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Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems
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We study hybrid-molecule structures consisting of a metal nanoparticle (MNP) nanorod coupled to a
semiconductor quantum dot (SQD). MNP geometry can be used to tailor the local fields that determine the
SQD-MNP coupling and to engineer the hybrid dynamical response. We identify regimes where dark modes
and higher-order multipolar modes can influence hybrid response. Strong local-field coupling via dark modes
changes the interference and self-interaction effects dramatically. External fields do not directly drive this MNP
dark mode, so SQD-MNP coupling is dominated by the local induced self-coupling. By utilizing more complex
structures that provide substantial local-field enhancement, we show the strong SQD-MNP coupling regimes can
be made much more accessible. All of these aspects could enhance the capabilities of metal nanostructures to
provide spatial and spectral control of the optical properties of single emitters.
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I. INTRODUCTION

Hybrid structures consisting of a semiconducting quantum
dot (SQD) and a metal nanoparticle (MNP) have recently be-
come a very active area of research.1–21 Such structures should
allow for the directed nanoscale transmission of information
and excitations. By coupling the plasmonic response of the
MNP to the excitons of the SQD, these structures stimulate
the study of systems at the interface between classical and
quantum physics. Experimental investigations have shown
efficient exciton-plasmon-photon conversion and an enhanced
emission rate with the coupling of a CdSe quantum dot
to a silver nanowire.2,3 When coupled to elongated MNPs,
the photoluminescence intensity of SQDs is enhanced in a
polarization-selective way,4 and when coupled with a nano-
optical Yagi Uda antenna the SQD emission can be made
unidirectional.5 Exciting results have been attained showing
that quantum coherence can survive in plasmonic structures,
such as the transportation of entangled photons by surface
plasmons6 and the energy-time entanglement of a pair of
photons following a photon-plasmon-photon conversion.7

Previous theoretical investigations have mainly focused on
spherical MNPs coupled with a SQD, in the weak-coupling
regime8 and in the strong-coupling regime.9–11 This system
has been explored as a means to make ultrafast tunable
nanoswitches.12 Similar systems have been studied with
multiple metal nanoparticles13 and with dipole-dipole coupling
between two fluorescent molecules mediated by a chain of
silver nanoparticles.14 Plasmon-induced transparency has been
studied in a system consisting of a three-level SQD interacting
with a spherical MNP.15

Theoretical studies have also considered the coupling of
SQDs to elongated MNPs, nanowires, and nanowaveguides,
showing that the radiative rate of the exciton and the non-

radiative energy-transfer rate are tunable by means of the
aspect ratio for an Au nanorod coupled to a SQD.16 The
coupling of two quantum emitters by means of a nanowire has
been studied, showing Dicke subradiance and superradiance,
leading to the possibility of a two-qubit quantum gate,17 and
the entanglement of two qubits coupled by a wedge acting as a
nanowaveguide has been explored.18 Similarly, a single emitter
coupled to a plasmonic cavity19 and a comparative study of
resonance energy transfer for a quantum emitter coupled to a
nanowire, a nanowedge, or a channel20 has been carried out.
Furthermore, the coupling of excitons to dark plasmonic states
of elongated MNPs has been studied.21

The geometry of these hybrid systems determines the nature
of the local fields, which in turn determines the couplings
and the system behavior. Useful devices that will utilize these
structures will require these more complicated geometries. To
consider these more complex MNP structures, for example,
nanorods and nanowires, chains of MNPs, and SQDs at various
positions in the structure, a more complete model for the local
fields needs to be employed than previously has been done
for MNP spheres (i.e., typically using a nonretarded, dipole
approximation for the MNP response). In this paper we will
consider a MNP nanorod coupled to a SQD (see Fig. 1) to
show how local fields can be tailored by MNP geometry both
by enhancing the local fields and by providing additional MNP
modes to control the MNP-SQD coupling that determines the
hybrid response. We will utilize the boundary element method
(BEM) so that we fully account for the local fields of such
complex structures, including retardation and all multipolar
orders.

There are two basic interactions involving the SQD. One
is the coupling due to an applied plane-wave driving field
(both directly with the driving field and from the response
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FIG. 1. (Color online) An applied field polarizes both the MNP
and SQD, which in turn allows them to couple.

of the MNP to the applied plane wave). The second is the
self-interaction of the SQD in which the MNP responds to
the polarization field of the SQD and in turn produces a field
felt back at the SQD. It was shown9,10 that the behavior of
the system is determined by the ratio of these two couplings.
This provides an avenue that can be exploited to engineer
systems (by tuning both the coupling strength and geometry)
to bias the response toward a particular regime of behavior, as
we will discuss here. Previously, these two coupling strengths
were varied by changing the radius of the MNP as well as the
dipole moment of the SQD. However, in practical situations
the SQD dipole moment could be difficult to control. It was
shown9,10 that to reach the strongest-coupling regimes large
and perhaps unreasonable values of the SQD dipole moment
were needed. By utilizing structures with a more complex
geometry that leads to substantial local-field enhancement, we
show how even small values of the SQD dipole moment can be
used to reach the strongest-coupling regimes. In addition, we
identify MNP geometries where dark modes and higher-order
multipolar modes can influence the response of the hybrid
SQD-MNP system. External fields do not directly drive the
MNP dark modes. Thus, at dark mode frequencies, SQD-MNP
coupling is dominated by the local induced coupling, providing
a situation in which the effects of the induced interaction can
be enhanced relative to direct coupling to driving fields.

