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Impurity effects on semiconductor quantum bits in coupled quantum dots
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We theoretically consider the effects of having unintentional charged impurities in laterally coupled two-
dimensional double (GaAs) quantum-dot systems, where each dot contains one or two electrons and a single
charged impurity. Using molecular orbital and configuration interaction methods, we calculate the effect of
the impurity on the two-electron energy spectrum of each individual dot as well as on the spectrum of the
coupled-double-dot two-electron system. We find that the singlet-triplet exchange splitting between the two
lowest-energy states, both for the individual dots and the coupled-dot system, depends sensitively on the location
of the impurity and its coupling strength (i.e. the effective charge). A strong electron-impurity coupling breaks
down the equality of the two doubly occupied singlets in the left and the right dots, leading to a mixing between
different spin singlets. As a result, the maximally entangled qubit states are no longer fully obtained in the
zero-magnetic-field case. Moreover, a repulsive impurity results in a triplet-singlet transition as the impurity
effective charge increases or the impurity position changes. We comment on the impurity effect in spin qubit
operations in the double-dot system based on our numerical results.
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I. INTRODUCTION

The goal of this paper is the calculation of the low-lying
energy spectra of two-electron semiconductor quantum dots
(QDs) (both single dots and coupled double dots) in the
presence of nearby static-charged impurity centers within a
minimal model. The purpose is to quantify the effects of
quenched random-charged impurities on the singlet-triplet
splitting in QDs in order to assess the importance of back-
ground unintentional impurities, which are invariably present
in the environment, in adversely affecting the operations
of exchange-coupled dots as elementary spin qubits for
solid-state quantum computation. Since the positions and
the strengths of the background unintentional impurities
are unknown and random, we study the impurity effects
as functions of impurity position and coupling strength
(defined as the effective impurity charge Z), assuming the
impurities to be Coulombic charge centers so that their
effective potential falls off slowly as a 1/r potential away
from the impurity location, where r is the distance from
the impurity. Since the main background impurities in GaAs
and Si, the two most relevant semiconductors of interest for
solid-state spin quantum computations, are random-charge
centers, our consideration of Coulombic impurities with a
long-range impurity potential is reasonable. The theoretical
results presented herein, while being completely microscopic
and fully quantum mechanical, are phenomenological in
nature since the impurity position and charge are treated
as unknown parameters. While our results show clearly the
strong effect of local background charged impurities on the
low-lying QD spectra, their usefulness is limited in comparing
with experiment since no direct information about impurity
locations is currently available experimentally. On the other
hand, our results establish the manifest importance of using the
highest-quality background materials for semiconductor spin
qubit operations since the presence of even a single charged
impurity in the vicinity of the QDs seems to completely ruin
the operational logistics of coupled QD systems. The exchange
coupling (or equivalently, the singlet-triplet splitting) depends

strongly and sensitively on the location and the strength
of the charged impurity, which means that (1) a single
charged impurity located nearby could destroy the qubit, and
(2) even a remote charged impurity could have a strong adverse
effect, inducing substantial qubit decoherence if the impurity
is dynamic and has a fluctuation time scale comparable to
gate operation time scales – in fact, the impurity-fluctuation
time scale will become a dominant decoherence time since the
exchange energy will vary substantially over this time scale.
The motivation of our paper is a clear understanding of the
energetics of QD systems in the few electron situations in
the presence of charged impurities so that some rudimentary
quantitative magnitudes of the impurity effects are available
for qubit operation considerations.

Coupled QDs for quantum computation1–5 have been
extensively studied due to the prospect of using QDs as an
ideal environment to confine and manipulate the QD electron
spins. The quantum bit, or qubit, of information is encoded and
stored in these localized single electron spins which exploit a
spin relaxation time of the order of milliseconds,6–8 sufficiently
long to allow the performance of coherent spin operations. The
proposed quantum computer3 in solid states operates based on
the exchange coupling J between the two-electron spin qubits
manipulated by an external magnetic field. This exchange
energy can be envisioned as the effective coupling between
the two spins in the double dots3 via the Heisenberg spin
Hamiltonian, Ĥ = J s1 · s2, which takes into account possible
contributions from different hybridzations between singlet and
triplet states. Hence J is determined through the gate voltage
control over the tunneling coupling between the coupled two
QDs. A complete understanding of J is important because
it directly determines the

√
SWAP operator which describes

the exchange information between the two qubits in the double
dots. The fast solid-state two-qubit operation,3,9 generated as
a consequence of the electron spin exchange under electrical
control, and the single-qubit operation10 suffice to assemble a
standard quantum computing system. The number of electrons
in such a QD system can be controlled precisely11–14 to 0, and
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the electron exchange interaction is tunable by the applied gate
voltages; thereby the coupling between the dots can also be
controlled.

