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Plasmon mechanism of the trion emission band broadening in quantum wells
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The effects of charge-density fluctuations on negative trion states in a quantum well are considered for the
case of intermediate doping by electrons at zero magnetic field. The quasi-two-dimensionality of the system
and the trion-plasmon interaction are taken into account in the framework of the random-phase approximation.
It is shown that the trion luminescence band has a complex structure consisting of a zero-plasmon line and a
trion-plasmon wing. The structure is interpreted as a result of spatial inhomogeneity of the quantum wells.
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I. INTRODUCTION

Trions, or negatively charged excitons, play an important
role in determining the emission spectra of quantum wells
(QW’s) doped with electrons. A great number of spectroscopic
studies of trions have been reported.1–11 However, until now
there has been no explanation of the form of the trion
photoluminescence (PL) spectrum in the situation in which
the exciton binding energy dominates the Fermi energy of the
background electron gas EF while the trion binding energy
remains less than EF . In particular, the shape of the trion
luminescence band and the microscopic mechanism of its
broadening, which is often larger than the trion’s binding
energy in the QW, have not been studied.

Experimental investigations of the trion band shape
were performed for luminescence spectra observed in
CdTe/CdMgTe quantum wells at low temperatures.2,3,6,8–10

The relatively large trion and exciton binding energies in these
wells enable us to investigate the trion’s spectral characteristics
in a wide interval of free-carrier concentration.

The photoluminescence spectrum of the trion in
CdTe/CdMgTe quantum wells at low electron density is rep-
resented by a relatively narrow inhomogeneously broadened
line. The Stokes shift with respect to the line observed in the
absorption spectrum is on the order of 1 meV. An increase in
the electron concentration leads to the transformation of both
photoluminescence and absorption spectra. We consider the
PL spectrum, which is represented in this case by a wide band.
The characteristic feature of this band is the clearly visible
trace of the sharp peak at the high-energy side of the band,
the energy position of which does not depend on the electron
concentration and coincides with the trion’s line in the limit
of low electron density. The latter circumstance allows us to
consider the PL band as a result of the trion emission rather than
the band-to-band recombination with a Fermi edge singularity.
An effect of charged trion formation is polarization of free
electrons. This can be described as an infinite succession of
the scattering processes of the trion from electron-hole pairs
due to Coulomb interaction. We consider this effect in the
random-phase approximation. As a result, we obtain the trion
state affected by the polarized environment.

The microscopic mechanisms responsible for the creation
of the pair excitation can be the Coulomb or exchange

interaction of the trion with free carriers. For the charged
trion, the Coulomb interaction seems to be the only mechanism
because in the absence of magnetic fields, the triplet trion is
unbound over a wide range of electron and hole mass ratio.10,12

The free trion that emits a photon has an almost zero wave
vector. Scattering of the trion by free electrons, with excitation
of an electron-hole pair in the conduction band near the Fermi
level at p ≈ pF with the wave vector of its center-of-mass
motion q, creates a pair with energy (h̄2q2/2m + h̄2pq/m).
The threshold energy of this excitation at q = 0 is zero.
Therefore, the boundary of the continuum spectrum of the
combined excitation consisting of the free trion plus the pair
excitation coincides with the energy of the photon emitted
by the free trion. As a consequence of this inelastic-scattering
process, the trion self-energy will be renormalized and the trion
luminescence (and absorption) band will be homogeneously
broadened.

It is well known that in a wide interval of wave vectors, the
electron gas excitations are strongly renormalized due to the
electron-electron Coulomb interactions, so that the plasmon
begins to play a leading role in the excitation spectrum.13–18

Investigations of quasi-two-dimensional plasmon excitations
and their role in the energy-loss processes were performed in
Refs. 18–20. We will show that such energy-loss processes
are responsible for the trion self-energy correction and the
emission band broadening.

We consider the behavior of the trion luminescence band
as a function of free-electron concentration in CdTe/CdMgTe
quantum wells where the Fermi energy is small in comparison
with the binding energy of the quasi-two-dimensional exciton.
The electron concentration dependence of the broadening
allows one to relate the process to the interaction of the
trion with the wave-vector-dependent plasmon, which is a
fundamental elementary excitation and a collective density
oscillation mode.