In Sec. II, we discuss the hybrid molecule in detail.
The MNP is taken as a classical dielectric with a response
calculated with the BEM. Upon finding the resultant fields
acting on the SQD, we use a density-matrix approach to treat
the SQD. Once the behavior of the SQD is found, we then
use that information to calculate the local near fields in the
immediate vicinity of our hybrid molecule. We also calculate
the energy absorption of the MNP and provide details on how
numerical calculations were carried out. In Sec. III, we show
how the MNP local fields can be usefully engineered by the
MNP geometry. We use full electrodynamical calculations to
describe the MNP response. We first highlight the conditions
where it is necessary to go beyond the nonretarded multipolar-
dipolar limits, even for spherical particles. We then study the
local-field response of a hybrid molecule made from a metal
nanorod, stressing the local-field enhancement that can be

achieved and the additional modes that can be exploited. In
Sec. IV we discuss how coupling the SQD to a nanorod allows
the system to be engineered toward a particular dynamical
response. Here we exploit coupling to the dark states of the
nanorod to investigate the enhancement of the self-interaction
of the SQD. Finally, we present our conclusions in Sec. V.

II. HYBRID MOLECULE

We consider hybrid molecules consisting of a spherical
SQD, radius r , interacting with a MNP structure which has
cylindrical symmetry about the axis joining the SQD and the
MNP structure. The MNP structure could be a nanorod or a
nanosphere, as considered in Refs. 8–10, or a linear chain of
those. In this paper we will consider the MNP to be a nanorod,
constructed as a cylinder with semispherical ends, with a total
length L and width w (see Fig. 1). The SQD and MNP are
separated by a distance R. The entire system is subject to
an applied electric field E = E0 cos(ωt). We treat the SQD
quantum mechanically in the density-matrix formalism with
exciton energy h̄ω0, dipole moment μ, and dielectric constant
εS . In the dipole limit only the three bright excitons (one for
each optical axis) participate in the interaction. By choosing
the direction of the applied field to be either perpendicular or
parallel to the axis of our system, we, in turn, only excite one of
the three excitons. Dark excitons do contribute to the exciton
lifetime, however.

The optical response of the MNP is calculated by means
of the boundary element method in a full electromagnetic
calculation, including retardation. Retardation must be in-
cluded because we consider structures with lengths that can
be comparable to the wavelength of incident light. In the
BEM, Maxwell’s equations for inhomogeneous media with
sharp boundaries are solved in terms of charges and currents
distributed on the surfaces and interfaces. Boundary conditions
are imposed via surface integrals along the boundaries between
different media. Each region is characterized by a local di-
electric function. The external fields interact self-consistently
with the induced boundary charges and currents, which are
determined by discretizing the surface integrals and solving the
appropriate matrix equations. In this approach, the scattered
field due to an incident external field is calculated directly. We
calculate, in this way, both the near and far fields for a given
MNP from both a plane-wave source as well as from a dipole
source (the SQD). In handling the dipole source, we take an
adiabatic approach and do not include the time dependence of
the dipole moment in Maxwell’s equations.

The Hamiltonian for the two-level SQD, HSQD, is

HSQD = h̄ω0â
†â − μESQD(â + â†), (1)

where â and â† are the atomic, two-level operators representing
exciton creation and annihilation (corresponding to the z

direction with the applied field parallel to the molecule).
ESQD is the total electric field felt by the SQD and consists
of the applied external field E and the induced internal
field, produced by the polarization of the MNP. The MNP
is polarized by the applied plane wave, and we denote the
response field as Eplane wave. The MNP is also polarized by
the dipole field produced by the SQD, and this response field
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we denote Edipole. Taking into account screening, we can then
write ESQD as

ESQD = 1

εeffS
(E + Eplane wave + Edipole), (2)

where εeffS = 2εB+εS

3εB
. εB is a background dielectric constant

which would correspond to the medium in which the system
is embedded. Writing the applied field as E = E0 cos(ωt) =
E0
2 e−iωt + E0

2 eiωt and the response from the MNP due to a unit
plane wave with positive frequency, at the location of the SQD,
as Ep (which will be calculated using the BEM and in general
depends on R, L, and w), then

Eplane wave = E0

2
Epe−iωt + E0

2
E∗

peiωt .