Established quantum regimes such as quantum entangle-
ment between individual electrons in one dot with the other
electrons in the other dots and superposition of electron spin
qubits are the major objects3,4,9,15–25 in such exchange-coupled
QD systems. Prerequisite criteria for realization of a quantum
computation system3 (including initialization, manipulation
of spin qubits, and readout) have been demonstrated for
single-dot26 and coupled-QD systems,27 and have provided
the long relaxation time6,14 of the spins by using charge-
sensing and fast spin-to-charge conversion techniques. One
of the perceived advantages of solid-state quantum computing
is the scalability with existing semiconductors. In addition,
integrating multicoupled dots into a quantum circuit is made
possible by adding more suitable gate electrodes.5,12

QDs in versatile GaAs semiconductors not only have been
considered the most widely studied objects in the QD science
but also their well-understood physics is applicable to a
variety of materials.5 Often, unintentional impurities found in
the dot sample are used in the fabrication process to adjust
the potential-well height between different heterostructure
semiconductors (such as Si in gated GaAs/AlGaAs QDs; see,
e.g., Ref. 5), allowing the charge flow of electrons. Statistically,
such a QD system containing impurities can be studied for
one, two,. . ., impurities. On the other hand, when integrating
multiple coupled two-dot systems utilized as a multi-qubit
gate, in the nonoverlapping regime between different two-dot
systems, a single spin qubit in one coupled two-dot system
can be affected28 by the other coupled two-dot systems. Each
coupled two-dot system acts as a source of electrostatic field
to the others and can be treated as “charged impurities.”

Theoretical studies of impurities in coupled QDs have
been rarely found in the literature. In fact, the impurities are
practically found randomly in or outside the dot sample and
their positions cannot be specified precisely. In a coupled-
triple-dot system, a relatively large collection of impurities was
considered.29 These statistical impurities were theoretically
assumed to induce a weak perturbation to the coupled triple
QDs. The authors29 found that the Coulomb exchange energy
of the impurities with the QD electrons in this study resulted in
decoherence of the coded qubit states. Thus any information
processing using electron charge degrees of freedom needs
to take into account the decoherence channel due to charge
fluctuations.

In the present paper, we study the influence of charged
impurities on the singlet-triplet splitting of the two lowest
energy levels as well as the energy spectrum as a function of
the impurity position, the impurity effective charge, and the
number of impurities for a coupled-two-dot system in zero
magnetic field. We also examine the impurity effect on the
coupled-electron qubits by tuning the potential-well height to
different values and obtain different triplet-singlet transitions
for the repulsive impurity case. To accomplish, we discuss the
singlet-triplet splitting in the presence of two impurities with
similar charge located in the two separate dots of the system.

The paper is organized as follows. In Sec. II we introduce
the model and methodology. The impurity effect on the

energy spectrum of a two-electron single QD containing a
single charged impurity is first discussed in detail in Sec. III.
Section IV presents our studies on a coupled two-dot system
in the presence of one or two charged impurities. We examine
the impurity position and impurity effective-charge de-
pendence of the singlet-triplet spin splitting energy. The
influence of the confining potential barrier height on
electron-impurity (e-I) and electron-electron (e-e) couplings
is also explored. All the results presented in this paper are
obtained at zero magnetic field, B = 0. A summary of our
results and the conclusion are found in Sec. V.

II. THEORETICAL MODEL

Horizontally coupled QDs are grown by the depletion of
the two-dimensional (2D) electron gas (2DEG) using typically
the gated mechanism.30,31 Such gated QDs have a typical size
of about a few tens of nanometers. Consequently, the lowest
excitation energy in such a QD system is found of the order of
few millielectron volts. When the interdot coupling strength is
substantial, the electrons in the coupled dots strongly quantum
mechanically couple with each other. As long as the phase
is coherent, the electrons can “tunnel” between the adjacent
dots, forming different entangled qubits. Using the single-
conduction-band effective-mass approximation, which was
justified in Ref. 22, the Hamiltonian describing a two-electron
coupled-double-QD system containing unintentional charged
impurities (charge size Ze) in zero magnetic field reads

Ĥ = ĥ1 + ĥ2 + V̂C + V̂e-I + V̂I-I. (1)

Here, the first two terms ĥi,j are the single-particle Hamilto-
nian of the two QD electrons (coordinates ri),

ĥi = (ih̄∇i + eAi)2

2m∗ + V (ri), (2)

confined by a potential well V (r). In the present paper, this
confining potential is constructed as a linear combination of
the three different Gaussians and can be separated into two
parts:

V (r) = V0

(
e
−[ (x−a)2

l2x
+ y2

l2y
] + e

−[ (x+a)2

l2x
+ y2

l2y
]) + Vbe

−( x2

l2
bx

+ y2

l2
by

)
.