II. THEORY

We consider the quantum well as a quasi-two-dimensional
system and transform the Coulomb interaction to take account
of the lowered dimensionality due to confinement. Some
minor simplifications are useful to minimize the size of the
calculation.
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First, we assume that all of the particles (electrons and
trions) occupy their lowest confined states in a quantum
well with infinite barriers. In this case, the wave functions
of all of the particles can be characterized by the single
length L, which is defined by the quantum-well thickness.
A further simplification is related to the description of the
trion’s internal motion: The trion is considered as a compound
particle consisting of an exciton and a weakly bound electron.
We consider only low temperatures with kBT much less than
the Fermi energy. This makes analytical calculations possible
up to the last integral, which is calculated numerically.

In the case of the trion confined in a quantum well, the wave-
vector conservation law exists only for the in-plane center-of-
mass motion of this particle. The free electrons interacting with
the trion are also confined in the quantum well and, therefore,
only the in-plane components of their wave vectors obey the
conservation law.

A. Coulomb interaction in a quantum well

It is convenient to deduce the necessary equations using as
a starting point the Coulomb interaction in a three-dimensional
(3D) system,

HCoul = 1

2

∑
i,j,σ,σ ′

∫
d3rid

3rjVCoul(ri − rj )|ψσ (ri)|2|ψσ ′(rj )|2.

(1)
Here, σ denotes the spin quantum number and

VCoul(r1 − r2) = 1

(2π )3

∫
d3q

4πe2

εq2
exp[iq(r1 − r2)], (2)

where ε is the static dielectric constant, and the ri with i = 1,2
are the radius vectors of two interacting particles. Writing
Eq. (2) and below, we have used CGS units.

In the case of quasi-two-dimensional quantum wells, it
is convenient to introduce the in-plane and perpendicular-
to-plane coordinates r → (−→ρ ,z) and the corresponding wave
vectors q → (q̂,qz) in the reciprocal space.

The simplified trion wave function is assumed to have
the form of the product of the wave function for the free
motion of the center of mass �(

−→
R ) ∼ exp(iq̂

−→
R ), where

−→
R

is the two-dimensional center-of-mass coordinate, and the
wave function of the electron bound to the exciton ψtr ∼
exp(−|−→R − −→ρ |/atr), where atr is a radius characterizing the
electron motion in the trion.

The integral over d2R in the scattering amplitude pro-
duces the wave-vector conservation law for the in-plane
components of the center-of-mass wave vector. As result, the
two-dimensional wave vector of the trion’s center of mass is
equal to the in-plane wave-vector component of the Coulomb
vertex.

The integral over d2ρ of the product of the square modulus
of the wave functions describing the trion’s internal motion
and the exponential function is transformed to

Mtr(q̂) =
∫

d2ρ|ψtr(ρ)|2 exp(iq̂−→ρ )

=
{

2 + (q̂atr/2)2

2[1 + (q̂atr/2)2]3/2

}
. (3)

This form factor arises twice when the Coulomb interaction of
the electron-hole pair with the trion is included.

We exclude the motion in the perpendicular direction by
calculating the matrix elements of exponentials with wave
functions ψ(z) = √

2/L cos(πz/L), assuming that the wave
functions of the trion and electron-hole pairs are completely
confined within the quantum well of thickness L restricted by
infinite barriers. Both matrix elements have the form

Mz,z =
∫ L/2

−L/2
dz|ψ(z)|2 exp(izqz) = 2

qzL
sin(qzL/2), (4)

which can be written as an infinite product

Mz,z(qz) =
∞∏

k=2

[1 − (qzL)2/(2πk)2]. (5)

The dependence of Mz,z(qz) on qz is presented by curve 1 in
Fig. 1.

