · u to get an approximate (from above)
result for the resistivity. Note that the coefficient multiplying
k · u is unimportant as it cancels out. This variational method is
equivalent to a linear-response Kubo-Nakano-Mori approach
with the perturbation inducing scattering treated in the Born
approximation.31

Here we use the variational method just outlined to get the
T -dependent resistivity in bilayer graphene (and monolayer
for comparison) due to scattering by acoustic phonons. In this

case, using the quasielastic approximation (see Appendix A),
δḟk

∣∣
scatt can indeed be cast in the form of Eq. (27), i.e.,

δḟk|scatt = −
∑

k′
Pk,k′ (�k − �k′), (31)

where, for scattering by one in-plane phonon,

Pk,k′ = 2π

h̄

∑
q,ν

wν(q,k,k′)ων
q
∂nq

∂ων
q

∂f
(0)
k

∂εk
δk,k′+qδ(εk − εk′ ),

(32)

and, for scattering by two FPs,

Pk,k′ = −2π

h̄2 kBT
∂f

(0)
k

∂εk

∑
q,q′

wF (q,q′,k,k′)
∂nq

∂ωF
q

∂nq′

∂ωF
q′

×
(

ωF
q + ωF

q′

1 + nq + nq′
− ωF

q − ωF
q′

nq − nq′

)
δk,k′+q+q′δ(εk − εk′),

(33)

with nq = 1/[exp(h̄ωq/kBT ) − 1] the equilibrium phonon
distribution. The kernel quantities wν(q,k,k′) and
wF (q,q′,k,k′) are related to the matrix elements in Eq. (23)
as follows (see Appendix A). For bilayer graphene,

wν(q,k,k′) ≈ ∣∣V ν
1,q

∣∣2
(1 + cos 2θk,k′ )

+ ∣∣Ṽ ν
2,q

∣∣2
(k2 + k′2 + 2kk′ cos θk,k′ ) (34)

for one-phonon processes, and a similar expression for two-
phonon processes wF (q,q′,k,k′) with V ν

q → V F
q,q′ , where Ṽ2

means the matrix elements given in Eq. (23) for the gauge
potential without the term (πk + πk′); for monolayer graphene,
in the case of one-phonon process,

wν(q,k,k′) ≈ ∣∣V ν
1,q

∣∣2
(1 + cos θk,k′) + ∣∣V ν

2,q

∣∣2
, (35)

with a similar expression for two-phonon processes
wF (q,q′,k,k′) with V ν

q → V F
q,q′ .

By using the setting given above, the resistivity is conve-
niently written as

� = 1

gsgv

1
2

∑
k,k′ (�k − �k′)2 Pk,k′

V
∣∣∣ e
V

∑
k �kvk

∂f
(0)
k

∂εk

∣∣∣2

≈ V
8e2

∫
dk dk′ (K · u)2 Pk,k′∣∣∣∫ dk k · uvk

∂f
(0)
k

∂εk

∣∣∣2 , (36)

where we changed from summation over k space to integration,
and defined K = k − k′. The integral in the denominator can
be done immediately assuming εF � kBT . The result reads
the same for bilayer and monolayer graphene:∣∣∣∣∣

∫
dk k · uvk

∂f
(0)
k

∂εk

∣∣∣∣∣ ≈ πk2
F

h̄
. (37)

In order to proceed analytically with the integral in the
numerator, we have to specify the T regime, as discussed
in the next section.
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FIG. 1. (Color online) Scattering of electrons in momentum space
due to (a) in-plane phonons, (b) nonstrained flexural, and (c) strained
flexural phonons.

B. Bloch-Grüneisen temperature

For each scattering process (one- or two-phonon scattering),
we may identify two different T regimes, low and high T ,
related to whether only small angle or every angle are available
to scatter from |k〉 to |k′〉. Recall that since we are dealing
with quasielastic scattering, both k and k′ sit on the Fermi
circle (see Fig. 1), and |k〉 and |k′〉 are adiabatically connected
through a rotation of θk,k′ in momentum space. Large-angle
scattering is only possible if phonons with high enough
momentum are available to scatter electrons. The characteristic
Bloch-Grüneisen (BG) temperature TBG separating the two
regimes may thus be set by the minimum phonon energy
necessary to have full backscattering,

kBTBG = h̄ω2kF
, (38)

with ωq as given in Sec. II.
For scattering by in-plane phonons, TBG takes the value

T
(L)

BG ≈ 57
√

n K and T
(T )

BG ≈ 38
√

n K (39)

for longitudinal and transverse phonons, respectively, with
density n in units of 1012 cm−2. When scattering is by two
nonstrained FPs, the crossover between low- and high-T
regimes is given by

TBG ≈ 0.1n K, (40)

with n again measured in 1012 cm−2, while in the presence
of strain, using the approximated strained FP dispersion in
Eq. (8), we get

TBG 
 28
√

nū K. (41)

It is obvious from Eqs. (40) and (41) that the high-T regime is
the relevant one for FP scattering.

C. Contributions to resistivity

In the following, we summarize our results for the T -
dependent resistivity due to scattering by in-plane phonons
and two FPs in bilayer graphene. For comparison, we discuss

also the monolayer case first studied in Ref. 7. We use the
variational method discussed in Sec. IV A, the resistivity being
given by Eq. (36). Details on the derivation can be found in
Appendix B. We neglect one FP processes since these, as can
be seen in Eq. (23), are reduced by a factor ∼ h0/L � 1,
where h0 is the sample’s vertical deflection over the typical
linear size L.

1. Scattering by in-plane phonons

A sketch of the scattering process in momentum space
involving one phonon is shown in Fig. 1(a). In this case, the
resistivity can be written as (see Appendix B1)

�in ≈ 8h̄k2
F

e2ρv2
F kBT

∑
ν

∫ 1

0
dx

[
Dν

B(2x)
]2 x4

√
1 − x2

exzν

(exzν − 1)2
,

(42)

where zν = h̄ων
2kF

/kBT , with ν = L,T , and where we have
introduced a generalized electron–in-plane phonon coupling
for bilayer graphene given by

Dν
B(y) =

[
2g2y2

(
1 − y2

2

)2

δνL + h̄2v2
F β2

4a2

(
1 − y2

4

)]1/2

.

(43)

The case of scattering via screened scalar potential, here
encoded in the screened deformation potential parameter g,
has been considered recently in Ref. 32. As it is shown below,
the gauge potential contribution becomes the dominant one in
the low-T regime.

