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Dynamical current-current susceptibility of gapped graphene
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We present analytical expressions for the current-current correlation function in graphene for arbitrary
frequency, wave vector, doping, and band gap induced by a mass term. In the static limit, we analyze the
Landau (orbital) and Pauli magnetization, as well as the Lindhard correction, which describes Friedel and
Ruderman-Kittel-Kasuya-Yosida oscillations. In the nonrelativistic limit, we compare our results with the situation
of the usual two-dimensional electron gas (2DEG). We find that the orbital magnetic susceptibility (OMS) in
gapped graphene is smeared out on an energy scale given by the inverse mass. The nonrelativistic limit of the
plasmon dispersion and the Lindhard function reproduces the results of the 2DEG. The same conclusion is true
for the Pauli part of the susceptibility. The peculiar band structure of gapped graphene leads to pseudospin
paramagnetism and thus to a special form of the OMS.

DOI: 10.1103/PhysRevB.83.235409 PACS number(s): 71.45.Gm, 81.05.ue, 73.63.−b, 75.70.Ak

I. INTRODUCTION

Graphene, which was first isolated in 2004,1 is the name
of a monolayer of carbon atoms that are arranged in a
hexagonal lattice. It differs compared to most two-dimensional
systems by its relativistic energy-momentum relation and its
nontrivial spinor structure,2 originating from the two-atomic
Wigner-Seitz cell, and has remarkable electronic properties.3

As a consequence, various effects like the anomalous quantum
Hall effect4,5 or the Klein tunneling6 have been discovered. In
1956, the orbital magnetization of two-dimensional graphite
had already been calculated,7 indicating a strong diamagnetism
in the undoped hexagonal lattice, which was confirmed by
recent experiments.8

In the present work, we study the response of the system
to an electromagnetic potential in terms of the current-
current correlation function. Similar studies have already been
performed recently regarding the density-density response of
massless9,10 and massful11 Dirac fermions, the Hall conductiv-
ity in the presence of spin-orbit interactions12,13 including self-
energy and vertex corrections,14 and current-current correla-
tions in the absence of a mass term.15,16 Here we will generalize
those results to the case of massive quasiparticles by taking
into account a mass term which breaks sublattice symmetry,
leading to a gap between the valence and the conduction band.
It can occur due to different mechanisms, including intrinsic
spin-orbit coupling17,18 (with a gap of 24 μeV),19 graphene
placed on a suitable substrate (Eg = 0.26 eV),20 or adsorption
of molecules (with a gap of several electron volts).21 The
current correlator is related to the polarization function, which
was discussed earlier.9–11 Its limiting behavior determines
the orbital and the Pauli magnetization, the plasmon spectra,
and the screening of electric or magnetic impurities. Without
the mass term, the Landau magnetization is infinite for
intrinsic graphene (i.e., zero chemical potential, μ = 0) and
zero for extrinsic graphene (μ �= 0),7,15,16,22,23 while the Pauli
part vanishes for the former and is finite for the latter
case. As gapped graphene is similar to the two-dimensional
electron gas (2DEG), we investigate in the nonrelativistic
limit, i.e., the limit of single-particle energies just above the
band-gap parameter, and compare our results to that of the
2DEG.24

The particular features of the density-density and current-
current correlation functions in graphene compared to the
standard 2DEG rely on the coupling of the orbital degrees
of freedom to the sublattice of pseudospin. On the other hand,
semiconductor systems involving coupling to other internal
degrees of freedom such as the physical electron spin have also
been analyzed recently with similar aspects. As examples, we
mention studies of the dielectric function of semiconductor
2DEGs with various types of spin-orbit coupling terms,25,26

two-dimensional semiconductor hole systems,27 and p-doped
bulk semiconductors.28 Moreover, the dielectric function of
graphene taking into account the full honeycomb lattice
structure (but not a mass term) was analyzed recently in
Ref. 29. Analytical expressions for the polarizability of
graphene with finite width of Landau levels, temperature, and
mass term can be found in Ref. 30.

This paper is organized as follows. After introducing in
Sec. II the model Hamiltonian and pertaining quantities, we
present in Sec. III analytical expressions for the longitudinal
and transversal current-current correlation function. In Sec. IV,
we focus on the static limit and determine the orbital and
Pauli magnetization. Moreover, we include many-body effects
via random-phase approximation (RPA). In Sec. V, we study
the effect of an increasing mass term on typical quantities
like the magnetic susceptibility, Friedel oscillations, and the
plasmon spectra, and we compare the results to the 2DEG. We
close with conclusions in Sec. VI. In Appendix A, one can
find details of the calculation of the transversal susceptibility,
while Appendix B comments on the relation between current
and density response.