Finally, the quasi-2D matrix element of the Coulomb
interaction can be found by calculating the integral over dqz,

V (q̂)2D =
∫ ∞

0

dqz

2π

4πe2[Mz,z(qz)]2

ε
[
q̂2 + q2

z

] , (6)

which can be calculated numerically (curve 2 in Fig. 1) or
represented with good accuracy by the function (curve 3 in
Fig. 1)

V (q̂)2D = 4e2

εq̂
arctan

q̃L

q̂
, (7)

where q̃L = 2π/L̃ and

L

L̃
=

∫ ∞

0

Ldqz

2π
[Mz,z(Lqz/2π )]2 � 0.75.
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FIG. 1. Curve 1 is the matrix element Mz,z(x) = ∏N

k=2[1 −
x2/k2] at N = 100, solid curve 2 is the result of numerical calculation

of
∫ ∞

0 dx ′ |M tr
z,z(x′)|2

[x′2+x2]
, and dashed curve 3 is an approximation of curve

2 by the function [ 2
x

arctan L

L̃x
]. Curves 4 and 5 are asymptotes π/x

and 2L/L̃x2.
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The value L̃ � 4L/3 represents the distance where the
character of the Coulomb interaction changes.

In the limit of small q̂, we obtain the two-dimensional
Coulomb interaction from Eq. (7) (see, for example, Chap. 9
of Ref. 13) as

V (q)2D|q̂→0 = 2πe2

εq̂
. (8)

In the limit of large q̂, Eq. (7) transforms into the 3D Coulomb
matrix element

V (q)2D|q̂	q̃L
= 4πe2

εq̂2(L̃/2)
(9)

(see asymptotes in Fig. 1). Therefore, L̃/2 is the effective
thickness of the quasi-two-dimensional slab for this model.

B. The polarization loop and the dielectric function

The polarization loop of the electron-electron Coulomb
interaction for degenerate 2D electrons in the low-temperature
limit (see Fig. 2 and Table I) is expressed as

P Coul
q̂ (h̄ω) = −V 2D(q̂)χ (q̂,h̄ω). (10)

Here, the complex function χ (q̂,h̄ω) is

χ (q̂,h̄ω) = −
∫ pF

0
p dp

∫ 2π

0

dϕ

2π

×
{

1

h̄ω + iδ − ωp̂q̂
− 1

h̄ω + iδ + ωp̂q̂

}
, (11)

where ωp̂q̂ = h̄2(p̂q̂)/m∗ + h̄2q̂2/2m∗, m∗ is the electron
effective mass, δ → 0, pF is the Fermi wave vector, and ϕ

is the angle between two-dimensional vectors p̂ and q̂.
In the limit ω → 0, the result coincides with the Thomas-

Fermi approximation

Reχ (q̂,0) = − m∗

πh̄2 . (12)

In the limit q̂ � qL, we obtain for ReP Coul
q̂ (0) the well-known

expression13

ReP Coul
q̂ (0) = 2

aBq̂
, (13)

where aB is the Bohr radius of the 3D exciton.
It is convenient to introduce the universal dimensionless

susceptibility function χ̃(q̂/pF ,(h̄ω)/EF )

χ (q̂,h̄ω) = p2
F

2πEF

χ̃ (q̂/pF ,(h̄ω)/EF ). (14)

Calculating the integral

− 1

2πE2
F

∫ ∞

0
Imχ (q̂,h̄ω)h̄ω dh̄ω = q̂2/p2

F , (15)

where EF is the Fermi energy, we obtain one more relation
that can be used together with Eqs. (12) and (13) to check the
calculations of χ (q̂,h̄ω).

In our calculations, the function Imχ (q̂,h̄ω) was obtained
analytically similarly to calculations of the dielectric function
in Ref. 14, while Reχ (q̂,h̄ω) was found as the result of the
Hilbert transformation.
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FIG. 2. Imaginary part (a) and real part (b) of the 2D polarizability
P Coul

q̂ (h̄ω) for EF = 10 meV. The values q̂ are taken in the interval
from 0 to 0.75pF . The calculations use CdTe/CdMgTe quantum-well
parameters.