(3)

The first part acts as a double-well confining potential
for the coupled-double-dot system and the second part is
used to control the electrostatic barrier height between the
two dots independently. The set of varying parameters,
V0,Vb,lx,ly,lbx,lby , characterizes the potential-well depth and
barrier height. A nonvanishing overlap between the wave func-
tions of the two QDs signifies the electron virtual tunneling
between the two dots, i.e., the exchange energy is nonzero.
Because this property can be tuned by the applied gate voltage,
this exchange energy thereby can be controlled. It is worth
noting that Vb can independently modulate the barrier height,
resulting in concomitant change in the interdot separation
without modifying the single-particle energy spectrum of the
individual QDs in the system.
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The last three terms in Eq. (1) are the Coulomb interaction
among, respectively, the two electrons

V̂C = e2

4πεε0|rij | , (4)

the electron and the impurities

Ve-I =
NI =2∑
k=1

Ne=2∑
i=1

Zke
2

4πεε0|Rk − ri | , (5)

where NI and Ne denote the number of impurities and
electrons, respectively, and the impurities

VI-I = Z1Z2

4πεε0|R1 − R2| . (6)

The solution of a single particle confined by a parabolic
potential is well known as the Fock–Darwin basis:

ϕnl (r) = 1

l0

√
n!

π (n + |l|)!
(

r

l0

)|l|
e−ilθ e

− r2

2l20 L|l|
n

(
r2

l2
0

)
, (7)

with corresponding energy

En,l = h̄ω0(2n + |l| + 1) (8)

where n,l stand for radial and azimuthal quantum numbers,
respectively. l0 is the confinement length which is defined via

the confinement frequency ω0: l0 =
√

h̄
m∗

eω0
. Using this basis as

the radial part, we can construct the many-body wave function
for the considered system.

We introduce a dimensionless parameter,

λ = l0

a∗
B

, (9)

where a∗
B = 4πε0εh̄

2

m∗
e e

2 is the effective Bohr radius, which is used
to describe the relation between the effective Rydberg energy
R∗

y = m∗e4

2h̄2(4πε0ε)2 and the confinement energy h̄ω0:

R∗
y = h̄ω0

λ2

2
. (10)

Both e-e and e-I Coulomb interactions are evaluated in terms
of matrix elements as

〈�|Ve-e|�〉 = V C
0 〈�| 1

|̃ri − r̃j | |�〉,
(11)

〈�|Ve-I|�〉 = V C
0 〈�| 1

|̃r − R̃| |�〉,

where � denotes the wave function of the system, r̃i,j = r/l0,
R̃ = R/l0, and V C

0 = e2/4πεε0l0 is the Coulomb energy unit.
V C

0 relates to the confinement energy via the relation:

V C
0 = e2

4πεε0l0
= λh̄ω0. (12)

The numerical results are implemented for, e.g., a GaAs QD
with m∗ = 0.067m0, ε = 13.1, ge = −0.44, R∗

y = 5.31 meV
(corresponding to a∗

B = 10.3 nm). λ is changed by chang-
ing the confinement energy h̄ω0. λ = 1 gives h̄ω0 =
2R∗

y = 10.62 meV and corresponding confinement length
l0 = a∗

B = 10.3 nm.

For Si/SiGe (ε = 13) and Si/SiO2 (ε = 6.8) QDs with a
heavier effective mass m∗ = 0.19m0, effective Bohr radius
and effective Rydberg energy are, respectively, a∗

B = 4 nm
and R∗

y = 15 meV, and a∗
B = 2.11 nm and R∗

y = 44.76 meV
(see, e.g., Ref. 32). λ = 1 gives h̄ω0 = 2R∗

y = 30 meV
(l0 = 4 nm) for a Si/SiGe QD and h̄ω0 = 2R∗

y ≈ 90 meV
(l0 = 2.11 nm) for a Si/SiO2 QD system. Even though
our numerical results are applicable to GaAs QD sys-
tems, singlet-triplet splitting energies for Si QD sys-
tems are also provided in Appendix D for comparison
purposes.

Reducing λ means that the effective length l0 of the
QD decreases while the energy spacing h̄ω0 between the
2D shells, i.e., the s-, p-, and d-levels, will increase.
In the small-λ limit, the problem at hand converts to
the problem of independent particles. In the opposite
case, very large λ, the problem approaches the classical
situation.

In the coupled-double-QD system, the single-particle
solutions in each dot are obtained approximately based on
an assumption that around the center of the each dot (±am,0)
the single-electron problem can be treated as a 2D harmonic
oscillator. This means that the confining potential well V (r)
performs a quadratic form V (r) − Em ≈ V0

l2
x

[(x ± am)2 + y2],
where Em is the bottom energy of the potential well, around
(±am,0). Changes in Em when Vb varies can be obtained as the
open circles in Fig. 1. The single-particle wave functions now
are identical to the Fock–Darwin levels centered at (±am,0)
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FIG. 1. (Color online) Confinement potential double well
of coupled-double QDs modeled along the x direction plot-
ted for different barrier depths Vb (from 35 down to 11.4
meV) (left column). The corresponding double-well minima
(±am,0) are indicated in the same line in the right column
of the reference. The confinement energy at the two well bot-
toms Em is enclosed as the magenta open circles for various
values of Vb.
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and the single-particle energy spectrum is shifted by an amount
of Em:

ϕL(R) (r) = 1

l0

√
n!