II. THE MODEL

The atoms in graphene are arranged in a honeycomb lattice,
where each unit cell contains two carbon atoms. The effective
Hamiltonian near the corners of the Brillouin zone K/K ′,
including a mass gap as well as finite doping, using standard
notation, is given by

Ĥ0 =
∑

k

�̂
†
k

(
μ + mv2

F πx ∓ iπy

πx ± iπy μ − mv2
F

)
�̂k, (1)
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where we have introduced an electromagnetic vector potential
via π = h̄k + A. The upper (lower) sign refers to the point

K (K ′). The field operator is defined by �̂k = (
âk

b̂k
), where

âk and b̂k are the destruction operators of the Bloch states in
the two sublattices. Concentrating on the K point [upper sign
in Eq. (1)], the eigenvalues and eigenspinors at zero vector
potential A = 0 are given by

E±(k) = μ ±
√

(h̄vF k)2 + (mv2
F

)2
,

|χ±(k)〉 = 1√
2

⎛
⎝

√
1 ± mvF√

(h̄k)2+(mvF )2

±√1 ∓ mvF√
(h̄k)2+(mvF )2

kx+iky

k

⎞
⎠ ,

with k =
√

k2
x + k2

y . The current operator follows from

ĵ q = δĤ0

δ A
= vF

∑
k,α,β

�̂
†
k−q,ασ̂ αβ�̂k,β , (2)

where σ̂ are the Pauli matrices. Equation (2) is, up to vF ,
equal to the pseudospin operator. The electric current can be
connected with the vector potential via the correlation function
χ jμ j ν

, defined by the Kubo product31

χAB(ω) = − i

h̄A

∫ ∞

0
dt〈[Â(t),B̂(0)]〉0e

iωt e−0t .

Our system is rotationally invariant and the current is thus a
linear combination of a purely longitudinal and a transversal
part (q = |q|):

χ jμ j ν
(q,ω) = qμqν

q2
χL

j j (q,ω) +
(

δμν − qμqν

q2

)
χT

j j (q,ω).

For a noninteracting system, χ jμ j ν
(q,ω) is given by

χ jμ jν
(q,ω) = −gv2

F

A
∑

λ1,λ2,k

f (Eλ1 (k)) − f (Eλ2 (k + q))
h̄ω + Eλ1 (k) − Eλ2 (k + q) + i0

×〈χλ1 (k)|σ̂ ν |χλ2 (k + q)〉
× 〈χλ2 (k + q)|σ̂μ|χλ1 (k)〉, (3)

where f (E) is the Fermi function, and g counts orbital and
spin degeneracies (g = 4 in graphene).

The orbital magnetic susceptibility is given by the static
transversal part of χ j j :31

χ̃orb = e2

c2
lim
q→0

χT
j j (q,0)

q2
. (4)

Because of the continuity equation, i∂t ρ̂q = q · ĵ q , the
response to a scalar potential, i.e., the polarization function, is
included in the current-current susceptibility. In graphene, this
leads to the following relation (see Appendix B):15,16

ω2 χρρ(q,ω) = q2χL
j j (q,ω) − 1

h̄A 〈[q · ĵ q, ρ̂−q]〉0. (5)

The second term on the right-hand side was calculated in
Ref. 32 and reads

1

h̄A 〈[q · ĵ q, ρ̂−q]〉 = gq2D

8πh̄2 ,

where D is a cutoff parameter, which is usually chosen to
be of the order of the inverse lattice constant.33 Note that the
commutator is independent of the mass.

For the following, it is essential to distinguish the cases
mv2

F > μ and μ > mv2
F . In the first, intrinsic case, the Fermi

energy lies between the two bands, while in the second,
extrinsic case, the Fermi energy lies either in the conduction
or in the valence band. From here, we will omit the spatial
indices and use the notation χjj ≡ χ jx jx

.

III. RESULTS

We restrict our discussions without loss of generality to
positive frequencies ω, chemical potentials μ, and mass m. All
other cases follow from χ

T/L

jj (q, − ω) = [χT/L

jj (q,ω)]∗ and by
observing that the results only depend on the absolute value of
μ and m2.