We make use of the density matrix ρ to calculate the
polarization of the SQD. We label the ground state of our
SQD (no exciton) as level 1 and the excited state (one exciton)
we label as level 2. We then have for the polarization, PSQD =
μ(ρ12 + ρ21) (see Ref. 22). Factoring out the high-frequency
time dependence of the off-diagonal terms of the density
matrix, we define

ρ12 = ρ̃12e
iωt ρ21 = ρ̃21e

−iωt . (3)

We write the response of the MNP due to a dipole source with
positive frequency at the location of the SQD as Ed (which
again will be calculated using the BEM and in general depends
on R, L, and w). Taking into account the screening at the
dipole, we then have

Edipole = μ

εeffS
ρ̃21Ede

−iωt + μ

εeffS
ρ̃12E

∗
de

iωt .

Putting these expressions for Eplane wave and Edipole into Eq. (2),
as well as writing out the applied field explicitly, we have

ESQD = 1

εeffS

(
E0

2
(1 + Ep) + μ

εeffS
ρ̃21Ed

)
e−iωt + H.c..

(4)

In order to write this in a more familiar form8–10 we then make
the following definitions:

G = μ2

h̄ε2
effS

Ed, � = μE0

2h̄εeffS
(1 + Ep).

G arises when the applied field polarizes the SQD, which
in turn polarizes the MNP and then produces a field to
interact with the SQD. Thus, this can be thought of as the
self-interaction of the SQD because this coupling to the SQD
depends on the polarization of the SQD. The first term in �

is just the direct coupling to the applied field and the second
term is the field from the MNP that is induced by the applied
field. We can now write the field acting on the SQD as

ESQD = h̄

μ
{(� + Gρ̃21)e−iωt + (�∗ + G∗ρ̃12)eiωt }. (5)

We solve the master equation

ρ̇ = i

h̄
[ρ,HSQD] − �(ρ), (6)

where �(ρ) is the relaxation matrix with entries �11 =
ρ11−1

τ0
, �12 = �∗

21 = ρ12

T20
, and �22 = ρ22

τ0
. The relaxation time

τ0 contains a contribution from nonradiative decay to dark
states. Separating real and imaginary parts, we now write the
density-matrix elements as

ρ̃12 = A + iB, ρ̃21 = A − iB, � = ρ11 − ρ22,

where � is the population difference between the excited
and ground states. To solve (6), we make the rotating
wave approximation. When changing the Hamiltonian to the
interaction picture we keep terms that oscillate as ei(ω−ω0)t and
neglect terms that oscillate as ei(ω+ω0)t . Making use of our
definitions and the rotating wave approximation, we come to
the set of coupled differential equations,

Ȧ = − A

T20
+ (ω − ω0)B − (�I + GIA − GRB)�,

Ḃ = − B

T20
− (ω − ω0)A − (�R + GRA + GIB)�,

�̇ = 1 − �

τ0
+ 4�IA + 4�RB + 4GI (A2 + B2), (7)

where GR , GI , �R , and �I are the real and imaginary parts
of G and �, respectively.

In the steady-state limit we set the left-hand side of (7)
to zero. Due to the nonlinear nature of these equations, more
than one steady-state solution can exist for certain values of
the parameters. In these regions we must solve the full set
of dynamical equations (7), allowing them to evolve from
the initial conditions for times on the order of 10 ns to reach
the steady state. This allows us to identify the dependence of
the steady state on the starting conditions. Except where noted,
evolution for 10 ns was sufficient to reach steady state in the
cases we considered.

A. System energy

The rate at which energy is absorbed by our system consists
of two parts, QSQD and QMNP. The SQD absorbs energy by
the creation of an exciton followed by a nonradiative decay.
The rate is just QSQD = h̄ω0ρ22/τ0. To calculate the energy
absorbed by the MNP, we take the time average of the volume
integral,

∫
j · E dv, where j is the local current density. To

calculate the fields inside the MNP we again employ the BEM.
We denote the field inside the MNP due to the dipole field of
the SQD as E

(inside)
dipole . This field includes the field due to the

polarization induced in the MNP as well as the dipole field of
the SQD. Similarly, we denote the field inside the MNP due
to the applied plane wave as E

(inside)
plane wave, and this field includes

the field due to the polarization induced in the MNP as well
as the applied field. These fields with positive frequency can
be determined once Ei

d (the field inside the MNP due to a unit
dipole with positive frequency at the SQD) and Ei

p (the field
inside the MNP due to a unit incident plane wave with positive
frequency) are known. We write