π (n + |l|)!
(

rL(R)

l0

)|l|
e−ilθ

× e
− r2

L(R)

2l20 L|l|
n

(
r2
L(R)

l2
0

)
, (13)

where rL,R = (x ± am,y) and ω0 =
√

2V0
m∗l2

x
is the quadratic

confining frequency which defines a new length l2
0 = h̄

m∗ω0
,

called the confinement length. The single-particle ground-state
wave function is

ϕL,R = 1√
πl0

e
− [(x±am)2+y2]

2l20 . (14)

To quantitatively evaluate the advantage of using the
above confining potential present in Eq. (3), we plot in Fig. 1
the confining potential well where its barrier height and the QD
centers are modified by changing Vb. Here, Vb is reduced from
35 meV to 30,25,20,15, and 11.4 meV. As a result, the barrier
height will decrease, making the electron exchange energy
increase. For example, the system with Vb = 35 meV has the
corresponding am ≈ 17.52 nm (≈1.75l0), and barrier height
	Vb = 13.26 meV. For Vb = 30 meV, these parameters are
am ≈16.41 nm (≈1.64l0) and 	Vb = 9.65 meV. Decreasing
Vb leads to a shortened interdot separation 2am and a smaller
	Vb. Details can be obtained in Fig. 1. In our numerical results,
we use Vb = 30 meV for most of our calculations except when
we examine the barrier height dependence of the exchange
energy J where Vb can vary. The center region of each QD,
however, has unchanged effective length, namely l0, regardless
of the change in the barrier height. The other parameters taken
after Refs. 9,22,23 are lx = ly = 30 nm, a = lbx = lx/2 =
15 nm, lby = 80 nm.

We assume that the impurities are located arbitrarily in
or outside the coupled QDs. Their coordinates are Rk =
(xk,yk,zk), {k = 1,2}. Theoretically, the effective coupling
between electron and localized impurities as well as the
coupling between the impurities with each other can be tuned
by engineering the impurity charge Z.

Configuration interaction (CI) and molecular orbital (MO)
methods are used to numerically solve the Hamiltonian,
Eq. (1). Both construct the total wave function of the system as
a superposition of different possible quantum configurations
(CI) or molecule states (MO) extended in the basis of single-
particle wave functions:

�(r1,r2) =
Nc∑
i

ψi(r1,r2), (15)

where ψi(r1,r2) represents one many-electron configuration
as a Slater determinant. Each term of this Slater determinant
is a single-electron wave function consisting of the radial part,
the Fock–Darwin state ϕ(r1,r2) defined in Eq. (13), and the
electron spin part (detailed justifications are given in Ref. 22).

The singlet-triplet spin splitting energy of the electrons J

in such a coupled two-dot system is defined as the energy

difference between the two lowest singlet (�S) and triplet
(�T ) states:

J = 〈�T |Ĥ |�T 〉 − 〈�S |Ĥ |�S〉. (16)

A. Hund–Mulliken

In the Hund–Mulliken model, the energy spectrum consists
of four levels which are four possible superpositions of the:
four basis (three singlets and one triplet) wave functions:

ψS
1 (r1,r2) = 1√

2
[ϕL(r1)ϕR(r2) + ϕL(r1)ϕR(r2)],

ψS
2 (r1,r2) = ϕL(r1)ϕL(r2),

ψS
3 (r1,r2) = ϕR(r1)ϕR(r2), (17)

ψT (r1,r2) = 1√
2

[ϕL(r1)ϕR(r2) − ϕL(r1)ϕR(r2)].

In the coupled-QD system without an impurity, these three
singlets do not couple with the maximally entangled triplet
state ψT ; therefore they can be treated separately. The entire
Hamiltonian matrix represents these singlets and triplets as
independent blocks.

B. Configuration interaction

The most difficult task in finding the eigenvalues of a
coupled two-dot system lies in the basis choice among which
the Fock–Darwin basis and the Gaussian basis are the most
widely used. However, in both cases a closed analytical
form for the Hamiltonian matrix elements, essentially the e-e
Coulomb matrix elements, has not yet been obtained. The
reason is that the single-particle solutions of different dots
i) have distinct zero points shifted to the two bottoms of
the confining potential well and ii) thus are not orthogonal
with each other. Consequently, the number of distinguishable
single-particle quantum states for the double-dot system will
be doubled. Effectively, the size of the entire Hamiltonian
increases in comparison with the single-dot case. Quantita-
tively, for Sz = 0 subspace, such a number is four times larger
than that of the single-dot problem (2N × 2N ). Specifically,
if only the s-waves are taken into account, the number of
configurations in the subspace Sz = 0 is 1 for single-QD and
4 for coupled-two-dot systems and if the s- and p-waves are
included, those numbers are 9 and 36, respectively.