C. The trion self-energy correction

The trion self-energy correction due to the Coulomb
interaction with electrons is expressed through the integral over
q̂ of the polarization loop multiplied by the matrix element of
the Coulomb interaction. This integral is divergent at small
q̂ even in the quasi-two-dimensional case. The problem to
be solved is the renormalization of the polarization loop by
the electron-electron Coulomb interaction. In other words,
we have to include the dynamical screening of the Coulomb
vertex to remove the divergence of the first-order self-energy
correction at small wave vectors. This can be done in the
random-phase approximation. As a result, the self-energy

TABLE I. Parameters used in the calculations: the electron mass,
the CdTe 3D exciton binding energy E3D

ex , the trion binding energy
EB

tr , and the effective trion radius.

me E3D
ex (meV) EB

tr (meV) a3D
B (Å) atr (Å)

0.11m0 10 2 70 200
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correction to the trion energy at zero wave vector Etr(0) can
be represented as

δEtr(h̄ω) = 1

(2π )2

∫
d2q

V 2D(q̂)[Mtr(q̂)]2

1 − V 2D(q̂)χ (q̂,h̄ω − h̄2q̂2/2Mtr)
,

(16)

where h̄2q̂2/2Mtr = Etr(q̂) − Etr(0) and Mtr is the trion effec-
tive mass. The energy of the trion at zero wave vector is taken
as a frame of reference for h̄ω. The imaginary part of Eq. (16)
representing damping of the trion state is

�(ω) = Im[δEtr(h̄ω)]

= 1

(2π )2

∫
d2q

4e2 arctan q̃L

q̂
[Mtr(q̂)]2

q̂

× Im

[
1

ε(q̂,h̄ω − h̄2q̂2/2Mtr)

]
, (17)

where

ε(q̂,h̄ω − h̄2q̂2/2Mtr)

= ε

[
1 − 4e2

εq̂
arctan

q̃L

q̂
χ (q̂,h̄ω − h̄2q̂2/2Mtr)

]
. (18)

Equation (17) can be calculated directly in the continuum
spectrum region where Imχ (q̂,h̄ω − h̄2q̂2/2Mtr) �= 0. Special
consideration should be given to inclusion of the plasmon
pole contribution. The energies of the plasmon poles h̄ωpl(q̂)
are defined by zeros of the function [1 − V 2D(q̂)χ (q̂,h̄ω)] in
the region where Imχ (q̂,h̄ω − h̄2q̂2/2Mtr) = 0. The plasmon
contribution to the reciprocal dielectric function dominates
in the whole region of existence of the plasmon, as can be seen
in Fig. 3(a).

The weight of the plasmon contribution to the reciprocal
dielectric function is defined by the residue of the real part of
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FIG. 3. The imaginary part of the reciprocal dielectric function
1/ε(q̂,h̄ω) in the plasmon region, for EF = 10 meV.
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FIG. 4. Dispersion of the plasmon excitation branch h̄ωpl(q) for
values of the Fermi energy 2.5, 5, and 10 meV (curves from 1 to
3, respectively). Dashed curve EL is the Landau damping boundary.
Residues Resω(1/ε(q̂,h̄ω)) of the plasmon branch for corresponding
Fermi energies are represented by dashed curves. Curves 1–3 are
calculated for quantum-well thickness equal to 10 nm, while curves 3′

and 3′′ are for thicknesses 5 and 20 nm, respectively. The calculations
use CdTe/CdMgTe quantum-well parameters.

the dielectric function,

Resω(1/ε(q̂,h̄ω)) =
[

d

dω
Re(ε(q̂,h̄ω))

]−1

ω=ωpl(q̂)

, (19)

calculated at ω = ωpl(q̂). Functions ωpl(q̂) and Resω(1/

ε(q̂,h̄ω)) are presented in Fig. 4.
Taking the trion energy at wave vector k = 0 as a point of

reference for energy, we represent the plasmon contribution
to the imaginary part of the trion’s self-energy correction at
photon energy h̄ω as

Im [δEtr(h̄ω)] =
∫

d2q̂

(2π )2

{
4e2 arctan q̃L

q̂
[Mtr(q̂)]2

q̂
[

d
dω

Re(ε(q̂,ω))
]
ω=ωpl(q̂)

}
×πδ(ω − h̄q̂2/2Mtr − ωpl(q̂)). (20)

The plasmon broadening remains undefined in the random-
phase approximation, and serious care should be taken to avoid
the influence of artificial plasmon broadening of the properties
of the reciprocal dielectric function. The most appropriate
check can be realized by the sum rule

1

2π

∫
dω Im[ωε(q̂,ω)] = 1

2π

∫
dω Im

[
ω

ε(q̂,ω)

]
, (21)

which reflects the electronic charge conservation and provides
the gauge invariance of the approach. The plasmon contribu-
tion of Eq. (20) to the trion’s self-energy correction should
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be included together with the contribution of the continuum
spectrum of Eq. (17).