A. Intrinsic case

In the intrinsic case, only transitions from the valence
into the conduction band contribute. As described in the last
section, the longitudinal part, i.e., q = q x̂, can be obtained
from (5) and the density response given in Ref. 11. The
longitudinal part was also directly calculated by the authors in
order to check relation (5) for finite m. Because of the similarity
to the transversal case, we restrict details of the calculation,
given in the appendix, to the latter. The results are

Im
{
χ

L/T,int
jj (q,ω)

} = gω

16h̄

√
1 −
(vF q

ω

)2
∓1 (

1 +
(
2mv2

F

)2
h̄2[ω2 − (vF q)2]

)
θ
(
(h̄ω)2 − (h̄vF q)2 − (2mv2

F

)2)
, (6)

Re
{
χ

L,int
jj (q,ω)

} = g
(
D − 2mv2

F

)
8πh̄2 + gmv2

F q2

4πh̄2
(
q2 − ω2/v2

F

) + gω2

8πh̄
√

|(vF q)2 − ω2|

(
1 +

(
2mv2

F

)2
h̄2[ω2 − (vF q)2]

)

×
⎡
⎣θ (vF q − ω) arccos

⎛
⎝ 2mv2

F√(
2mv2

F

)2 + h̄2[(vF q)2 − ω2]

⎞
⎠− θ (ω − vF q) arctanh

(
2mv2

F

h̄
√

ω2 − (vF q)2

)⎤⎦ ,

(7)
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Re
{
χ

T,int
jj (q,ω)

} = g
(
D − 2mv2

F

)
8πh̄2 − g

√
|(vF q)2 − ω2|

8πh̄

(
1 +

(
2mv2

F

)2
h̄2[ω2 − (vF q)2]

)

×
⎡
⎣θ (vF q − ω) arccos

⎛
⎝ 2mv2

F√(
2mv2

F

)2 + h̄2[(vF q)2 − ω2]

⎞
⎠− θ (ω − vF q) arctanh

(
2mv2

F

h̄
√

ω2 − (vF q)2

)⎤⎦ ,

(8)

where θ (x) denotes the Heaviside step function.

B. Extrinsic case

We have two contributions for the extrinsic case. The first
one is the undoped part where only interband transitions

contribute (see above), while the second takes into account
intraband transitions. Like in the intrinsic case, the longitudinal
part is related to the density-density susceptibility via (5):

Im
{
χ

L/T,ext
jj (q,ω)

} = gω

16πh̄

√∣∣∣∣1 −
(vF q

ω

)2
∣∣∣∣
∓1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∓
>

(
2μ+h̄ω

h̄vF q

)
− G∓

>

(
2μ−h̄ω

h̄vF q

)
1A

0 1B

G∓
>

(
2μ+h̄ω

h̄vF q

)
2A

∓G∓
<

(
2μ−h̄ω

h̄vF q

)
2B

0 3A

π

(
1 +

(
2mv2

F

)2
h̄2[ω2−(vF q)]2

)
3B

0 4A

π

(
1 +

(
2mv2

F

)2
h̄2[ω2−(vF q)]2

)
4B

0 5B,

(9)

Re
{
χ

L/T,ext
jj (q,ω)

} = gD

8πh̄2 ± gμω2

2π (h̄vF q)2 ∓ gω

16πh̄

√∣∣∣∣1 −
(vF q

ω

)2
∣∣∣∣
∓1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1A

G∓
>

(
2μ+h̄ω

h̄vF q

)
− G∓

>

(
2μ−h̄ω

h̄vF q

)
1B

±G∓
<

(
2μ−h̄ω

h̄vF q

)
2A

G∓
>

(
2μ+h̄ω

h̄vF q

)
2B

±G∓
<

(
2μ−h̄ω

h̄vF q

)
± G∓

<

(
2μ+h̄ω

h̄vF q

)
3A

G∓
>

(
2μ+h̄ω

h̄vF q

)
− G∓

>

(
−2μ+h̄ω

h̄vF q

)
3B

±G∓
<

(
2μ−h̄ω

h̄vF q

)
∓ G∓

<

(
2μ+h̄ω

h̄vF q

)
4A

G∓
>

(
2μ+h̄ω

h̄vF q

)
+ G∓

>

(
−2μ+h̄ω

h̄vF q

)
4B

G∓
0

(
2μ+h̄ω

h̄vF q

)
− G∓

0

(
2μ−h̄ω

h̄vF q

)
5B.