E
(inside)
dipole = μ

εeffS
ρ̃21E

i
de

−iωt + μ

εeffS
ρ̃12

(
Ei

d

)∗
eiωt ,

E
(inside)
plane wave = E0

2
Ei

pe−iωt + E0

2

(
Ei

p

)∗
eiωt ,

in a notation similar to what we have previously employed.
We note that Ei

p and Ei
d both depend on R, L, w, and the
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position in space at which the field is calculated. Thus the field
inside the MNP is just the sum of these two fields. In order to
calculate the current inside the MNP, we take the curl of the
magnetic field to be zero and use j = −εm(ω) ∂E

∂t
. Because we

are assuming that we have factored out the fast varying part of
the density matrix in (3), we take the time derivatives of ρ̃12

and ρ̃21 to be zero, and we then have for the local current j ,

j = iω

{
εm(ω)

(
E0

2
Ei

p + μ

εeffS
ρ̃21E

i
d

)
e−iωt

− εm(ω)∗
(

E0

2

(
Ei

p

)∗ + μ

εeffS
ρ̃12

(
Ei

d

)∗
)

eiωt

}
.

We can now calculate j · E,

j · E = iω

{
εm(ω)

(
E0

2
Ei

p + μ

εeffS
ρ̃21E

i
d

)2

e−2iωt

+ εm(ω)∗
(

E0

2

(
Ei

p

)∗ + μ

εeffS
ρ̃12

(
Ei

d

)∗
)2

e2iωt

+ 2i Im[εm(ω)]

∣∣∣∣E0

2

(
Ei

p

) + μ

εeffS
ρ̃12

(
Ei

d

)∣∣∣∣2
}

.

Taking the time average of this result over the period of fast
oscillation and integrating over the volume of the MNP yields
QMNP,

QMNP = 2ω Im[εm(ω)∗]
∫ ∣∣∣∣E0

2

(
Ei

p

) + μ

εeffS
ρ̃21

(
Ei

d

)∣∣∣∣2

dv.

We calculate this integral numerically using the BEM to find
(Ei

p) and (Ei
d ) and Eq. (7) to find ρ̃21 in the steady-state limit.

B. Numerical calculations in the large field limit

In this paper we take our MNP to have cylindrical symmetry
about the z axis and we take the dielectric constant of the
background to be εB = ε0. We model the MNP as a cylinder
with hemispherical ends, with total length L and total width
w (see Fig. 1). Thus, in the case of L = w, we have a sphere
of radius w/2. The SQD is placed on the positive z axis a
distance R from the center of the MNP. We consider the large
field limit as defined in Ref. 8 (intensity of 103 W/cm2) and
we take the polarization of the applied electric field parallel to
the axis of our SQD-MNP molecule (the ẑ direction) with the
propagation along the x̂ direction. We take εm(ω) as the bulk
dielectric constant of gold as found experimentally.23

For the SQD, we take the relaxation times to be τ0 = 0.87 ns
and T20 = 0.3 ns, and we take εS = 6ε0. For the the exciton
resonant frequency we take it to be in the range of 1–4 eV in
order to exploit potentially matching this with the plasmon
resonances of the nanorods we will study. However, the
size, shape, and material of the SQD strongly determine
both the exciton energy level and its dipole moment. In this
paper, we consider the simplest model and ignore this size
dependence. While this is clearly an oversimplification, it
allows us to identify the range of optical signatures which
are possible in this limit. Recent measurements of SQD dipole
moments have yielded values of ≈1 e nm for self-assemble
QDs24 and several times that for interface fluctuation QDs.25

For the dipole moments of the SQDs, we let them vary between

0.25 and 1.0 e nm, corresponding to a SQD size of 2–10 nm.
For the purposes of this investigation, this range is a reasonable
coverage of the observed values that allows us to test the full
spectrum of behavior.

III. ENGINEERED LOCAL FIELDS AND COUPLINGS

We use full electrodynamical calculations to describe
systems with complicated geometry. We do this in part
because such approaches are straightforward to implement,
as compared to multipolar expansion, for example, for these
structures. This allows us to study any shape of MNP we
choose. Additionally, one can study the effects of placing the
SQD off the symmetry axis. Moreover, the multipole expan-
sion only has a simple form in the cases that the applied field
is perpendicular or parallel to the molecular axis. Moreover,
the simpler nonretarded multipolar or dipolar approaches are
not always adequate, even for spherical particles, where they
are usually applied. In Sec. III A, we discuss the limits of
the nonretarded approaches. In Sec. III B, we show how local
fields can be tuned by MNP geometry.

A. Comparison between a full electrodynamical calculation and
a nonretarded multipole expansion for spherical MNPs

Previously, calculations have been done on a system
consisting of a SQD interacting with a spherical MNP in
the dipole limit8–10 as well as in the multipole limit,11 both
of which are nonretarded approaches. In the dipole limit, the
ratio of MNP radius a to MNP-SQD separation R should
be small [as the multipole expansion is a power series in
( a
R

)2]. For a = 7 nm, R = 13 nm, the first-order correction is
nearly 30%.