The above fact poses much difficulty for solving the
eigenvalues of the coupled-QD Hamiltonian. The most time-
consuming part is spent in calculating the Coulomb matrix
elements. In the problem at hand, the number of Coulomb ele-
ments increases due to the e-I exchange interaction. However,
from the following facts, one can take out nonphysical excited
single-particle quantum states: i) the form of the confining
potential, which is tuned electrostatically by metal top gates,
is not exactly known, and ii) the barrier potential height is
finite. The latter factor validates the harmonic approximation
for the confinement potential double well, resulting in only a
limited number of Fock–Darwin states involved.

235322-4



IMPURITY EFFECTS ON SEMICONDUCTOR QUANTUM . . . PHYSICAL REVIEW B 83, 235322 (2011)

III. IMPURITY EFFECTS IN SINGLE QUANTUM DOTS

In the single-QD case, we assume that there is only one
impurity and the impurity is located along the z axis, i.e.,
R = (0,0,d). The addition Coulomb interaction of the
electrons with the impurity is obtained analytically (see
Appendix A):

V
n2l2
n1l1

(R̃)

= δl1,l2
2√
π

�(n1 + l+ + 1)�(n2 + l+ + 1)√
n1!n2!(n1 + l+)!(n2 + l+ + 1)!

n1∑
j=0

n2∑
k=0

× (−n1)j (−n2)k�(l+ + j + k + 1)�(l+ + 1)

j !k!�(l+ + j + 1)�(l+ + k + 1)
Im(R̃),

(18)

where l+ = |l1| = |l2| and

Im(R̃) =
∫ ∞

0

e−R̃2u2

(1 + u2)m+1
du. (19)

Integral (19) can be obtained through the recurrences

I0(R̃) = π

2
eR̃2

erfc(R̃),

I1(R̃) = 1

2
[(1 − 2R̃2)I0R̃ + √

πR̃], (20)

Im(R̃) =
(

− R̃2

m
+ 1 − 1

2m

)
Im−1(R̃) + R̃2

m
Im−2(R̃),

where erfc(x) is the complementary error function,

erfc(x) =
∫ ∞

x

e−x2t2

1 + t2
dt, (21)

which rapidly decreases in x. (x)n = x(x + 1)(x + 2)...(x +
n − 1) is the Pochhammer function. Several values of the
complementary error function which can be obtained in
any numerical library are erfc(0) = 1, erfc(0.01) ≈ 0.98872,
erfc(0.1) ≈ 0.88754, erfc(0.5) ≈ 0.47950, erfc(1) ≈0.1573,
erfc(2) ≈0.00468, etc.

A. Perturbative and exact calculations

Following the e-I interaction whose matrix elements are
expressed in Eq. (18), there is mixture between different states
with different total radial quantum numbers. Consequently, the
ground-state wave function, e.g., for the Ne = 1 electron, is no
longer the only one s (n = 0,l = 0) quantum state. Instead, it
consists of several quantum states whose contributions Ci are
different:

� =
∑
i=1

Ciψi. (22)

For Ne = 2 electrons without impurity, increasing λ results
in the ground-state mixing of different configurations. The
two electrons will occupy higher Fock–Darwin states with
decreasing energy spacing to lower their Coulomb repulsion.
The easiest way to check the accuracy of the numerical results
when the impurity is present is to consider the limitation when

weak perturbation works perfectly. The first-order perturbation
approximation

E = E0 + Z

Ne∑
i=1

〈�0|V (|ri − R|)|�0〉 + O(Z2), (23)

where E0 is the ground-state energy of the QD, and the ground-
state wave function �0 in the case without impurity is a good
one when Z < 1. For the sake of simplicity in evaluating the
perturbative part in Eq. (23) for both Ne = 1 and 2 electrons,
we assume that �0 in the case Z = 0 is a single term: the
s-state. For Ne = 1 electron, this is always satisfied and its
radial part is

�0(r) = 1

l0
√

π
e
− r2

2l20 . (24)

The situation changes for Ne = 2. The above condition for
�0 to be a single term is satisfied only when λ < 1. If so, the
two electrons obeying the Pauli exclusion principle with spins
antiparallel will mainly stay in the s-orbital in case no impurity
is present because their Coulomb repulsion is small compared
with the confining energy. The ground-state wave function is

|�0〉 = c
†
s↑c

†
s↓|0〉. (25)

Using this assumption, the total energy is estimated theo-
retically for the single-electron QD,

E(Ne=1) = E0(Ne=1) + 2
√

πZλh̄ω0e
R̃2

erfc(R̃) + O(Z2), (26)

and the two-electron QD,

E(Ne=2) = E0(Ne=2) + 4
√

πZλh̄ω0e
R̃2

erfc(R̃) + O(Z2). (27)

We plotted in Fig. 2 the energy shift due to the presence
of the impurity as a function of d using the above theoretical
estimations (red dash-dotted curve) and the numerical results
(black solid curve) for Z = 0.1 and λ = 0.1 (l0 = 1.03 nm
and h̄ω0 = 200R∗

y = 1.062 eV) for Ne = 1 (upper curves) and
2 (lower curves) electrons. Both theoretical and numerical
results are in good agreement.