(10)

Here we used the shorthand notation

G±
< = x

√
x2

0 − x2 ± (2 − x2
0

)
arccos

(
x

x0

)
,

G±
> = x

√
x2 − x2

0 ± (2 − x2
0

)
arccosh

(
x

x0

)
,

G±
0 = x

√
x2 − x2

0 ± (2 − x2
0

)
arcsinh

(
x

|x0|
)

,
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FIG. 1. The different regions related to the imaginary part of the
current-current correlation function for the extrinsic case of mv2

F /μ =
0.9. See Table I for the definitions of 1A–5B.

with x0 =
√√√√1 +

(
2mv2

F

)2
h̄2
[
(vF q)2−ω2

] , and the regions 1A–5B, defined in

Table I and Ref. 11. The chemical potential is defined as
μ =√(h̄vF kF )2 + (mv2

F )2. The above functions are one of the main
results of this work. In the absence of a gap, we recover
previous results.15,16 Figure 1 illustrates the structure of the
regions related to the imaginary part for the specific choice
mv2

F /μ = 0.9.

IV. STATIC LIMIT AND MAGNETIC SUSCEPTIBILITY

In the static limit, the purely real transversal susceptibility
is given by

χ
T,int
jj (q,0) = gD

8πh̄2 − gmv2
F

4πh̄2 − gvF q

8πh̄

[
1 −
(

2mvF

h̄q

)2
]

TABLE I. Definition of the different regions in the q-ω plane
related to the imaginary part of the current-current correlation
function in the extrinsic case, cf. Eq. (9).

1A: h̄ω < μ −
√

(h̄vF )2(q − kF )2 + (mv2
F )2

1B: q < 2kF ∧
√

(h̄vF q)2 + 4(mv2
F )2 < h̄ω

< μ +
√

(h̄vF )2(q − kF )2 + (mv2
F )2

2A: ±μ ∓
√

(h̄vF )2(q − kF )2 + (mv2
F )2 < h̄ω

< −μ +
√

(h̄vF )2(q + kF )2 + (mv2
F )2

2B: μ +
√

(h̄vF )2(q − kF )2 + (mv2
F )2 < h̄ω

< μ +
√

(h̄vF )2(q + kF )2 + (mv2
F )2

3A: h̄ω < −μ +
√

(h̄vF )2(q − kF )2 + (mv2
F )2

3B: h̄ω > μ +
√

(h̄vF )2(q + kF )2 + (mv2
F )2

4A: −μ +
√

(h̄vF )2(q + kF )2 + (mv2
F )2 < h̄ω

< h̄vF q

4B: q > 2kF ∧
√

(h̄vF q)2 + 4(mv2
F )2 < h̄ω

< μ +
√

(h̄vF )2(q − kF )2 + (mv2
F )2

5B: h̄vF q < h̄ω <
√

(h̄vF q)2 + 4(mv2
F )2

× arccos

(
2mvF√

(2mvF )2 + (h̄q)2

)
, (11)

χ
T,ext
jj (q,0) = gD

8πh̄2 − gvF q

8πh̄

⎧⎨
⎩ 2μ

h̄vF q

√
1 −
(

2kF

q

)2

+
[

1 −
(

2mvF

h̄q

)2
]

arccos

(
2μ

h̄vF qx0

)}

× θ (q − 2kF ), (12)

while the longitudinal part vanishes, except for the constant
term in front. Figure 2 shows the function

1

q2
�T (q,0) = 1

q2

[
χT

jj (q,0) − gD

8πh̄2

]

for different values of a ≡ mv2
F /μ.

We now insert the above functions into (4). The intrinsic
part,

χ̃ int
orb = − ge2

12πc2m
, (13)

is finite and diamagnetic. Compared to the gapless case, the
orbital magnetic susceptibility (OMS) is smeared out on a scale
of 1/m. This broadening of χ̃orb also occurs in the presence of
disorder,34 as well as for finite temperature.7 From (12), one
can see that �T,ext (q,0) = 0 for q < 2kF , and thus

χ̃ ext
orb = 0,

which is the same as for ungapped graphene. The same result,
namely,

χ̃orb = − ge2

12πc2m
θ
(
mv2

F − μ
)
, (14)

was obtained earlier by energy considerations.22,23 The limit
m = 0 reproduces previous results:7,15,16

χ̃orb = −ge2v2
F

6πc2
δ (μ) .