In the low-T regime T � TBG, we have zν � 1, so that
the integrand in Eq. (42) is only contributing significantly for
x � 1. The generalized electron–in-plane phonon coupling
in (43) then becomes

Dν
B(y � 1) =

[
2g2y2δνL + h̄2v2

F β2

4a2

]1/2

, (44)

and the resistivity reads as

�in ≈
∑

ν

[
g2 16�(6)ζ (6)

�(4)ζ (4)

(
T

TBG

)2

δνL + h̄2v2
F β2

4a2

]

× �(4)ζ (4)(kBT )4

e2ρh̄4v2
F v5

νk
3
F

, (45)

where �(n) = (n − 1)! is the gamma function and ζ (n)
is the Riemann zeta function. We have thus obtained the
expected T 4 behavior at low T for coupling through gauge
potential, which is the two-dimensional analog of the T 5 Bloch
theory in three-dimensional metals.29,33 The scalar potential
contribution comes proportional to T 6 due to screening.
It can be neglected in the low-T regime; even though
16�(6)ζ (6)/[�(4)ζ (4)] ≈ 300, it is strongly suppressed by
T/TBG � 1 and g < h̄vF β/(2a) (see Sec. III B).

In the high-T regime T � TBG, the inequality zν � 1
holds, so that ezνx/(ezνx − 1)2 ≈ 1/(zνx) in Eq. (42). The
usual linearin T resistivity for one-phonon scattering is then
recovered,

�in ≈
(

7g2 + h̄2v2
F β2

8a2

v2
L

v̄2

)
πkBT

4h̄ρe2v2
Lv2

F

, (46)
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where 1/v̄2 = 1/v2
L + 1/v2

T . Note that, at odds with the low-T
regime, now the scalar potential contribution is higher than that
of the gauge potential for the typical coupling values discussed
in Sec. III B.

The monolayer case has been discussed extensively in the
literature.6,7,18,33,34 The resistivity is still given by Eq. (42),
only the generalized electron–in-plane phonon coupling
changes:

Dν
M (y) =

[
2g2y2

(
1 − y2

4

)
δνL + h̄2v2

F β2

4a2

]1/2

. (47)

The same qualitative behavior is obtained: At low T , the
resistivity is given by Eq. (45) with the numerical re-
placement 16 → 12 in the scalar potential contribution; at
high T , the result (46) holds with the replacement (7g2 +
h̄2v2

F
β2

8a2
v2
L

v̄2 )→(2g2+ h̄2v2
F

β2

2a2
v2
L

v̄2 ). Note, however, the apparent quanti-
tative difference: the scalar and gauge potential contributions
change roles, the latter becoming more important in monolayer
graphene. This is further discussed in Sec. V.

A final remark regarding the temperature-dependent resis-
tivity due to in-plane phonons has to do with the value of
the electron-phonon coupling parameters β and g. While β is
expected to be restricted to the range β ∼ 2–3, as discussed
in Sec. III B, the value of the deformation potential parameter
g is still debated in the literature. Phenomenology gives g ∼
10–30 eV;20,33 recent ab initio calculations provide a much
smaller value g ∼ 3 eV.21 On the other hand, experiments
seem to confirm the higher values, giving g ∼ 15–25 eV.35,36

Our claim here is that all these values make sense, if properly
interpreted. Phenomenology gives essentially unscreened de-
formation potential, which we called g0 in Sec. III B, and which
should take values of O(10) eV; screening effects suppress the
deformation potential toO(1) eV, as we have seen in Sec. III B
within the Thomas-Fermi approximation, in good agreement
with ab initio results where screening is built in; the fact
that transport experiments give a much higher deformation
potential is a strong indication that phonon scattering through
gauge potential, usually not included when fitting the data,35,36

is at work. Indeed, by using the monolayer version of Eq. (46),
we readily find that the fitting quantity in Refs. 35 and 36
should be replaced by

D̃ =
[

2g2 + v2
Fh̄2β2

2a2

(
1 + v2

L

v2
T

)]1/2

, (48)

which, keeping g ∼ 3 eV, takes values D̃ ∼ 10–20 eV for
β ∼ 2–3, in excellent agreement with experiments. Moreover,
since the gauge potential is not screened [Eq. (45)], it
provides a natural explanation for the T 4 resistivity behavior
recently reported at low T in Ref. 36, where the expected T 6

contribution due to scalar potential is absent.32

Typical T -dependent resistivity due to scattering by in-
plane phonons [Eq. (42)] is shown in Fig. 2 as thick
dashed lines. In agreement with analytical results, there is no
qualitative difference between monolayer graphene [Fig. 2(a)]
and bilayer graphene [Fig. 2(b)].

3 30 300
T (K)

10
-6
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-2
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2

ρ 
(Ω

)
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1%

T
 2

T
 4

0%
0%

0.1%

0.5%

1%

3 30 300
T (K)

(a) (b)

FIG. 2. (Color online) Resistivity vs T due to scattering by
in-plane phonons (dashed thick lines) and flexural phonons (full
lines) with and without strain (indicated in percentage) in (a) mono-
layer and (b) bilayer graphene. We use n = 1012 cm−2, g ≈ 3 eV,
and β ≈ 3.

2. Scattering by nonstrained flexural phonons

In nonstrained bilayer graphene, scattering by FPs gives
rise to the following T -dependent resistivity (details on the
derivation are given in Appendix B2):

�F ≈ h̄k2
F

2πe2ρ2v2
F α2

ln

(
kBT

h̄αq2
c

)

×
∫ 1

0
dx

[
DF

B (2x)
]2

√
1 − x2

x4ezx2

(ezx2 − 1)2
, (49)

where z = h̄ωF
2kF

/kBT , and where the generalized electron-FP
coupling for bilayer graphene is given by

DF
B (x) =

[
g2x2

(
1 − x2

2

)2

+ h̄2v2
F β2

4a2

(
1 − x2

4

)]1/2

. (50)

Equation (49) holds also for monolayer graphene, and we need
only to introduce a different generalized electron-FP coupling

DM (x) =
[
g2x2

(
1 − x2

4

)
+ h̄2v2

F β2

4a2

]1/2

. (51)

In Fig. 1(b), a sketch of the two-phonon scattering process
in momentum space is provided. It shows that one of the
two phonons involved in the scattering event always has
momentum q′ → 0. This is a consequence of the quadratic
FP dispersion [Eq. (4)], which leads to a divergent number of
FPs with momentum q′ → 0.11 This divergence is responsible
for the logarithmic factor in Eq. (49), which stems from the
existence of an infrared cutoff qc. This cutoff is to be identified
with the onset of anharmonic effects,38 or unavoidable built-in
strain.6

In the low-T regime T � TBG, one has z � 1, so that
the integrand in Eq. (49) is only contributing for x � 1. The
generalized electron-phonon coupling becomes equal in both
bilayer and monolayer systems,

DB(y � 1) = DM (y � 1) =
[
g2y2 + h̄2v2

F β2

4a2

]1/2

, (52)
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and the resistivity is then the same in both:

�F ≈
[
g2 6�(6)ζ (6)

�(4)ζ (4)

(
T

TBG

)2

+ h̄2v2
F β2

4a2

]
�(4)ζ (4)h̄k2

F

24πe2ρ2v2
F α2

×
(

kBT

h̄αk2
F

)5/2

ln

(
kBT

h̄αq2
c

)
. (53)

A similar result has been derived in Ref. 18. Owing to the
same arguments used in the previous section for one-phonon
scattering, we can neglect the scalar potential contribution at
low T .