In the calculations, the shape of the plasmon line should
be approximated by a function that makes overlapping of
the plasmon line and continuum negligible. The normalized
Gaussian function is appropriate for this purpose. In Fig. 3,
the broadening of the Gaussians is taken to be independent
of q̂ and large enough to make the overlapping of discrete
and continuum spectra visible at large wave vectors where the
splitting of the plasmon poles decreases.

The plasmon dispersion curves at different Fermi energies
and different quantum-well thicknesses are presented in Fig. 4.
The region of existence of the plasmon is restricted by the
Landau damping boundary (curve EL in Fig. 4). It is seen that
the region is not universal and depends on the product (pF L).
In terms of pF , it decreases as the product (pF L) increases. The
plasmon dispersion at small wave vectors can be approximated
by a square-root dependence. In the calculations, we have
neglected the trion kinetic energy (recoil effect), which is small
compared to the plasmon energy.

The real part of Eq. (17) calculated by using the Hilbert
transformation gives the dynamical shift of the trion state due
to electron-electron Coulomb interaction,

(ω) = Re[δEtr(h̄ω)]

= 1

(2π )2

∫
d2q

4e2 arctan q̃L

q̂
[Mtr(q̂)]2

q̂

×
{

Re

[
1

ε(q̂,h̄ω − h̄2q̂2/2Mtr)

]}
. (22)

It is seen from Eqs. (16)–(19) that the trion self-energy
correction is defined through the spectrum of the charge-
density fluctuations describing the energy losses of the trion.

The imaginary part of 1/ε(q̂/pF ,h̄ω/EF ) is presented in
Fig. 3. As is seen, the spectrum of the energy losses consists of
a continuum and a discrete spectrum formed by plasmons. The
renormalization performed on the single polarization loop has
resulted in the drastic decrease of the continuum contribution
as compared with the polarization loop in Fig. 2(a).

D. Trion band broadening (theory)

We represent the shape of the trion luminescence line
without interaction with charge-density fluctuations (the zero-
plasmon line) via the spectral density

I 0
PL(ω) ∼ 1

π

γ0

(h̄ω − Etr)2 + γ 2
0

, (23)

where Etr is the trion energy at q̂ = 0, γ0 = 1/τ , 1/τ =
(1/τr + 1/τqel), 1/τ is the full lifetime due to radiative and
quasielastic processes, τr is the radiative lifetime, and τqel

is the lifetime due to quasielastic processes. The factor τr/τ

defines the fraction of trions participating in the formation
of the zero-plasmon PL band during the trion lifetime. The
zero-plasmon line can be essentially suppressed by the energy
relaxation of the trion state.
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FIG. 5. The trion luminescence spectra calculated by using
Eq. (24) for quantum wells with different electron densities corre-
sponding to the Fermi energy variation from 0.1 to 10 meV. The
CdTe/CdMgTe quantum-well parameters given in Table I and the
quantum-well thickness equal to 10 nm are used in the calculations.
The zero of energy corresponds to the trion position without taking
into account the trion-electron-hole interaction.

The shape of the trion band taking into account the
interaction with charge-density fluctuations (CDF) can be
written as

ICDF
PL ∼ 1

π

γ0 + �tr(ω)

[h̄ω − Etr − tr(ω)]2 + [γ0 + �tr(ω)]2
, (24)

where �tr(ω) is defined by the sum of Eqs. (17) and (20), and
tr(ω) is given by Eq. (22), respectively.

Results of calculations by using Eq. (24) for different free-
electron densities are presented in Fig. 5. As is seen in this
figure, the trion spectrum forms a band whose width increases
sharply with the increasing electron density. The maximum of
the band shifts considerably to low energy.

We note that the contribution of the trion-plasmon inter-
action to the function �tr(ω) in the limit of ω → 0 goes
to zero as ω2. The contribution of the interaction with the
continuum electron-hole spectrum can be important in this
limit. However, at increasing ω the trion-plasmon interaction
becomes completely dominant.