The expressions for the magnetization given above are only
valid for the noninteracting system. A simple way to include
many-body effects is via the random-phase approximation.31

The OMS in RPA is given by

χ̃RPA
orb = lim

q→0

1
q2 �

T (q,0)

1 − 2πe2

ε0q
�T (q,0)

= − ge2

12πc2m
θ
(
mv2

F − μ
)
,

where ε0 is the background dielectric constant. One can see
that screening effects do not change the Landau part of the
magnetization. Without a mass gap, the RPA result

χ̃RPA
orb =

[
1 + gπe2

8ε0

]−1

χ̃orb

yields to a renormalization, but the OMS remains infinite
and zero, respectively. The situation changes, however, if one
includes interaction effects in first-order perturbation theory
beyond RPA, leading to paramagnetic behavior in doped
graphene sheets.35
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FIG. 2. (Color online) Static current correlation function for (a) extrinsic [Eq. (12)] and (b) intrinsic [Eq. (11)] graphene for different ratios
a ≡ mv2

F /μ in units of −gvF

2πh̄kF
. Static polarization for (c) extrinsic [Eq. (16)] and (d) intrinsic [Eq. (15)] graphene in units of gμ

2πh̄2v2
F

.

The spin correlation function of a noninteracting system
equals the density-density susceptibility.31 The Pauli contribu-
tion to the magnetization follows from the limit

χ̃P = μ2
B lim

q→0
χSzSz

(q,0),

where μB = eh̄
2m0c

is the Bohr magneton and m0 is the electrons

bare mass. The static polarization reads11

χ int
ρρ (q,0) = gm

4πh̄2 − g
[( 2mvF

h̄

)2 − q2
]

8πh̄vF q

× arccos

(
2mvF√

(2mvF )2 + (h̄q)2

)
, (15)

χ ext
ρρ (q,0)

= gμ

2πh̄2v2
F

⎧⎨
⎩1−1

2

⎡
⎣
√

1−
(

2kF

q

)2

− (h̄vF q)2−(2mv2
F

)2
2h̄vF μ q

× arccos

⎛
⎝ 2μ√

(h̄vF q)2 + (2mv2
F

)2
⎞
⎠
⎤
⎦ θ (q − 2kF )

⎫⎬
⎭ .

(16)

The Pauli part vanishes in the intrinsic case, reflecting the
absence of states on the Fermi surface, while the extrinsic part
is finite:

χ̃P = ge2μ

8πm2
0c

2v2
F

θ
(
μ − mv2

F

)
. (17)

Figure 2 displays the static polarization for different ratios
a = mv2

F /μ. The limit a → 1 reflects the nonrelativistic case.

V. NONRELATIVISTIC LIMIT

A. Magnetic susceptibility

The static transversal correlation function for the 2DEG,31

χ
T,2DEG
jj (q,0) = − gq2

24πm

[
1 −
(

1 − 4k2
F

q2

)3/2

θ (q − 2kF )

]
,

leads to the OMS

χ̃2DEG
orb = − ge2

24πmc2
,

where g is a degeneracy factor. As described in the last section,
the Pauli contribution to the total magnetization is given by the
static polarization function24

χ2DEG
ρρ (q,0) = gm

2πh̄2

⎡
⎣1 − θ (q − 2kF )

√
1 −
(

2kF

q

)2
⎤
⎦ ,

and leads to

χ̃2DEG
P = μ2

B

gm

2πh̄2 = ge2m

8πm2
0c

2
.

Figure 3 displays the function

χ̃2DEG
tot (q,0) = μ2

B χ2DEG
ρρ (q,0) + e2

c2q2
χ

T,2DEG
jj (q,0)

= ge2

12πmc2

⎡
⎣1 − 3

2
θ (q − 2kF )

⎧⎨
⎩
√

1 −
(

2kF

q

)2
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FIG. 3. (Color online) (a) Intraband part of the transversal current correlation function in graphene for different ratios a ≡ mv2
F /μ. (b) Sum

of Pauli and Landau contribution in the 2DEG for the special case m = m0. Both quantities are given in units of ge2

12πc2m
.

− 1

3

[
1 −
(

2kF

q

)2
]3/2
⎫⎬
⎭
⎤
⎦ (18)

for the special case m = m0. Its limit q → 0 determines the
total magnetic susceptibility:

χ̃2DEG
tot = ge2m

8πc2m2
0

[
1 − 1

3

(m0

m

)2
]

m=m0= ge2

12πc2m
. (19)

Expanding the graphene Hamiltonian (1) in the limit
π/mvF  1, and eliminating the lower spinor component,
one finds22