At high T , i.e., T � TBG, we have z � 1, so that
exp(zx2)/[exp(zx2) − 1]2 ≈ 1/(zx2) in Eq. (49). The bilayer
graphene resistivity becomes

�F ≈
(

g2 + h̄2v2
F β2

8a2

)
(kBT )2

64h̄e2ρ2v2
F α4k2

F

ln

(
kBT

h̄αq2
c

)
. (54)

This result holds for monolayer graphene with the substitution

(g2 + h̄2v2
F β2

8a2 ) → ( g2

2 + h̄2v2
F β2

4a2 ).6,7 We have obtained that the
resistivity due to nonstrained FPs is proportional to T 2/n,
which implies mobility independent of the carrier density
n. A similar result has been obtained in the context of
microscopic ripples in graphene.5,24 The result of Eq. (54)
is shown in Fig. 2(b) as a full line indicating ū ≈ 0%.
The logarithmic correction, expected to be of order unity
in the relevant T range, has been ignored. Scattering by
FPs dominates the contribution to resistivity in nonstrained
samples at both low and high T , except for the crossover
region where T ∼ TBG [Eq. (39)]. The same conclusion holds
for monolayer graphene, the T dependent �F of which is shown
in Fig. 2(a).

3. Scattering by strained flexural phonons

Applying strain breaks the membrane rotational symmetry
inducing linear FP dispersion at low momentum, as can be
seen in Eq. (8). A new energy scale appears in the problem,

ωF
q∗ =

√
2ūv2

L/α ≈ 104ū K, (55)

separating two regimes: linear dispersion below and quadratic
dispersion above. The associated momentum scale q∗ =√

ūvL/α ≈ 4.5
√

ū Å
−1

, together with kF and the thermal
momentum qT given by h̄ωF

qT
= kBT , define all regimes

where analytic treatment can be employed. In particular,
in the low-T regime where qT � kF , we may always take
q∗ � qT and use a linear dispersion for FPs; otherwise, the
nonstrained case considered in the previous section would
be the appropriate starting point. In the high-T regime, we
can distinguish between low strain for q∗ � qT and high
strain for q∗ � qT . Note that, at high T , relevant phonon
scattering electrons have momentum q in the range kF � q �
qT . Therefore, when strain is present in the high-T regime,
we may always assume q∗ � kF ; the opposite limit q∗ � kF

would again be identified with the nonstrained case considered
previously.

The resistivity due to strained FPs can be cast in the
form of a triple integral over rescaled momenta x → x̃ =
xh̄vLu1/2/(kBT ) (see Appendix B2 for details):

�F ≈ (kBT )6

26π2h̄5e2ρ2v2
F v8

Lū4k2
F

×
∫ 2k̃F

0
dK̃

[
DF

B (K̃/k̃F )
]2

K̃2√
k̃2
F − K̃2/4

∫ ∞

0
dq̃

q̃3

ωq̃

nq̃(nq̃ + 1)

×
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃3nQ̃(nQ̃ + 1)

ωQ̃

√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

×
(

ωq̃ + ωQ̃

1 + nq̃ + nQ̃

− ωq̃ − ωQ̃

nq̃ − nQ̃

)
, (56)

where the rescaled dispersion reads as ωx̃ ≈
√

γ 2x̃4 + x̃2, with
γ = √

2ωF
qT

/ωF
q∗ , and the generalized electron-FP coupling

DF
B (y) is given by Eq. (50). For monolayer graphene, only

the coupling changes, being given instead by Eq. (51). The
kinematics of the scattering process is schematically shown in
Fig. 1(c).

In the low-T case T � TBG, we have only small-angle
scattering with K � kF . The argument of the generalized
electron-FP coupling becomes small K/kF � 1, and it can
be written as

DB(y � 1) ≈ DM (y � 1) ≈
[
g2y2 + h̄2v2

F β2

4a2

]1/2

. (57)

The resistivity is the same in both bilayer and monolayer
systems. Since the inequality qT � kF ,q∗ holds, relevant
phonons have linear dispersion ωF

q ≈ √
ūvLq and the rescaled

Fermi momentum obeys k̃F ≈ kF /qT � 1. We may take
K̃ → ∞ as the upper limit in the K̃ integral in Eq. (56),
and the resistivity is then approximated by

�F ≈
[
g2

(
qT

kF

)2

K4 + h̄2v2
F β2

4a2
K2

]

× (kBT )7

26π2h̄6e2ρ2v2
F v9

Lū9/2k3
F

, (58)

where

Kn =
∫ ∞

0
dK̃K̃n

∫ ∞

0
dq̃ q2nq̃(nq̃ + 1)

×
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃2nQ̃(nQ̃ + 1)
(

q̃+Q̃

1+nq̃+nQ̃
− q̃−Q̃

nq̃−nQ̃

)
√

q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4
.

(59)

It can be shown numerically that K2 ≈ 4485 and K4 ≈
496 850. The large ratio K4/K2 � 1 is, however, compen-
sated by qT /kF � 1 and the fact that g < h̄vF β/(2a) (see
Sec. III B). As in the case of scattering by in-plane phonons,
also here the gauge potential contribution to resistivity domi-
nates at low T .

Now we consider the high-T regime T � TBG. At odds
with the nonstrained case [see Fig. 1(b)], now phonons with
momentum q in the range kF � q � qT provide most of the
scattering. It is shown in Appendix B2b that the integral over
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Q̃ in Eq. (56) becomes K̃ independent, and the q̃ integral can
be cast in the form

G(γ ) =
∫ ∞

0
dq̃

q̃5n2
q̃(nq̃ + 1)2

γ 2q̃4 + q̃2

×
(

2
√

γ 2q̃4 + q̃2

1 + 2nq̃

+ 1

nq̃(nq̃ + 1)

)
, (60)

being easily evaluated numerically. The resistivity in bilayer
graphene can then be written as

�F ≈
(

7g2 + h̄2v2
F β2

4a2

)
(kBT )4

27h̄3e2ρ2v2
F v6

Lū3
G

(
αkBT

h̄ūv2
L

)
.

(61)

When γ � 1, or equivalently qT � q∗ (high strain), the
function G(γ ) behaves as G(γ � 1) ≈ 18ζ (3) − 93ζ (5)/8.
For γ � 1, or equivalently qT � q∗ (small strain), it gives
G(γ � 1) ≈ 1/γ 2. In these asymptotic regimes, one can
obtain analytic expressions for the resistivity in Eq. (61):

�F ≈
(

7g2 + h̄2v2
F β2

4a2

)
1

27h̄3e2v2
F

×
⎧⎨
⎩

[
18ζ (3) − 93

8 ζ (5)
] (kBT )4

ρ2v6
Lū3 kF � qT � q∗,

h̄2(kBT )2

ρκv2
Lū

kF � q∗ � qT .
(62)

Equations (61) and (62) also hold for monolayer graphene with

(7g2 + h̄2v2
F β2

4a2 ) → (2g2 + h̄2v2
F β2

a2 ).
The effect of strain in the T dependence of resistivity is

shown in Fig. 2(a) for monolayer graphene and in Fig. 2(b)
for bilayer at strain values ū ≈ 0.1%, 0.5%, and 1%. The
crossover between the two regimes of Eq. (61) [see Eq. (62)]
is clearly seen at γ ≈ 1, which is equivalent to T ≈ 104ū K.
It is apparent from Fig. 2 that the contribution to the resistivity
due to scattering by FPs is strongly suppressed by applying
strain.