The physical sense of �tr(ω) is the probability of inelastic
scattering of the trion accompanied by the transition from
the initial state with wave vector k̂ ≈ 0 to the continuum set of
final states, each of which is the combined excitation consisting
of the trion with wave vector k̂ + q̂ ≈ q̂ and the plasmon with
wave vector −q̂.
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We consider this process to be the fastest one among the
trion decay processes so that τ�tr(ω) 	 1. The maximum
value of �tr(ω) arises from the contribution of q̂ ≈ 1/atr. As a
rule, in the frequency region ω > γ0, the plasmon contribution
dominates over the quasielastic and radiative processes.

III. EXPERIMENTAL DATA AND DISCUSSION

A. Experiment

We have used in this work two sets of CdTe/Cd0.7Mg0.3Te
heterostructures grown during two molecular-beam epitaxy
processes on (100) GaAs substrates. Samples of two sets con-
tain a single QW whose width was 100 or 80 Å, respectively.
In the first set presented in Figs. 6 and 7, the QW width was
100 Å. In the second set presented in Fig. 8, the width was 80 Å.
A series of these QW’s was grown during a single epitaxial
growth run using “wedge doping” techniques.21 To minimize
dislocations due to a lattice mismatch between the QW and
barrier materials, the QW was grown after a 400-nm-thick
CdTe buffer layer.

An iodine n-type δ layer is located at a distance of 100 Å
from the QW. At low temperatures, electrons from the δ layer
collect in the QW, forming a quasi-2D electron gas.

All the QW’s of the series have the same parameters except
that they have different doping levels in the δ layer and,
therefore, different electron gas densities. The preliminary
estimation10 has shown that the electron concentrations in
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FIG. 6. The transformation of the trion luminescence spectrum
taken from a CdTe/CdMgTe quantum well with increasing electron
density (curves from a to d). The quantum-well thickness is equal
to 10 nm. Symbols are experimental data, curves 1 and 2 are
approximations of the inhomogeneous shapes by Eq. (23) using the
distribution of Etr given by Eq. (25) with different values of γinh above
and below E0

tr. The vertical line represents the spectral position of
the zero-plasmon trion line E0

tr in the low-electron-density limit.
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FIG. 7. Luminescence spectra taken from CdTe/CdMgTe quan-
tum wells with different electron concentrations. Symbols are the
experimental data. Curves (solid lines) are approached by using linear
combinations of the inhomogeneously broadened zero-plasmon band
of Eq. (23) and by Eq. (24) for different electron densities. The trion
spectral position Etr is averaged over the distribution Eq. (25) with
different values of γinh above and below E0

tr. The CdTe/CdMgTe
quantum-well parameters given in Table I are used in calculations.
The quantum-well thickness is equal to 10 nm.

the QW’s are in the interval between 1010 and 1012 cm−2.
(We indicate here the concentration that follows from the
level of the doping impurities; the real concentration could be
smaller.) The samples were not photosensitive, i.e., the electron
concentration did not depend on the intensity of additional
illumination.

The PL spectra were excited by an Ar-ion laser with λ =
530 nm and recorded by a 1 m spectrometer with a charge-
coupled device (CCD) detector. The excitation power did not
exceed 100 W/cm2.

B. Trion band broadening (experiment and theory)

The luminescence spectra for a set of samples with different
electron densities are presented in Fig. 6. As is seen, the spectra
at low electron densities (curves a and b) have nothing in
common with the theoretical spectra in Fig. 5. First of all, it is
the maximum at energy of the trion line that persists with all
spectra.