ĤA = π2

2m
+ κ

2 g∗μBB, (20)

where g∗ = 2m0
m

is the effective Lande factor. κ is dependent
on the valley, i.e., κ = −1 for the K point and κ = +1
for K ′. Equation (20) is the well-known Hamiltonian of the
2DEG, including a Zeeman term which changes its sign by
interchanging the two valleys. This Zeeman term, however,
has nothing to do with the splitting of the energy levels due to
the real spin, but is a truly band structure effect. Because of this,
the second part of (20) is denoted as the pseudospin Zeeman
term.22 If we neglect states with negative energies, then the
susceptibility associated with ĤA is that of (18), while the
magnetization is given by (19). At the same time, the OMS of
extrinsic graphene, i.e., for μ > mv2

F , including only intraband
contributions, is given by the paramagnetic term

χ̃ intraband
orb = ge2

12πc2m
, (21)

which means that the OMS of gapped graphene without
hole states reproduces the total susceptibility of the 2DEG,
i.e., the sum of the Pauli and the Landau part. Additionally,
(17) describes the Pauli part due to the real spin. In the

nonrelativistic limit μ ≈ mv2
F + h̄2k2

F

2m
, Eq. (17) reads

χ̃P ≈ ge2m

8πc2m2
0

, (22)

which is just the result of the 2DEG. Note that (22) is true for
extrinsic graphene with and without interband contributions.

B. Friedel oscillations and plasmon dispersion

Because of the divergent first derivative of the Lindhard
correction (i.e., the static polarization) at q = 2kF [see
Fig. 2(c) for a > 0], Friedel oscillations in gapped graphene
behave differently compared to the gapless case, where the
first derivative is finite but the second diverges [see Fig. 2(c)
for a = 0]. The system’s reaction to charged impurities is
described by11

�total(r) = −Q(mvF
2)2

ε0a0μ2

⎡
⎣ (2kF )2(

2kF + 1
a0

)2
⎤
⎦ sin (2kF r)

(2kF r)2
,

and is similar to the induced spin density δm(r), which
describes the interaction between magnetic moments, e.g., due
to magnetic impurities:

δm(r) ∝ −
∫

d 2q

(2π )2
[χρρ(q,0)]eiq·r

= g(mvF
2)2(2kF )2

(2πvF )2h̄μ

sin (2kF r)

(2kF r)2
.

Here, a0 = ε0h̄
2vF

2

ge2μ
is an effective Bohr radius. In both cases,

the nonrelativistic limit reproduces the result of the 2DEG,24

�total(r) ≈ − Q

ε0a0

4k2
F(

2kF + 1
a0

)2 sin (2kF r)

(2kF r)2

and36

δm(r) ∝ gm(2kF )2

(2π )2h̄

sin (2kF r)

(2kF r)2
,

while the massless case yields a different power law,9

�total(r)/δm(r) ∝ sin (2kF r)

(kF r)3
.

The long wavelength limit of the longitudinal susceptibility
determines the dispersion of the collective modes.31 While
plasmons are absent in intrinsic graphene, their dispersion for
the extrinsic case reads11

h̄ωp(q) =
√√√√ge2μ

2ε0

[
1 −
(

mvF
2

μ

)2
]

q.
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In the nonrelativistic limit, this can be approximated as (n =
gkF

2

4π
):

h̄ωp(q) ≈
√

2π (eh̄)2n

mε0
q, (23)

which equals the 2DEG result24 and particularly shows the
same

√
n density dependence in contrast to the n1/4 behavior

of m = 0.10

C. Behavior near the threshold ω = vF q

The longitudinal current correlation function for graphene
without band gap is singular at ω = vF q. This solely results
from the linear dispersion relation. In gapped graphene,
however, the singularity vanishes and the response quantities
discussed in this work are smeared out on a scale of 1/m. This
is in accordance with the Lindhard function of the 2DEG,24

which is not singular at the threshold ω = vF q. However, both
the imaginary and the real part of χ2DEG

ρρ are finite, while
Im{χρρ(q,vF q)} vanishes in graphene [see Eq. (9) for 4A and
5B] and is thus in contrast to the 2DEG result. Furthermore,
the real part at ω = vF q also differs from the result of the
2DEG.