D. Crossover between in-plane- and flexural-phonon
dominated scattering

Scattering by in-plane and flexural phonons is always at
work simultaneously. However, the two mechanisms provide
completely different T -dependent resistivity, and therefore we
expect them to dominate at different T . In the following, we
address the transition T at which �in ≈ �F .

1. Nonstrained case

In this case, using Eqs. (46) and (54) for bilayer graphene
in the high-T regime, we get

�F

�in

≈ T [K]

75n [cm−2]
. (63)

We expect a crossover between in-plane to FP dominated
scattering given by

Tc2 ≈ 75n [cm−2] K. (64)

The Tc just obtained is close to TBG for in-plane phonons
[Eq. (39)] and much higher than TBG for FPs [Eq. (40)]. By

using the low-T approximation for �in [Eq. (45)], we obtain
the ratio

�F

�in

≈ 12

√
n [cm−2]

(T [K])2
, (65)

from which we expect a crossover from FP to in-plane
dominated scattering at

Tc1 ≈ 3(n [cm−2])1/4 K (66)

as T increases. We conclude that scattering by FP always
dominates over scattering by in-plane phonons, except for
the region Tc1 � T � Tc2 around TBG for in-plane phonons
[Eq. (39)]. This is clearly seen in Fig. 2(b). The same
conclusion applies to monolayer graphene. In this latter case,
we obtain Tc1 ≈ 6(n [cm−2])1/4 K and Tc2 ≈ 55n [cm−2] K.

2. Strained case

It can easily be shown that the crossover from in-plane to
flexural phonon dominated scattering always occurs in the low-
strain regime q∗ � qT . We have seen in the previous sections
that the crossover temperature T separating high-strain from
low-strain behavior is given by γ = √

2ωF
qT

/ωF
q∗ ≈ 1. By using

Eq. (55), we get a crossover temperature T ∗ ≈ 104ū K. On
the other hand, by using the low-strain approximation for the
resistivity due to flexural phonons given in Eq. (62) and the
resistivity due to in-plane phonons in Eq. (46), we obtain for
the ratio in bilayer graphene

�F

�in

≈ kBT

40πκū
. (67)

The corresponding crossover T then reads as

Tc ≈ 106ū K. (68)

Clearly, Tc � T ∗, justifying our low-strain approximation.
The same applies to monolayer graphene under strain. The
resistivity ratio is in that case �F /�in ≈ kBT /(50πκū), from
which we obtain roughly the same Tc even taking into account
that κ in monolayer is half that of bilayer in our elasticity
model.

An important conclusion may be drawn. While in the
nonstrained case scattering by FP is the dominant contribution
to the resistivity, it can be seen from Eq. (68) that applying
small amounts of strain is enough to suppress this contribution
at room temperature. This is clearly seen in Fig. 2.

V. DISCUSSION

We have found the T -dependent resistivity due to acoustic
phonons to be qualitatively similar in monolayer and bilayer
graphene (see Sec. IV C). This becomes apparent when we
compare Figs. 2(a) and 2(b) where �(T ) is shown, respectively,
for monolayer and bilayer graphene both at zero and finite
strain. Such behavior can be traced back to the resistivity
expression [Eq. (36)], or more precisely to its numerator, where
the different electronic structure and electron-phonon coupling
conspire to give exactly the same parametric dependence
in monolayer and bilayer graphene. In short, it can be
readily seen through Eq. (36) that the information about the
electronic structure enters via the density of states squared
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in the numerator. The electron-phonon coupling, in its turn,
enters through the transition rate Pk,k′ , and in the Born
approximation it also appears squared. When coupling is via
scalar potential [V1 matrix elements in Eq. (23)], the screening
makes the coupling inversely proportional to the density of
states, and the square of it cancels exactly with the square
density of states coming from the integral over k and k′ in
the numerator of Eq. (36). For the coupling through gauge
potential [V2 matrix elements in Eq. (23)], the parametric
difference between monolayer and bilayer amounts to the
replacement v2

F → h̄2k2
F /(2m)2 (after taking the square of the

matrix elements and using the quasielastic approximation).
When multiplied by the square of the density of states in bilayer
graphene D(E) ∼ m/h̄2, we obtain the factor k2

F /h̄2, which
has exactly the same parametric dependence appearing for
single-layer graphene; there, the factor v2

F multiplies the square
of the density of states of the monolayer, D(E) ∼ k/(h̄vF ).

Despite qualitative similarities, there are apparent quanti-
tative differences. A striking one is the overall suppression of
resistivity in bilayer graphene, which is clearly seen when we
compare Figs. 2(a) and 2(b). This is due to the higher stiffness
and mass density of bilayer graphene (see Sec. II), and to the
1/2 term in Eq. (17) for the gauge potential which, at odds with
the parametric dependence just discussed, does not cancel out
in the expression for the resistivity. Also, the scalar potential
contribution is quantitatively different, being enhanced in
bilayer graphene, as can be seen by comparing Eqs. (45)
and (46), Eqs. (53) and (54), and Eqs. (58) and (61) with
their monolayer counterparts. This arises because pseudospin
conservation allows backscattering due to scalar potential in
bilayer but not in monolayer graphene.

The quantitative discrepancy between the T -dependent
resistivity in bilayer and monolayer graphene originates an
interesting difference regarding room-temperature mobility in
nonstrained samples. The mobility μ, defined as � = 1/(enμ),
is in the nonstrained case limited by PF scattering (see
Sec. IV C 2) and takes the form

μ ≈ A64πh̄ev2
F

k2
BT 2

, (69)

with AB = κ2/[g2 + h̄2v2
F β2/(8a2)] in bilayer graphene and

AM = κ2/[g2/2 + h̄2v2
F β2/(4a2)] in monolayer graphene,

ignoring the logarithmic contribution of order unity [Eq. (54)].
For monolayer graphene at room temperature, the mobility is
limited to the value for samples on substrate, μ ≈ 198AM ∼
1 m2/Vs, as has recently been confirmed experimentally.6 For
bilayer graphene, however, the quantitative differences dis-
cussed above lead to an enhanced room-temperature mobility
μ ≈ 198AB ∼ 20 m2/Vs. This might be an interesting aspect
to take into account regarding room-temperature electronic
applications. Reports of much smaller mobility (one order
of magnitude) in recent experiments in suspended bilayer
graphene1 might be an indication that residual,37 presumably
T -independent, scattering is at work, overcoming the intrinsic
FP contribution.