A small comment is made in case d is large. As seen from
Fig. 2, the e-I interaction goes to zero slowly when d increases
to a relatively large value, say d > a∗

B . The answer lies in the
product [eR̃2

erfc(R̃)], where the exponential function increases
in d competitively with the complementary error function
which decreases in d.

The first-order perturbation theory works very well as long
as Z < 1 and λ is small enough; if λ increases, different
e-I couplings of different configurations will occur which
result in the presence of a substantial number of nonzero
off-diagonal terms. This fact leads to an increasing difference
between the first-order calculations and the numerical results.
For example, in the two-electron QD as plotted in the
inset of Fig. 2, this difference for R̃ = 0, which is also
the largest value, is about 6% when λ increases to 0.5.
This 6% come from the configurations with minor contribu-
tions (n1 = 1,l1 = 0; n2 = 1,l2 = 0), (0,1;0,−1), etc. n1,l1 and
n2,l2 are the radial and azimuthal quantum numbers of the two
electrons.

Practically, one often has GaAs QDs with λ > 1, i.e., larger
QDs need to be considered. To describe such QDs, numerical
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FIG. 2. (Color online) Agreement between theoretically pertur-
bative (red dash-dotted curve) and exact diagonalization (black solid
curve) calculations in the shift of the ground-state energy due to
the presence of the impurity in single-electron (two upper curves)
and two-electron (two lower curves) QDs for λ = 0.1. The impurity
effective charge is Z = −0.1. The inset shows additional data for
the case in which λ is increased to 0.5 to examine whether the
perturbative calculations hold reliably. This energy shift is identical
to the binding energy of the system and scaled to the Rydberg energy
R∗

y = 5.31 meV for GaAs QDs.

calculations are used for different values of λ. Here, we
examine the case of λ = 2 which has l0 = 2a∗

B = 20.6 nm and
the corresponding h̄ω0 = R∗

y/2 = 2.655 meV. The Coulomb
interaction unit (V C

0 = 5.31 meV) in such a QD system is (two
times) larger than the confining energy h̄ω0.

B. Singlet-triplet splitting energy

The Coulomb interaction between the QD electrons
strongly competes with the confining energy and with the
e-I interaction as Z and/or λ increase. Increasing λ means
that the confining energy becomes smaller with respect to the
Coulomb interaction. As a result, electrons start to occupy
higher Fock–Darwin levels. At zero B field and in the absence
of impurity, the ground state consists of several Fock–Darwin
states where the dominant component is the s-wave term. In the
presence of a charged impurity, those electron configurations
that fulfill L = const form different L subgroups with nonzero
contributions to the total wave function of the system. Increas-
ing the effective charge Z results in a strong mixing between
those subgroups. Consequently, there are more than one states
which play as dominant components to the total wave function.
We plot in Figs. 3(a) and 3(b), respectively, the splitting energy
between the ground state (singlet) and the first excited state
(triplet) as a function of λ and Z in case the impurity is located
at the center of the single QD. As λ increases [see Fig. 3(a)], the
splitting becomes smaller for both with- and without-impurity
cases. It is because the singlet and the triplet states have many
similar nonzero configurations. Details are found below from
the discussion for particular values of Z. From Fig. 3(a) we
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FIG. 3. (Color online) Splitting energy of the two lowest singlet
and triplet energy levels as a function of (a) Coulomb interaction
strength λ for three different Z = −0.1 (blue dashed-dotted curve),
0 (black solid curve), and 0.1 (dash-dotted-dotted curve) and
(b) impurity effective charge Z within the range (−1,1) for the case
λ = 2. The impurity is located at the origin of the single two-electron
QD: d = 0.

also notice that the energy splitting shift due to the presence of
the impurity remains almost unchanged by changing λ for both
cases Z = −0.1 (blue dashed dotted curve) and Z = 0.1 (red
dash-dotted-dotted curve). It is because the impurity location is
examined at the center of the QD, d = 0. Such a splitting shift
will change if the impurity is displaced to any other off-center
position, d �= 0.

The Z dependence of the splitting energy in Fig. 3(b) for
λ = 2 shows a continuous decrease as Z changes its sign from
negative (−1,0) to positive (0,1). The decrease is significant
around Z = −1 which coincides with the physics discussed
above for the negative Z = −0.1 and −1 cases.