It was shown11 that for a = 15 nm, R = 20 nm, the sum of
the first ten terms of the multipole expansion of the coupling
strength between the MNP and SQD is almost seven times
greater than that given by only the first term in the series (the
dipole limit). The most interesting hybrid molecules are those
with strong coupling. One manner of increasing the coupling
strength between the MNP and SQD is to place the SQD very
close to the MNP, and thus the correction due to higher-order
multipole terms will be important in the systems we most wish
to study.

In order to compare the results obtained using the BEM
with those given by the multipole expansion, we compare the
values of G given by the two methods, because there is no
multipolar correction to the response due to the applied plane
wave. In the multipole limit, G is given by the expression11

G =
∞∑

n=1

snγna
2n+1μ2

4πεBh̄ε2
effSR

2n+4
, (8)

where

γn = εm(ω) − εB

εm(ω) + n+1
n

εB

,

and sn = (n + 1)2 or P ′
n(1) for polarization parallel or perpen-

dicular to the z axis and P ′
n is the first derivative of the Legendre

function. When we take only the term with n = 1, we recover
the dipole approximation. In order to calculate the fields in the
multipole expansion for systems where the total separation is
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FIG. 2. The real and imaginary parts of G with R = 60 nm and
a = 40 nm, shown for both a full electrodynamical calculation using
the boundary element method (labeled as BEM) and a nonretarded
multipole expansion (labeled Multipole). In this case we see an
enhancement in the imaginary part of G, and a slight enhancement
and redshift of the peak in the real part of G.

very nearly equal to the radius of the MNP (R ≈ a), as many
as 500 terms were needed for convergence of (8).

For a spherical MNP with R = 60 nm and a = 40 nm, we
see an enhancement in the imaginary part of G of nearly a
factor of 2. We also see a slight enhancement of ≈25% and
a redshift on the order of 0.1 eV in the peak of the real part
of G (see Fig. 2). When this calculation is carried out over
a large subset of MNP sizes and separation, we see that this
enhancement increases as the MNP radius is increased for fixed
separation up to a MNP radius of ∼50 nm (except in the most
extreme cases of very small separation) or if the separation is
increased for fixed MNP radius (see Fig. 3). However, as the
separation between the SQD and the surface of MNP becomes
small (R ≈ a), the calculations from the boundary element
method and the multipole expansion yield the same results.

FIG. 3. (Color online) Ratio of the magnitude of G as calculated
with a full electrodynamical calculation using the BEM to that of
the multipole expansion at a frequency of 2.5 eV, which is near
the plasmon resonance for an Au sphere. The value given by the
BEM increases in relation to that of the multipole as the MNP radius
is increased for fixed separation up to a MNP radius of ∼50 nm
(except in the most extreme cases of very small separation) or if the
separation is increased for fixed MNP radius.

We do, however, note that in these extreme cases, as many
as 500 terms of the expansion were needed for the sum to
converge.

To understand these results, it is beneficial to think in terms
of the image charges induced in the MNP by the SQD rather
than the self-interaction. The image charges induced in the
MNP should arise from the polarization of the dipole mode of
the MNP, with image charges at both ends of the MNP, one
nearest to the SQD and one at the furthest point. In the retarded
limit, these two image charges can be out of phase with each
other owing to their spatial separation. For very small surface-
to-surface separation, the SQD is very near to the closer image
charge, with much stronger coupling to that image charge,
and much weaker coupling to the charge at the other end. In
this case, any phase difference is unimportant and the retarded
and nonretarded limits are the same, as seen on the near edge
of Fig. 3. However, as the SQD and MNP are separated, the
effect of the image charge on the backside of the MNP also
becomes significant, screening the effect of the image charge
nearest to the SQD. In the retarded limit, when there is a phase
difference between these two image charges, the screening
is less effective and thus a full electrodynamical calculation
yields a larger value of the field than the nonretarded limit.

B. From spheres to rods

When we replace the spherical MNP with a nanorod, the
effect on coupling can be quite dramatic (see Fig. 4). Holding
the width of the nanorod fixed at 14 nm, as we move from a
rod of length 14 nm (which is a 7-nm radius sphere) to a rod of
length 150 nm, we see an enhancement in the value of �R of
approximately an order of magnitude, and of �I of nearly 25
times at the peak value (see Fig. 4). Whereas the peak values of
G remain relatively unchanged, we do see higher-order modes
appear in the spectrum. At L = 150 nm a total of four peaks
have appeared in G, whereas there are only two in �. We
also note a redshift in the principle plasmon peak for both G

and �.
As was shown previously,10 the ratios of the various

components of G and � are key in determining the behavior
of the SQD-MNP molecule. The more complicated spectrum
provided by a rod yields a much broader range of system
behavior. The enhancement provided by a rod also allows for
the regimes of strongest coupling to be more easily accessed
experimentally.