Another remark worthy of discussion is the validity of
results in the nonstrained regime, in particular Eq. (54), for
the high-T resistivity. At low densities, when kF becomes
comparable with the infrared cutoff qc given by the onset of

anharmonic effects,38 the harmonic approximation used here
breaks down. A complete theory would require taking into
account anharmonicities, but this is beyond the scope of this
paper. Nevertheless, it is likely that unavoidable little strain u is
always present in real samples,6 and this increases the validity
of the harmonic approximation.39 Moreover, the infrared cutoff
qc due to anharmonic effects depends on the applied strain
(see supplementary material40), decreasing as strain increases.
This is consistent with sample-to-sample mobility differences
of order unity recently reported in suspended monolayer
graphene,6 where strain u � 10−4–10−3 is naturally expected.

Finally, we comment on a recent theory paper by
Mariani and von Oppen7 where the T -dependent resistivity of
monolayer graphene has been fully discussed. In the high-T
regime T � TBG, our results for the monolayer case agree
with those of Ref. 7. However, at low T , i.e. T � TBG, the
authors of Ref. 7 found a new regime where the scalar potential
contribution dominates. This happens because, in Ref. 7, the
electron-phonon coupling from scalar potential is assumed
to be much higher than the gauge potential coupling, unless
T � TGD, where TGD is the energy scale at which screening
becomes relevant and scalar and gauge potentials become
comparable. The new regime arises for TGD � T � TBG.
With the parameter values used in this paper, however, the
electron-phonon coupling due to scalar potential is always
similar or smaller than the gauge potential (see Sec. III B).
Therefore, we can neglect this low-T contribution since it gives
higher power-law behavior than the gauge potential. Recent
T -dependent resistivity due to in-plane phonons measured
in single-layer graphene at the high densities36 seems to
corroborate the latter picture.

VI. CONCLUSIONS

In this paper, we have studied the T -dependent resistivity
due to scattering by both acoustic in-plane phonons and
FPs in doped, suspended bilayer graphene. We have found
the bilayer membrane to follow the qualitative behavior of
the monolayer cousin.6,7 Different electronic structure com-
bine with different electron-phonon coupling to give the
same parametric dependence in resistivity and, in particular,
the same T behavior. In parallel with the single layer, FPs
dominate the phonon contribution to resistivity in the absence
of strain, where a density-independent mobility is obtained.
This contribution is strongly suppressed by tension, similar
to monolayer graphene.6 However, an interesting quantitative
difference with respect to suspended monolayer graphene
has been found. In the latter, as shown in Ref. 6, FPs limit
room-temperature mobility μ to values obtained for samples
on substrate μ ∼ 1 m2/(Vs) when tension is absent. In bilayer
graphene, quantitative differences in electron-phonon coupling
and elastic constants lead to a room-temperature mobility
enhanced by one order of magnitude μ ∼ 20 m2/(Vs), even
in nonstrained samples. This finding has obvious advantages
for room-temperature electronic applications. It has also been
shown that, for a correct description of acoustic phonon
scattering in both monolayer and bilayer graphene, even at the
qualitative level, coupling to both scalar and gauge potentials
needs to be taken into account.
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APPENDIX A: COLLISION INTEGRAL

The rate of change of fk due to scattering, the so-called
collision integral ḟk|scatt appearing on the right-hand side of
the Boltzmann equation (24), is the difference between the rate
at which quasiparticles enter the state |k〉 and the rate at which
they leave it:

ḟk|scatt =
∑

k′

[
fk′(1 − fk)Wk

k′ − fk(1 − fk′ )Wk′
k

]
, (A1)

where Wf

i is the scattering probability between states |i〉 and
|f 〉. Here, we use Fermi’s golden rule, which reads as

Wf

i = 2π

h̄
|〈f |Hint|i〉|2δ(Ef − Ei), (A2)

and is equivalent to rest upon the Born approximation for the
differential scattering cross section.

The crucial step to get ḟk|scatt is finding the scattering
probability for a quasiparticle in state |k〉 to be scattered into
state |k′〉, i.e., Wk′

k (since the process is quasielastic, interband
transitions are not allowed). The scattering mechanism is
encoded in the interaction Hint, which, in the present case,
is given by He-p in Eq. (22). It is readily seen that scattering
occurs only through emission or absorption of one phonon
or emission or absorption of two phonons. The initial and
final states are thus tensorial products of the form |i〉 =
|k〉 ⊗ |nq〉 or |i〉 = |k〉 ⊗ |nq,nq′ 〉, and |f 〉 = |k′〉 ⊗ |nq ± 1〉,
|f 〉 = |k′〉 ⊗ |nq ± 1,nq′ ± 1〉 or |f 〉 = |k′〉 ⊗ |nq ± 1,nF

q′ ∓
1〉, where |nq〉 and |nq,nq′ 〉 represent one- and two-phonon
states in the occupation number representation,18 and the
electronlike quasiparticle state is written according to the
unitary transformation in Eq. (10) as |k〉 = (e−iθka

†
k|0〉 +

eiθkb
†
k|0〉)/√2 (electron-hole symmetry guarantees the result

is the same for both electron and hole doping).
In order to obtain |〈f |He-p|i〉|2, with |i〉 and |f 〉 as given

above, we take the following steps. (i) Terms of the form
V1V2, where V1 stands for scalar potential and V2 for gauge
potential induced matrix elements in Eq. (23), are neglected. It
is easy to show that such terms come proportional to oscillatory
factors e±i2θk or e±i2θk′ (in monolayer graphene e±iθk or e±iθk′ ),
stemming from the unitary transformation in Eq. (10). These
terms can safely be neglected in doing the summation over the
direction of k and k′ in the numerator of Eq. (36), keeping
θk,k′ fixed. The resistivity is then the sum of two independent
contributions, originating from scalar and gauge potentials,
well in the spirit of Matthiessen’s empirical rule.29 (ii) The
scalar potential contribution is proportional to the overlap of

states belonging to the same band∣∣∣∣V ν
1,q

ei(θk′ −θk)

2
+ V ν

1,q
e−i(θk′ −θk)

2

∣∣∣∣
2

= ∣∣V ν
1,q

∣∣2 1 + cos 2θk,k′

2
. (A3)

The same manipulation holds for two-phonon terms, with
V ν

1,q → V F
1,q,q′ . (iii) For the gauge potential contribution, there

are oscillatory terms that, owing to the argument of point (i),
can be neglected:∣∣∣∣V ν

2,q,k,k′
ei(θk′ +θk)

2
+ (

V ν
2,−q,k,k′

)∗ e−i(θk′ +θk)