It is found that for Z = −0.1 and −1 the ground state
and the first-excited state in the two-electron QD containing
a single charged impurity are the singlet and the triplet,
respectively. Their major components are, respectively, the
s-s and the s-p configurations, i.e., one electron is in the s-
and the other in the s-(p-)orbital. Note that the s-s overlap has
only one maximum at the origin. In the opposite case, the s-p
overlap exhibits a minimum at the origin.

With changing the position of the impurity, the energy spin
splitting of the singlet-triplet states is obtained in Fig. 4(a)
for Z = −0.1 and Fig. 4(b) for Z = −1. The presence of
the impurity results in an increase in the splitting which is
largest when the impurity is located at the center of the dot [as
illustrated in Figs. 4(a) and 4(b) for Z = 0 (dot lines) and for
Z < 0 (solid lines)].

The magnitude of the splitting over an impurity charge
unit [(EI

1 − EI
0 ) ≡ splitting]/Z, where EI

0,1 is the energy of
the ground state and the first-excited state in the doped
QD, is found smaller for the larger-Z case [see Figs. 4(a)
and 4(b)] for a certain d value. This means that the e-I
attraction becomes dominant over the e-e Coulomb interaction.
As a result, each state consists of different configurations
with compatible contributions to the total wave function.
For example, by increasing the e-I effective strength from
Z = −0.1 [Fig. 4(a)] to Z = −1 [Fig. 4(b)], the contribution
of the singlet s-configuration decreases from C2

0 ≈ 0.83 to
respectively C2

0 ≈ 0.64. The compensatory parts come from
other configurations which also have L = 0 such as (n1 =
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FIG. 4. Splitting of the two lowest singlet and triplet states as
a function of the impurity position in a two-electron single QD
for four different effective charges of the impurity; (a) Z = −0.1,
(b) −1, (c) 0.1, and (d) 1 in case λ = 2 (h̄ω0 = 2R∗

y/4 = 2.655 meV).
Dotted lines are the data obtained for the zero-effective-charge case
(Z = 0) for reference.

0,l1 = 0; n2 = 1,l2 = 0), (0,0;2,0), (0,0;3,0), etc. Those states
stay closer in energy with increasing λ (=2 in this case).

Above we discussed the impurity effect for an attractive
impurity (positively charged Z < 0). A negatively charged
impurity which induces a repulsive coupling with electron is
examined in Figs. 4(c) and 4(d) for two effective charges,
Z = 0.1 and Z = 1. The splitting energy between the ground-
state singlet and the first-excited triplet is plotted as a function
of the impurity position d. Apparently, when the impurity is
found at the origin d = 0, it repels the two electrons most.
The probability of the electrons to be found at the origin
(s-orbital) reduces significantly. In this case, the electrons
can be found at other higher Fock–Darwin states. This means
that the ground-state energy becomes closer in energy to the
first-excited state. That explains a smaller splitting energy we
obtain for Z = 0.1 [see Fig. 4(c)] and Z = 1 [see Fig. 4(d)] as
compared with, respectively, the cases Z =−0.1 [see Fig. 4(a)]
and Z =−1 [see Fig. 4(b)]. Moreover, we see from Figs. 4(c)
and 4(d) that when the impurity is moved away from the center
of the QD, the splitting energy starts to increase. In other
words, the probability of finding the electrons in the s-orbital
increases.

C. Impurity effect on the energy spectrum

Technically, the presence of a charged impurity leads to an
increase in the number of nonzero off-diagonal elements of
the Hamiltonian matrix. We present such examination on the
energy spectrum of the two-electron single QD as a function of
the impurity position. The competition between the two types
of Coulomb interaction results in different relative orders of
the energy levels depending on both the impurity charge Z and
the impurity position d.

For the weak-perturbation case, Z = −0.1 [Fig. 5(a)], the
e-I interaction strength is much smaller (10 times) than the
e-e interaction. The ground-state energy (level’s degeneracy
g = 1) is the singlet state where the configuration with the
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FIG. 5. (Color online) Low-level energy spectrum as a function
of d of a two-electron QD in case (a) Z = −0.1 and (b) Z = −1
for λ = 2. Each level is labeled by g as the level’s degeneracy,
L, S as total angular momentum and total spin, and the major
electron configurations (n1,l1,n2,l2). n1,l1 and n2,l2 are the radial
and azimuthal quantum numbers for electron, 1 and 2. The inset in
(a) is a magnification of the main plot which highlights the region
with the occurrence of the crossing at d/a∗

B ≈ 0.0008.