VI. CONCLUSIONS

In this work, we have derived analytical expressions
for the current-current correlation function of graphene for
arbitrary frequencies, wave vectors, and doping, including
a mass term whose sign depends on the sublattice. The

static limit is of particular importance as it determines the
magnetization of the system and the screening of impurities.
The Landau magnetization of graphene without the mass
term is proportional to the δ function with respect to energy.
As we have shown, this changes for finite masses in the
intrinsic case, while the extrinsic result remains zero. The
Pauli part of the susceptibility was found to be finite and
positive for the extrinsic case, and zero for the intrinsic case.
As gapped graphene is formally quite similar to the 2DEG,
we studied the nonrelativistic limit of the magnetization,
the Friedel oscillations, and the plasmon dispersion. We
have demonstrated that all of these quantities, which follow
directly from the transversal or longitudinal current correlation
function, can reproduce the corresponding 2DEG results (e.g.,
the n1/2 density dependence of the plasmon spectra or the
1/r2 decay law of the Friedel oscillations), but with one
particularity, namely, the pseudospin Zeeman coupling.
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APPENDIX A: DETAILS OF THE CALCULATION OF THE
TRANSVERSAL SUSCEPTIBILITY

In this section, we present details of the calculation of the
transversal part of the current-current susceptibility. At zero
temperature, Eq. (3) can be written as χjj (q,ω) = ξ+

μ + ξ−
μ −

ξ−
D , with

ξ±
� (q,ω) = −gv2

F

4π2

∫
d2k

1

2

(
1 ∓ (mvF )2 − h̄2k2(1 − 2 sin2 ϕk) − h̄2qk cos (ϕk + ϕq)

E(k)E(k + q)

)
θ
(
�2 − (mv2

F

)2 − (h̄vF k)2
)

×
(

1

h̄ω ∓ E(k + q) + E(k) + i0
− 1

h̄ω ± E(k + q) − E(k) + i0

)
.

The plus (minus) sign corresponds to λ1 = λ2 (λ1 = −λ2). ϕk is the angle between k and the x̂ axis. For the longitudinal case
(q = q x̂), we obtain cos (ϕk + ϕq) = cos ϕk, whereas the overlap for the transversal part (q = q ŷ) is given by cos (ϕk + π/2) =
− sin ϕk. We now set for brevity h̄ = vF = 1.

A. Imaginary part

We define the expression

I�
στ = − g

8π

�∫
0

d2k

{
1 − σ

m2 − k2(1 − 2 sin2 ϕ) + qk sin ϕ

E(k)E(k + q)

}
δ[τω − E(k) + σE(k + q)]

= −gσ
√

ω2 − q2

16π
θ

(
1 −
∣∣∣∣ω2 − q2 − 2τωE(k)

2qk

∣∣∣∣
) ⎧⎨
⎩

G+
<

(
2
√

k2+m2−τω
q

)
for ω > q,

G+
>

(
2
√

k2+m2−τω
q

)
for q > ω,

where the functions G±
>,< and x0 are defined in Sec. III.
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The imaginary part for intrinsic graphene is given by

Im
{
χ

T,int
jj (q,ω)

} = ID
−− − ID

−+ = g
√

ω2 − q2

16

(
1 + 4m2

ω2 − q2

)
θ (ω2 − q2 − (2m)2).

In the doped case, the upper integration limit is not a cutoff parameter but is the Fermi wave vector, and we thus need a
distinction of cases as to whether k is cut off by kF or not. For this, we define different regions,11 which are given in Table I and
displayed in Fig. 1 in Sec. III. The intraband contribution to the imaginary part reads

Im{δχT,ext
jj (q,ω)} =

∑
σ,τ=±1

τ Iστ = g
√

|ω2 − q2|
16π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G+
>

(
2μ+ω

q

)
− G+

>

(
2μ−ω

q

)
1A

−π
(

1 + 4m2

ω2−q2

)
1B

G+
>

(
2μ+ω

q

)
2A

G+
<

(
2μ−ω

q

)
− π
(

1 + 4m2

ω2−q2

)
2B

0 3A

0 3B

0 4A

0 4B

0 5B.

The addition of the intrinsic part yields the final result given by Eq. (9).

B. Real part

The easiest way to find the real part of the intrinsic susceptibility is by using the Kramers-Kronig relation:

Re{χT,int
jj (q,ω)} = 2

π
P

D∫
0

dx
x Im{χT,int

jj (q,x)}
x2 − ω2

= g

8π
(D − 2m) − g

√
|q2 − ω2|

8π

(
1 + 4m2

ω2 − q2

)

×
[
θ (q − ω) arccos

(
2m√

4m2 + q2 − ω2

)
− θ (ω − q) arctanh

(
2m√

ω2 − q2

)]
.