2

∣∣∣∣
2


 ∣∣Ṽ ν
2,q

∣∣2
(

k2

2
+ k′2

2
+ kk′ cos θk,k′

)
, (A4)

where we used Ṽ to express the matrix elements given in
Eq. (23) for bilayer graphene without the term (πk + πk′). A
similar manipulation holds for two-phonon terms, with Ṽ ν

2,q →
Ṽ F

2,q,q′ .
Finally, by summing over phonon momenta and doing the

thermal average, we can writeWk′
k as follows: When scattering

is via one phonon,

Wk′
k = π

h̄

∑
q

wν(q,k,k′)nqδk′,k+qδ
(
εk′ − εk − h̄ων

q

)

+ π

h̄

∑
q

wν(q,k,k′)(nq + 1)δk′,k−qδ
(
εk′ − εk + h̄ων

q

)
,

(A5)

where the first term is due to absorption and the second
to emission of a single phonon; when scattering involves two
phonons,

Wk′
k = π

h̄

∑
q,q′

wF (q,q′,k,k′)nqnq′

× δk′,k+q+q′δ
(
εk′ − εk − h̄ωF

q − h̄ωF
q′
)

+ π

h̄

∑
q,q′

wF (q,q′,k,k′)(nq + 1)(nq′ + 1)

× δk′,k−q−q′δ
(
εk′ − εk + h̄ωF

q + h̄ωF
q′
)

+ 2π

h̄

∑
q,q′

wF (q,q′,k,k′)(nq + 1)nq′

× δk′,k−q+q′δ
(
εk′ − εk + h̄ωF

q − h̄ωF
q′
)
, (A6)

where the first term is due to absorption of two FPs, the
second to emission of two FPs, and the last one comes from
absorption of a single FP and emission of another one. The
kernels wν(q,k,k′) and wF (q,q′,k,k′) represent the sum of
the right-hand side of Eq. (A3) with (A4), as given in Eq. (34).
For monolayer graphene, Wk′

k take exactly the same form;7

only the kernels change, being given instead by Eq. (35). The
collision integral may finally be put in the form

ḟk|scatt = π

h̄

∑
k′

∑
q,ν

wν(q,k,k′)

×{[fk′(1 − fk)nq − fk(1 − fk′ )(nq + 1)]

× δk,k′+qδ(εk − εk′ − h̄ων
q)
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+ [
fk′(1 − fk)(nq + 1) − fk(1 − fk′)nq

]
× δk,k′−qδ(εk − εk′ + h̄ων

q)} (A7)

for one-phonon scattering processes, and

ḟk
∣∣
scatt

= π

h̄

∑
k′

∑
q,q′

wF (q,q′,k,k′)

×{[fk′(1 − fk)(nq + 1)(nq′ + 1) − fk(1 − fk′)nqnq′]

× δk,k′−q−q′δ
(
εk − εk′ + h̄ωF

q + h̄ωF
q′
)

+ [fk′ (1 − fk)(nq + 1)nq′ − fk(1 − fk′)nq(nq′ + 1)]

× δk,k′−q+q′δ
(
εk − εk′ + h̄ωF

q − h̄ωF
q′
)

+ [fk′ (1 − fk)nqnq′ − fk(1 − fk′)(nq + 1)(nq′ + 1)]

× δk,k′+q+q′δ(εk − εk′ − h̄ωF
q − h̄ωF

q′)

+ [fk′ (1 − fk)nq(nq′ + 1) − fk(1 − fk′)(nq + 1)nq′]

× δk,k′+q−q′δ
(
εk − εk′ − h̄ωF

q + h̄ωF
q′
)}

(A8)

for scattering through two FPs.
Now, we derive the linearized version of the collision

integrals given in Eqs. (A7) and (A8). We start by expanding
electron and phonon probability distributions around their
equilibrium values

fk = f
(0)
k + δfk, nq = n(0)

q + δnq, (A9)

where the variations can be written as δfk = − ∂f
(0)
k

∂εk
ϕk [see

Eq. (26)] and δnq = − ∂n
(0)
q

∂(h̄ωq)χq. The linearized collision

integral δḟk|scatt is then obtained by expanding ḟk|scatt up to
first order in the variations.29,41

The one-phonon scattering case follows closely the steps
outlined in Ref. 41 and, for the case of monolayer graphene, it
has been derived in Ref. 7. Since the difference between mono-
layer and bilayer amounts to a different kernel wν(q,k,k′) in
Eqs. (A7), which does not play any role in the linearization,
we can directly apply the result of Ref. 7 to the present
case. In order to set notation for the more elaborated case
of two-phonon scattering, we outline the main steps of the
derivation in the following. We first note that, at equilibrium,
detailed balance implies ḟ

(0)
k |scatt = 0, from which we get the

relation

f
(0)
k′

(
1 − f

(0)
k

)
n(0)

q = f
(0)
k

(
1 − f

(0)
k′

)(
n(0)

q + 1
)
, (A10)

which can be easily verified by direct calculation.41 Therefore,
in order to get the linearized collision integral, it is enough to
calculate the variation

δ[fk′(1 − fk)nq − fk(1 − fk′ )(nq + 1)]. (A11)

A straightforward calculation (see supplementary material for
details40) allows us to write this variation in terms of the
equilibrium distributions and ϕk, χq. Then, we introduce two
typical approximations: We consider phonons at equilibrium
by taking χq ≈ 0, so that nq ≈ n

(0)
q , valid at not too low

temperatures;29 and we consider quasielastic scattering, with
εk,εk′ � h̄ωq. The linearized collision integral then reads as

δḟk|scatt = −2π

h̄

∑
k′

∑
q,ν

wν(q,k,k′)ων
q
∂nq

∂ων
q

∂f
(0)
k

∂εk

× (ϕk − ϕk′)δk,k′+qδ(εk − εk′), (A12)

so Eq. (A12) can be put in the form of Eq. (27):

ḟk|scatt = −
∑

k′
Pk,k′(ϕk − ϕk′), (A13)

where Pk,k′ is given in Eq. (32).
Now, we proceed with the linearization of the collision

integral in Eq. (A8), originating from scattering processes
involving two FPs. At equilibrium, detailed balance is guaran-
teed ḟ

(0)
k |scatt = 0, and the following two relations hold:

f
(0)
k′

1 − f
(0)
k′

= f
(0)
k

1 − f
(0)
k

n
(0)
q

n
(0)
q + 1

n
(0)
q′

nq′ + 1
,

(A14)
f

(0)
k′

1 − f
(0)
k′

n
(0)
q′

n
(0)
q′ + 1

= f
(0)
k

1 − f
(0)
k

n
(0)
q

n
(0)
q + 1

.