The second difference is the shape of the luminescence band
(curves a and b). Both the high-energy and low-energy wings
of curves a and b demonstrate an exponential-like decrease.
The broadening of the zero-plasmon band (full width at half
maximum) changing from sample to sample consists of about
1–2 meV, which can be explained as a result of the spatial
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FIG. 8. Luminescence spectra taken from CdTe/CdMgTe quan-
tum wells with different electron concentrations. Symbols are the
experimental data. Curve 1 is approximated by the inhomogeneously
broadened zero-plasmon band of Eq. (23). The other curves (solid
lines) are approached by linear combinations of the inhomogeneously
broadened zero-plasmon band given by Eq. (23) and by Eq. (24) for
different electron densities. The trion spectral position Etr is averaged
over the distribution Eq. (25) with different values of γinh above and
below E0

tr. The CdTe/CdMgTe quantum-well parameters given in
Table I are used in calculations. The quantum-well thickness is equal
to 8 nm.

inhomogeneity of the quantum well. Curves 1 and 2 fitting
curves a and b were obtained from Eq. (23) by averaging the
trion spectral position Etr over the distribution

cosh−2
[(

E0
tr − Etr

)/
γinh

]
(25)

with different values of γinh above and below E0
tr, which is the

trion band position in the limit of zero electron concentration.
However, there exists a notable deviation of the experimental
data of the curve b from the simple exponential behavior in
the region’s low-energy tail. This deviation can be understood
as the influence of free carriers, which were not taken into
account in the calculations of curve 2.

The deviation from the exponential behavior demonstrated
by curve b increases strongly for curves c and d. Curves c

and d show the strong shift of the maxima, as was shown by
the theoretical curves in Fig. 5. The decreased features at the
zero-plasmon trion line position show that the emission in this
region of the spectra occurs only from a minor part of the
quantum well.

Therefore, the observed transformation of the spectra can
be considered as a result of the selective filling of the quantum
well by free carriers due to their spatial inhomogeneity. We
can conclude that the full trion-plasmon band is, in general,
a sum of two contributions: the zero-plasmon line given by

Eq. (23) averaged over inhomogeneous distribution of the trion
spectral position Etr of Eq. (25), and the trion-plasmon band
given by Eq. (24). Although both constituents are assumed
to be inhomogeneously broadened, the effect can be clearly
observed only for the zero-plasmon line.

Detailed comparisons of the experimental calculated photo-
luminescence spectra in the energy region of the trion emission
band are presented in Figs. 7 and 8. An acceptable agreement
between experimental data and calculations has been obtained
by fitting the values of the free-electron density and relative
contribution of the quantum-well regions with and without
free-electron doping.

As is seen in Figs. 7 and 8, the energy position of the
broadened zero trion line does not depend on the electron
concentration and coincides well with the trion PL line at low
electron density.

C. Discussion

To describe the experimental PL spectra, we have assumed
the following succession of processes: The trion arises in the
spectrum of interband excitation because an exciton forms the
potential well, which is able to catch an electron splitting up
the lowest conduction-band level. The formation of the bound
state lowers the energy of the system exciton plus the electron
for the value of the binding energy, which is mainly due to
exchange electron-electron interaction. The annihilation of the
exciton from the bound state leads to the disappearance of the
potential well. As a consequence, the electron level returns to
its position at the bottom of the conduction band. The energy of
the emitted photon is less than the exciton energy for the trion
binding energy, which is spent for the return of the electron to
the initial state.

The considered succession enables us to explain the
coincidence of the energy of the trion lines in absorption and
photoluminescence spectra at low electron concentration. It
is also possible to assume that the formation of the charged
trion leads to repulsion of the electrons of the Fermi sea, thus
preventing the bound exciton from screening and stabilizing
the trion state. The exchange electron-electron interaction,
which is responsible for the bound state formation, cannot
be screened by free carriers.

The situation with regard to the trion PL spectra looks
very similar to that of the free-exciton PL spectra in 3D ionic
crystals where the zero-phonon line is strongly suppressed.
The only difference consists in the fact that, in the latter
case, the role of the fastest process is played by the exciton–
LO-phonon interaction. Namely, this process suppresses the
zero–LO-phonon exciton photoluminescence and leads to the
dominant role of the LO-phonon–exciton bands in exciton
luminescence.

IV. CONCLUSION

The broadening of the trion photoluminescence bands in
CdTe/CdMgTe quantum wells as a function of the free-carrier
concentration has been investigated. It has been shown that for
the charged trion, the Coulomb interaction with electrons leads
to the formation of a strong trion-plasmon band accompanying
the trion emission line from the quantum-well regions with
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small free-electron density. In the cases of high doping, the
trion-plasmon band plays the leading role in defining the trion
luminescence. These spectra coincide well with the results of
calculations.
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