1. Coupling to dark states versus bright states

As we increase the length of the nanorod, higher-order
modes appear in the response. Even order dipole-forbidden
modes, however, do not appear in the response to a plane-wave
source (�), due to symmetry considerations, but they do appear
in the response to a dipole source (G). Such states are called
dark states. Thus for an L = 150 nm nanorod, there are a total
of four peaks that have appeared in G, whereas there are only
two in �. The two additional peaks in G are thus dark.

For a 70-nm rod, we see that both G and � are peaked at
∼1.6 eV. However, we also see a strong response in G between
2 and 2.5 eV, whereas there is no appreciable response in
� over that range of frequencies (see Fig. 5). Thus, at this
frequency, the SQD will only couple directly to the applied
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FIG. 4. The real and imaginary components of G and � for
various values of the rod length. The width of the nanorod was fixed
at 14 nm, thus the L = 14 nm setup is that of a 7-nm radius sphere.
� shows a redshift as well as an enhancement in the response as the
length is increased. G shows a redshift as well as the appearance
of higher-order modes. At L = 150 nm a total of four peaks have
appeared in G, whereas there are only two in �.

field. However, the MNP is not polarized by the applied field,
so the only coupling between the SQD and the MNP is via the
self-interaction (G). Coupling to these dark states will then
allow us to study more closely the self-interaction of the SQD
(which is controlled by G).

To better illustrate what occurs here, we next consider the
near field response (time average of the squared magnitude of
the electric field) of the nanorod to a plane wave and dipole
source, respectively. We place the dipole source 5 nm above
the tip of the rod with a dipole moment of 1 e nm. The coupling
to a plane-wave source in this situation can be a full order of
magnitude smaller for a dark state as compared to that of a
bright state (see Fig. 6). Whereas the bright state has regions
of large electric field in the vicinity of each end of the rod
(over 20 times that of the applied field), the dark state only has
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FIG. 5. Response of a 70-nm nanorod. Both G and � are peaked
near 1.6 eV. However, we also see a strong response in G between 2
and 2.5 eV, whereas there is no appreciable response in � over that
range of frequencies. The peak near 2.2 eV in the real part of G is
evidently a “dark” mode.

a slight increase in field strength near the rod (about twice that
of the applied field). However, the response to the dipole only
shows a drop of approximately a factor of 2, when comparing
the response of the bright state to that of the dark state.

IV. ENGINEERED SYSTEM RESPONSE

Once the values of G and � are obtained, the differential
equations for the SQD evolution [Eq. (7)] can be solved either
dynamically, or in the steady-state limit. Once the density
matrix is obtained, those results can then be used to calculate
the SQD polarization, and from that the total electric field at
any location in space, for any particular value of the applied
plane-wave frequency. Furthermore, these local fields can be
calculated at any instance of the system evolution.

A. Dynamics of a 70-nm nanorod

Previously9,10 we have shown that by varying the SQD
dipole moment and the radius of a spherical MNP, a large
variety of system behavior is achievable. However, to reach
the regimes of strongest coupling, relatively large values of the
SQD dipole moment were needed, μ > 3 e nm.10 Such large
values of the SQD dipole moment might not be experimentally
possible due to the limit imposed by the SQD size and the
relationship of SQD size to the exciton resonance. We will
show for a nanorod, rather than a spherical MNP, that the large
local response of the rod makes the strong-coupling regime
accessible for smaller SQD dipole moments that are much
more experimentally viable.

Here we illustrate a paradigm for designing systems biased
toward specific behavior with the example of a 70-nm length
nanorod with a total width of 14 nm. We fix the SQD dipole
moment at μ = 0.5 e nm. We have shown previously10 that
suppression in the response of the SQD is controlled by the
ratio of G/� and bistability in the system is turned on by
the ratio GI/�. We thus use the values of these two ratios
to predict system behavior at a given frequency. As shown in
Fig. 7, for a 70-nm nanorod, these two ratios can take on a
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FIG. 6. Time average of the squared magnitude of the electric
field of a 70-nm nanorod with a plane wave and dipole source. The
dipole source was placed 5 nm above the tip of the rod with a dipole
moment of 1 e nm. (top) For the bright mode at 1.6 eV, there are
hot spots in excess of 20 times the applied electric field for both
the dipole and plane wave. (bottom) The dark mode at 2.2 eV has a
response to the dipole source (in excess of ten times that of reference
field), however, the rod shows nearly no response to the plane-wave
source.

larger range of values compared to those of a spherical MNP.
In particular, the minimum of the ratio of the self-interaction
to the coupling to the applied field, G/�, is nearly a order of
magnitude smaller (9 to 1) for the nanorod, while its maximum
is ∼40% larger.