In order to get the linearized collision integral, it is easy to see
that we only need the following two variations:

δ[fk′(1 − fk)(nq + 1)(nq′ + 1) − fk(1 − fk′)nqnq′] (A15)

and

δ[fk′(1 − fk)(nq + 1)nq′ − fk(1 − fk′)nq(nq′ + 1)], (A16)

with the other two possibilities being related with these by
a minus sign and k → k′. After a similar calculation as in
the one-phonon scattering case (see supplementary material
for details40), these variations can be written in terms of the
equilibrium distributions, its derivatives, and ϕk, χq. Then,
we introduce the two typical approximations: We consider
phonons to be in equilibrium χq ≈ 0, so that nq ≈ n

(0)
q , and

we assume quasielastic scattering. The linearized collision
integral then reads as

δḟk|scatt = −2π

h̄2 kBT
∂fk

∂εk

∑
k′

(ϕk′ − ϕk)
∑
q,q′

wF (q,q′,k,k′)

×
(

ωF
q + ωF

q′

1 + nq + nq′
− ωF

q − ωF
q′

nq − nq′

)

× ∂nq

∂ωF
q

∂nq′

∂ωF
q′

δk,k′+q+q′δ(εk − εk′), (A17)

It can be written in the form of Eq. (A13), with Pk,k′ as given
in Eq. (33).

APPENDIX B: CALCULATING THE RESISTIVITY

In this appendix, we provide details regarding the calcula-
tion of the T -dependent resistivity for bilayer graphene. The
variational method is used, with resistivity given by Eq. (36).
By writing the numerator in Eq. (36) as in Eq. (37), the
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resistivity can be cast in the form

� = Vh̄2

8π2e2k4
F

∫
dk dk′ (K · u)2 Pk,k′ . (B1)

The remaining task is the calculation of the integral on the
right-hand side of Eq. (B1).

1. Scattering by in-plane phonons

This case follows closely the derivation to the Bloch T 5 law
in three-dimensional metals.29 By inserting Eq. (32) for Pk,k′

into Eq. (B1), we get

� = Vh̄

4πe2k4
F

∫
dk dk′ (K · u)2

∑
ν

wν(K,k,k′)ων
K

× ∂n
(0)
K

∂ων
K

∂f
(0)
k

∂εk
δ(εk − εk′), (B2)

where we have already performed the sum over q. We can
simplify the integral above by integrating over k and k′ noting
the presence of δ(εk − εk′) and ∂fk

∂εk
≈ −δ(εF − εk). The result

reads as

� ≈ − Vh̄

4πe2k4
F

(
m

h̄2

)2 ∫
dθkdθk′ (K · u)2

×
∑

ν

wν(K,kF êk,kF êk′)ων
K

∂n
(0)
K

∂ων
K

, (B3)

with K = kF (êk − êk′ ). In order to proceed with the calcula-
tion, we have to specify the kernel wν(K,kF êk,kF êk′) given in
Eq. (34). By making use of the matrix elements in Eq. (23),
we get

wν(K,kF êk,kF êk′) ≡ wν(K)

=
[
Dν

B(K/kF )
]2

h̄3k2
F K2

2Vρv2
F m2ων

K

, (B4)

with Dν
B(x) as given in Eq. (43), and where we have used

the relation K = 2kF sin(θk,k′/2). The kernel depends only on
θk,k′ or, equivalently, K (the norm of K), as is the case of
the rest of the factors in the integrand of Eq. (B3) but for
(K · u)2. The latter can be written as (K · u)2 = K2 cos2 γ ,
and the angular integration is then conveniently done by
integrating over γ , keeping θk,k′ = θk − θk′ ≡ θ constant,
and integrate over θ afterward, or equivalently K . By using

dθ = dK/

√
k2
F − K2/4, the resistivity becomes

� ≈ − Vm2

2h̄3e2k4
F

∑
ν

∫ 2kF

0
dK

K2wν(K)ων
K√

k2
F − K2/4

∂n
(0)
K

∂ων
K

. (B5)

By inserting Eq. (B4) for the kernel wν(K) into Eq. (B5),
we readily obtain Eq. (42). From this, it is straightforward
to calculate analytically the two limiting cases T � TBG and
T � TBG.29

2. Scattering by flexural phonons

By inserting Eq. (33) for Pk,k′ into Eq. (B1), we get

� = − VkBT

4πe2k4
F

∫
dk dk′ (K · u)2

×
∑

q

wF (q,K − q,k,k′)
∂nq

∂ωF
q

∂nq′

∂ωF
q′

∂f
(0)
k

∂εk
δ(εk − εk′ )

×
(

ωF
q + ωF

K−q

1 + nq + nK−q
− ωF

q − ωF
K−q

nq − nK−q

)
, (B6)

where we have already performed the sum over q′. We can
simplify the integral above by integrating over k and k′, noting
the presence of δ(εk − εk′) and ∂fk

∂εk
≈ −δ(εF − εk). The result

reads as

� ≈ VkBT

4πe2k4
F

(
m

h̄2

)2 ∫
dθkdθk′ (K · u)2

×
∑

q

wF (q,K − q,kF êk,kF êk′)
∂nq

∂ωF
q

∂nK−q

∂ωF
K−q

×
(

ωF
q + ωF

K−q

1 + nq + nK−q
− ωF

q − ωF
K−q

nq − nK−q

)
. (B7)

The kernel wF (q,K − q,kF êk,kF êk′) is given by Eq. (34) with
V ν

q → V F
q,q′ (see Appendix A for a derivation). By inserting

the matrix elements in Eq. (23), it takes the explicit form

wF (q,K − q,kF êk,kF êk′) ≡ wF (q,K,|K − q|)

=
[
DF

B (K/kF )
]2

h̄4q2k2
F |K − q|2

24V2m2ρ2v2
F ωF

q ωF
|K−q|

, (B8)

with DF
B (x) as given in Eq. (50), and where we have used the re-

lation K = 2kF sin(θk,k′/2) and assumed ωF
q given by Eq. (8).

In deriving Eq. (B8), we used cos2(φ − φ′) = [1 + cos(2φ −
2φ′)]/2 and dropped the oscillatory part. The sum over q can be
replaced by an integral

∑
q → V

(2π)2

∫
q dq dφ, and owing to

the relation Q2 ≡ |K − q|2 = K2 + q2 − 2qK cos φ, we can
write the resistivity as

� ≈ V2kBT

8π3e2k4
F

(
m

h̄2

)2 ∫
dθkdθk′ (K · u)2

∫ ∞

0
dq q

∂nq

∂ωF
q

×
∫ |K+q|

|K−q|
dQ

QwF (q,K,Q)√
q2K2 − (K2 + q2 − Q2)2/4

∂nQ

∂ωF
Q

×
(

ωF
q + ωF

Q

1 + nq + nQ

− ωF
q − ωF

Q

nq − nQ

)
, (B9)

where we used dφ = dQQ/
√

q2K2 − (K2 + q2 − Q2)2/4.
As in Sec. B1, the angular integration over θk and θk′ is
conveniently done by integrating over γ , with (K · u)2 =
K2 cos2 γ , keeping θk,k′ = θk − θk′ ≡ θ and q and |K − q| ≡
Q constant, and integrate over θ afterward, q and Q. The
resistivity may then be written as