Note the cutoff-dependent part on the right-hand side. The real part of the extrinsic system is given as follows:

Re{δχT,ext
jj (q,ω)} = − g

4π2

∑
τ=±1

∫
d2k

1

2

{
1 − τ

m2 − k2
(
1 − 2 sin2 ϕ

)+ qk sin ϕ

E(k)E(k + q)

}

×
[

1

ω + E(k) − τE(k + q)
− 1

ω − E(k) + τE(k + q)

]

= −gω2 (μ − m)

2πq2
− g
√

|ω2 − q2|
16π

∑
σ=±1

sign

(
q2 − ω2

2ω
− σE(k)

)

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
G+

<

(
2E(k)+σω

q

)]k2

k1

for q > ω[
G+

>

(
2E(k)+σω

q

)]k2

k1

for ω2 > 4m2 + q2[
G+

0

(
2E(k)+σω

q

)]k2

k1

for q2 < ω2 < 4m2 + q2,

where k1 and k2 are determined by the condition [ q2−ω2−2σωE(k)
2qk

]2 > 1. The intraband part of the susceptibility thus reads
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Re
{
δχ

T,ext
jj (q,ω)

}
= −gω2 (μ − m)

2πq2
+ g
√

|ω2 − q2|
16π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G+
<

(
2m−ω

q

)
+ sign

(
q2−ω2

2ω
− m
)

G+
<

(
2m+ω

q

)
A

sign
(

q2−ω2

2ω
+ m
)

G+
>

(
2m−ω

q

)
− G+

>

(
2m+ω

q

)
1–4 B

G+
0

(
2m−ω

q

)
− G+

0

(
2m+ω

q

)
5B,

+ g
√

|ω2 − q2|
16π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1A

G+
>

(
2μ+ω

q

)
− G+

>

(
2μ−ω

q

)
1B

−G+
<

(
2μ−ω

q

)
2A

G+
>

(
2μ+ω

q

)
2B

−G+
<

(
2μ−ω

q

)
− G+

<

(
2μ+ω

q

)
3A

G+
>

(
2μ+ω

q

)
− G+

>

(
−2μ+ω

q

)
3B

−G+
<

(
2μ−ω

q

)
+ G+

<

(
2μ+ω

q

)
4A

G+
>

(
−2μ+ω

q

)
+ G+

>

(
2μ+ω

q

)
4B

G+
0

(
2μ+ω

q

)
− G+

0

(
2μ−ω

q

)
5B.

Adding the interband part from above yields the final result given by Eq. (10).

APPENDIX B: RELATION BETWEEN CURRENT AND DENSITY CORRELATION FUNCTION

We define the four-current J μ =
(

ρ̂(q,t)
− ĵ (q,t)

)
. The four-current correlator can then be written as

qμχJμJν (q,ω) ≡ − i

h̄A

∫ ∞

0
dteiωt−0t

{〈[
ωρ̂(q,t),J ν(−q,0)

]〉
0 −
〈[

q · ĵ (q,t),J ν(−q,0)
]〉

0

}

= − 1

h̄A

{[
eiωt−0t

〈[
ρ̂(q,t),J ν(−q,0)

]〉
0

]∞
t=0

−
∫ ∞

0
dteiωt−0t

〈[
∂

∂t
ρ̂(q,t) + iq · ĵ (q,t), (1 + i)J ν(−q,0)

]〉
0

}

= 1

h̄A
〈[
ρ̂(q,0),J ν(−q,0)

]〉
0 ,

where in the second line, we used the continuity equation. This results in

qkχ j k j l
(q,ω)ql = ωχρ j k

(q,ω)ql + 1

h̄A
〈[

ρ̂q,q · ĵ−q

]〉
0

= ω2χρρ(q,ω) − 1

h̄A
〈[
ρ̂q,ρ̂−q

]〉
0 + 1

h̄A
〈[

ρ̂q,q · ĵ−q

]〉
0
.

The second term on the right-hand side vanishes,37 while the third term needs special attention.32 For a translational invariant
system, i.e., qkχ j k j l

(q,ω)ql = q2χL
jj , one finally gets Eq. (5). In the nDEG, the last term is exactly canceled by the diamagnetic

contribution, i.e., qμχJμJν = 0, and thus 〈∂μJ μ〉0 = 0. In our Dirac model, gauge invariance is broken because of the cutoff in
the valence band. This can be seen, for example, by limq→0 χL

jj (q,0) �= 0, which is unphysical, as a longitudinal static vector
potential cannot induce a current. As stated in Ref. 16, taking into account the full Brillouin zone leads to the cancellation of the
commutator by a diamagnetic contribution (which is absent in the linearized model) and thus to qμχJμJν qν = 0.
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