1. Primary plasmonic peak (bright state)

As shown in Fig. 6, the bright state exhibits a large response
in the MNP due to the dipole of the SQD as well as to the
plane wave. When the response of the nanorod is compared
to that of a sphere, � is much larger than for a sphere (see
Fig. 4). This enhancement of the local fields at the tips of the
nanorod is simply due to a lightning rod effect. On the other
hand, the differences in G between a nanorod and sphere are

0
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FIG. 7. The ratio of |G|/|�| and GI/|�| shown for a 70-nm-long,
14-nm-wide nanorod (solid line) and a 7-nm radius spherical MNP
(dashed line), with μ = 1.0 e nm. These two ratios play a large role
in determining the system behavior.

small as compared to those in �. Thus, for the bright state,
we expect the SQD to couple more to the plane wave than
the self-interaction, and, due to the local-field enhancement,
to exhibit characteristics of much stronger applied field (such
as increased width of the response).

When we take the exciton resonance to coincide with the
bright plasmon peak (≈1.6 eV), we see a very broad response
in the SQD (see Fig. 8), as well as a broad Fano-like line shape
in the absorption of the MNP, despite a rather modest value of
the SQD dipole moment (μ = 0.5 e nm). When we compare
this to a system consisting of a spherical MNP and a similarly
sized SQD, the width of the population difference � is a full
order of magnitude larger for a nanorod of this length (1 meV
as compared to 0.1 meV). This is due to the much stronger
local near fields in the vicinity of the MNP incident on the
SQD. This enhancement is due the increased response of the
nanorod to a plane wave in comparison to that of a sphere.
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FIG. 8. Bright state, with an exciton energy level at 1.6 eV, L =
70 nm, w = 14 nm, μ = 0.5 e nm. Absorption rate of the MNP,
QMNP, population difference �, and the real part of the SQD dipole
moment A all show a very strong and broad response of the system.
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FIG. 9. Dark state, with an exciton energy level at 2.2 eV, L =
70 nm, w = 14 nm, μ = 0.5 e nm. Absorption rate of the MNP, QMNP,
and the real part of the SQD dipole moment A both show a bistability
in the system. The population difference � shows a discontinuity and
strong suppression in the excitation of the SQD.

2. Dark state

As shown in Fig. 6, the dark state is characterized by a large
response in the MNP due to the dipole of the SQD, but with
little response to the plane wave. When we choose our exciton
resonance to coincide with the frequency of the dark state,
we see that the SQD responds strongly to the self-interaction.
Because the suppression regime as well as the bistable regime
are controlled by the self-interaction strength relative to the
coupling to the applied plane wave, both regimes of behavior
are very easy to reach in this case.

With a SQD dipole moment of only μ = 0.5 e nm, we see
very strong suppression in the SQD response as well as the
beginnings of bistability (see Fig. 9), whereas with a spherical
MNP with radius 7 nm we would need a SQD with a dipole
moment of μ = 3 e nm to elicit a similar response.10

Comparing the response of the dark state to that of the bright
state, we see that the MNP absorption is an order of magnitude
greater for the bright state. For both the bright and dark
states we have a Fano resonance in QMNP, which, according
to our previous investigations, indicated the weakest level of
coupling between the MNP and SQD. However, suppression
and bistability of the SQD response evident in Fig. 9 would
indicate the strongest-coupling regime. Thus, we see that these
different types of hybrid behavior can coexist.

B. Exciton-induced transparency

For a spherical MNP in the dipole limit, the appearance of
an exciton-induced transparency (EXIT) is determined by the
relation

μ(a) � −2πεBεeffSR
3E0

sαA
, (9)

as shown in Ref. 9, which defines when the field from the
SQD cancels the applied field inside the MNP. Note that
this approximation assumes that the field inside the MNP is
constant and equal to the value at the center of the MNP. It is
then worth showing that this feature does in fact survive when
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FIG. 10. (Color online) (Top) Near field of a 5-nm radius
spherical MNP interacting with a SQD located 10 nm away from
center for three values of applied frequency. Shown in color is the z

component of the electric field. The first plot shows a strong dipole
field from the SQD, in phase with the applied field that penetrates
the MNP to a depth of ≈2 nm. The middle plot show the system at
resonance and the appearance of the exciton-induced transparency in
the MNP. The third plot shows a strong dipole field from the SQD,
now out of phase with the applied field, that again penetrates the
MNP to a depth of ≈1 nm. (Bottom) QMNP is shown for the three
frequencies featured above.

a more thorough calculation is performed for a MNP sphere
utilizing a full electrodynamical calculation using the BEM.