� ≈ kBT

26π2e2ρ2v2
F k2

F

∫ 2kF

0
dK

[
DF

B (K/kF )
]2

K2√
k2
F − K2/4

×
∫ ∞

0
dq

q3

ωF
q

∂nq

∂ωF
q

∫ |K+q|

|K−q|
dQ

× Q3

ωF
Q

√
q2K2 − (K2 + q2 − Q2)2/4
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× ∂nQ

∂ωF
Q

(
ωF

q + ωF
Q

1 + nq + nQ

− ωF
q − ωF

Q

nq − nQ

)
, (B10)

where dθ = dK/

√
k2
F − K2/4 has been used, and we used

Eq. (B10) for the kernel.

a. Nonstrained flexural phonons

In the absence of strain, the FP dispersion reads as ωF
q =

αq2. After rescaling momentum as x → x̃ = x(h̄α/kBT )1/2,
we can rewrite the resistivity as

� ≈ (kBT )2

26π2h̄e2ρ2v2
F k2

F α4

∫ 2k̃F

0
dK̃

[
DF

B (K̃/k̃F )
]2

K̃2√
k̃2
F − K̃2/4

×
∫ ∞

0
dq̃ q̃nq̃(nq̃ + 1)

∫ |K̃+q̃|

|K̃−q̃|
dQ̃

× Q̃nQ̃(nQ̃ + 1)√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

×
(

q̃2 + Q̃2

1 + nq̃ + nQ̃

− q̃2 − Q̃2

nq̃ − nQ̃

)
. (B11)

The integral over Q̃ is infrared divergent, and is thus dominated
by the contribution K̃ ∼ q̃. By defining the small quantity
δx = |K̃ − q̃|, and noting that, for Q̃ � 1, we have nQ̃ ∼
1/Q̃2 � 1, it is possible to identify the dominant contribution
in the Q̃ integral as∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃nQ̃(nQ̃ + 1)√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

×
(

q̃2 + Q̃2

1 + nq̃ + nQ̃

− q̃2 − Q̃2

nq̃ − nQ̃

)

∼ 2K̃2
∫ 2K̃

δx

dQ̃
nQ̃ + 1

K̃
∼ 2K̃

δx
.

It is now obvious that the q̃ integral has a logarithmic
divergence for q̃ ∼ K̃ . Note, however, that in the present
theory, phonons have an infrared cutoff, so that min |K̃ − q̃| =
q̃c, where q̃c � 1 is either due to strain or anharmonic effects.
The dominant contribution to the q̃ integral is then coming
from the maximum of 1/|K̃ − q̃|, from which we obtain

2K̃

∫ ∞

0
dq̃ q̃nq̃(nq̃ + 1)

1

|q̃ − K̃|
∼ −2πK̃2nK̃ (nK̃ + 1) ln(q̃c).

The resistivity may finally be written as a simple integral
over K̃ ,

� ≈ (kBT )2

26πh̄e2ρ2v2
F k2

F α4
ln

(
kBT

h̄αq2
c

)

×
∫ 2k̃F

0
dK̃

[D(K̃/k̃F )]2√
k̃2
F − K̃2/4

K̃4nK̃ (nK̃ + 1), (B12)

from which Eq. (49) is readily obtained.

b. Strained flexural phonons

The flexural phonon dispersion in the isotropic approxi-

mation is ωF
q ≈

√
α2q4 + ūv2

Lq2 [see Eq. (8)]. After rescal-

ing momenta x → x̃ = xh̄vLu1/2/(kBT ), the resistivity in
Eq. (B10) takes the form given in Eq. (56). The low-T regime
is detailed in the main text. Here, we concentrate in the high-T
regime, showing in particular how to obtain Eq. (60) for the
integrals over q̃ and Q̃ in Eq. (56).

We start by writing the Q̃ integral in Eq. (56) as

I(γ,K̃,q̃)

≡
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃3nQ̃(nQ̃ + 1)√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

× 1√
γ 2Q̃4 + Q̃2

(√
γ 2q̃4 + q̃2 +

√
γ 2Q̃4 + Q̃2

1 + nq̃ + nQ̃

−
√

γ 2q̃4 + q̃2 −
√

γ 2Q̃4 + Q̃2

nq̃ − nQ̃

)
, (B13)

with γ = √
2ωF

qT
/ωF

q∗ . Having in mind that high T implies
K̃ � 1, we consider the integration in Eq. (B13) in two
limiting cases: when q̃ � K̃ � 1 and for q̃ � K̃ . In the former
case, since q̃ � 1 and Q̃ � 1 hold, we can linearize the
dispersion relation and approximate the Bose-Einstein dis-
tribution function by nq̃ ≈ 1/q̃ and nQ̃ ≈ 1/Q̃ (as discussed
in the main text, finite strain implies kF � q∗, so that the
linearization of the flexural phonon dispersion can be taken
when q̃ � K̃ � 1 holds). The integral over Q̃ in Eq. (B13)
may then be approximated by

I(γ,K̃,q̃) ≈
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

× 2q̃Q̃√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

, (B14)

and the integral can be done as

I(γ,K̃,q̃) ≈
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

4q̃Q̃√
Y (q̃,Q̃,K̃)

= 2q̃ arctan

[
q̃2 + K̃2 − Q̃2√

Y (q̃,Q̃,K̃)

]|K̃+q̃|

|K̃−q̃|
= 2πq̃ ≡ I(q̃), (B15)

where we have defined

Y (q̃,Q̃,K̃) = −(q̃ − K̃ − Q̃)(q̃ − K̃ + Q̃)

× (q̃ + K̃ − Q̃)(q̃ + K̃ + Q̃).

On the other hand, for q̃ � K̃ , the integration region is
concentrated around q̃. We may then write the integral in
Eq. (B13) as a slowly varying function, which we can take out
of the integral, multiplied by an integral of the form of that in
Eq. (B14):

I(γ,K̃,q̃) ≈ q̃2nq̃(nq̃ + 1)√
γ 2q̃4 + q̃2

(
2
√

γ 2q̃4 + q̃2

1 + 2nq̃

+ 1

nq̃(nq̃ + 1)

)
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×
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃√
q̃2K̃2 − (K̃2 + q̃2 − Q̃2)2/4

≈ πq̃2nq̃(nq̃ + 1)√
γ 2q̃4 + q̃2

(
2
√

γ 2q̃4 + q̃2

1 + 2nq̃

+ 1

nq̃(nq̃ + 1)

)

≡ I(γ,q̃). (B16)

Since, for q̃ � K̃ , the latter result reduces to 2πq̃, as in
Eq. (B15), we can use I(γ,q̃) in Eq. (B16) to approximate
the Q̃ integral [Eq. (B13)] in the full region q̃ � K̃ �
1 to q̃ � K̃ . This has been tested numerically to be a
good approximation, as long as K̃ � 1. The q̃ integral in
Eq. (56) may then be cast in the K̃-independent form given
in Eq. (60).
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