For a spherical MNP with a = 7 nm coupled to a SQD with
a dipole moment of μ = 1 e nm, we plot the z component
of the electric field (see Fig. 10). When the system is below
resonance, we see a large response from the SQD as its dipole
moment is very large and in phase with the applied field.
We also see the dipole field extend into the MNP to a depth
of ≈2 nm. At resonance, as the off-diagonal density-matrix
elements are nearly zero, the SQD dipole moment is much
smaller, and we see a weaker dipole moment in the SQD.
Also, the interference inside the MNP now causes a near
cancellation of the field inside the MNP and we see an exciton-
induced transparency as we have previously predicted.9 Above
resonance, the dipole field of the SQD is once again strong,
but is now out of phase with the applied field.

For nanorods, the appearance of EXIT is problematic. From
the relation describing the appearance of EXIT [Eq. (9)], we
expect that, with the large center-to-center separation inherent
when using a nanorod as the MNP, EXIT will be attainable
only for extremely large values of the SQD dipole moment.
Also, the spatial variation of the field over a nanorod MNP
is not properly accounted for in the dipole limit (which was
used to generate this relation). When we performed the full
calculations, we find that EXIT is very difficult to produce in
a system with a nanorod. The spatial variation of the dipole
field (from the SQD), over the length of a nanorod, can no
longer cancel out the constant applied field inside the MNP.
The absorption still has a Fano-like line shape, but now the
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magnitude of the interference is too small in comparison to
the applied field in order to produce a transparency.

V. CONCLUDING REMARKS

We have studied hybrid molecule structures made from a
metal nanoparticle nanorod and a quantum dot to show how
MNP geometry can be used to tailor local fields, coupling, and
dynamics of these hybrid structures. We have employed a full
electrodynamical calculations of the near fields for MNP-SQD
hybrid molecules based on the boundary element method.
The method allows for tackling more complex geometries
with a full description of the retarded multipolar optical
response. Calculations performed on systems consisting of

a SQD and a nanorod MNP have shown that a broad range
of system behavior can be reached experimentally much more
easily than previously thought. In particular, we find that the
response of the system could be tailored by engineering a
metal nanoparticle shape and the placement of SQDs on the
MNP to control the individual local near fields that couple the
MNPs and SQDs. We identify regimes where dark modes
can influence hybrid response. Strong local-field coupling
via dark modes changes the interference and self-interaction
effects dramatically. External fields do not directly drive this
MNP dark mode, so SQD-MNP coupling is dominated by the
local induced coupling. All of these aspects could enhance
the capabilities of metal nanostructures to provide spatial and
spectral control of the optical properties of single emitters.
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20Diego Martı́Ìn-Cano, Luis Martı́n-Moreno, Francisco J. Garcı́a-
Vidal, and Esteban Moreno, Nano Lett. 10, 3129 (2010).

21M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton,
Phys. Rev. Lett. 102, 107401 (2009).

22A. Yariv, Quantum Electronics (Wiley, New York, 1975).
23P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
24K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman,

Appl. Phys. Lett. 82, 4552 (2003).
25T. H. Stievater, Xiaoqin Li, D. G. Steel, D. Gammon, D. S. Katzer,

D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87,
133603 (2001).

235406-9

http://dx.doi.org/10.1021/nl071729
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1103/PhysRevLett.99.136802
http://dx.doi.org/10.1021/nl061494m
http://dx.doi.org/10.1021/nl061494m
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1038/nature00869
http://dx.doi.org/10.1038/nature00869
http://dx.doi.org/10.1103/PhysRevLett.94.110501
http://dx.doi.org/10.1103/PhysRevLett.97.146804
http://dx.doi.org/10.1103/PhysRevLett.97.146804
http://dx.doi.org/10.1021/nl800921z
http://dx.doi.org/10.1021/nl800921z
http://dx.doi.org/10.1103/PhysRevB.82.195419
http://dx.doi.org/10.1103/PhysRevB.82.195419
http://dx.doi.org/10.1103/PhysRevB.77.165301
http://dx.doi.org/10.1088/0957-4484/21/35/355501
http://dx.doi.org/10.1021/nl0602140
http://dx.doi.org/10.1364/JOSAA.24.003427
http://dx.doi.org/10.1364/JOSAA.24.003427
http://dx.doi.org/10.1088/0957-4484/20/36/365401
http://dx.doi.org/10.1088/0957-4484/20/36/365401
http://dx.doi.org/10.1364/OL.32.002125
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevLett.106.020501
http://dx.doi.org/10.1103/PhysRevLett.106.020501
http://dx.doi.org/10.1103/PhysRevLett.104.026802
http://dx.doi.org/10.1103/PhysRevLett.104.026802
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1103/PhysRevLett.102.107401
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1063/1.1584514
http://dx.doi.org/10.1103/PhysRevLett.87.133603
http://dx.doi.org/10.1103/PhysRevLett.87.133603