two electrons in the s-orbital is highly dominant. The first-
and second-excited states have degeneracies g = 2 due to
the symmetry of L = ±1 states. Note that at B = 0 the
results are independent of spins. We present the results in
the Sz = 0 subspace. We discuss the L = 1 case. In the first-
excited state, the most dominant configuration is (0,0;0,1), the
second configuration is (0,−1;0,2), and the last configuration
is (0,0;1,1). These three configurations and their exchange
states have coefficients with opposite signs in the wave func-
tion (C(0,0;0,1) = −C(0,1;0,0) ≈ 0.7, C(0,−1;0,2) = −C(0,2;0,−1) ≈
0.07, and the other C(1,1;0,0) = −C(1,1;0,0) ≈ 0.06), leading to
the triplet first-excited state. The second-excited state has
an opposite manner leading to the total spin S = 0. Plus,
the second dominant configuration and the third dominant
configuration in the second-excited state switch their relative
orders (sorted in probability) in the total wave function as
compared with their orders in the first-excited state. The
highest energies in Fig. 5 are the (L = ±2, S = 0) states with
the largest configuration (0, ±1; 0, ±1). Other considerable
configurations are (0,0; 0, ±2) and (0, ∓ 1; 0, ±3).

In the two energy spectra presented in Fig. 5, the ground
state and the first-excited state remain as singlet and triplet
states. The fourth, fifth, and the sixth levels, which are the
(L = 0, S = 0) and (L = ±1,S = 0) states, exhibit a crossing
at d = 0.0008a∗

B . For d < 0.0008a∗
B , the (L = 0, S = 1) state
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FIG. 6. (Color online) Low-level energy spectrum of two-electron
single QD containing a repulsive impurity (a) Z = 0.1 and (b) 1 for
λ = 2. The inset in (a) is the magnification of the main plot into the
region d = 0,1.1a∗

B ) to signify the crossing at d = 0.44a∗
B between

the states (L = 0, S = 1) and (L = 2, S = 0).

has a lower energy than the two-fold degenerate (L = ±1,
S = 0) state. The major contributions to the wave function
of the lower energy are, sorted in probability, (0,0; 1,0),
(0,0; 2,0), and (0,0; 3,0). Increasing d � 0.0008a∗

B leads to the
exchange between the (L = 0, S = 1) and (L = ±1, S = 0)
states where the two-fold degenerate (L = ±1, S = 0) state
has lower energy.

The above physics resulted from the dominant e-I interac-
tion when Z = −1. The (L = 0, S = 1) and (L = 1, S = 0)
states now have smaller energies than the (L = 2, S = 0)
state. Besides, it is found that the two-fold degenerate states
(0, ±1,0, ∓1), which dominate in the third-excited energy
level (L = 0, S = 1) for Z = 0, have higher energies when
the impurity is present.

The positive-Z case does not affect the energy spectrum
as strongly as does for the negative-Z case. The reason is
that the impurity in the positive-Z case induces the same type
of Coulomb interaction with the QD e-e interaction. However,
such an exchange in the relative order of the energy levels, e.g.,
between the (L = 0,S = 1) and (2,0) states (corresponding
to levels 4−6) can still be observed (see the crossing at d =
0.44a∗

B in Fig. 6). The point d = 1.52a∗
B appears as a crossing-

like point but it is only an almost-zero energy gap between the

(1,0) and (0,1) states. Similar to the attractive impurity case,
a larger e-I interaction also results in a smaller energy gap
between the first-excited state and the second-excited state.

D. Summary for the impurity effect on the energy spectrum
of two-electron single QDs

The cases of negative and positive Z affect the energy
spectrum in different manners. Apparently, the impurity effect
for the Z < 0 case is expected to be stronger than the Z > 0
case. When Z = −1 the e-I interaction strongly competes and
dominates over the e-e interaction. Let us take an example to
illustrate the point. In the weak-perturbation regime, i.e., |Z| =
0.1, the e-e interaction dominates over the e-I interaction.
The order of the low-level energy spectrum then exhibits no
difference between those two cases, Z = ±0.1. Now, |Z| is
increased to 1. However, the system with negative Z exhibits a
stronger e-I interaction. Such a strong effect for the attractive
case Z = −1 is observed in the exchange of the singlet and
triplet states with L = 1 and L = 0 as seen in the inset of
Fig. 5(b). For the repulsive case Z = 1, this exchange is no
longer observed. Only the exchange between the triplet L = 0
and singlet L = 2 is found. The repulsive e-I interaction in
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FIG. 7. (Color online) Schematic plot of the confining potential
(bottom) and the charged impurity potential (top) in a coupled-two-
dot system. We assume the impurity is negatively charged with Z1 =
1 and is located along the line connecting the two double-well minima
(±am) where ±, respectively, indicates the left (L) and the right
(R)-dot. The two solid lines on top depict the impurity potential on the
two individual electrons in the two separate QDs. The upper solid line
is the potential of the electron in the right dots and the lower solid line
of the electron in the left dot, respectively. Dotted lines on top depict
the other case when the impurity is located on the other half of the
x axis (x1 < 0), i.e., it can be found inside the left dot. Vb is taken to be
30 meV. The inset is the Coulombic potential of the impurity, located
along the growth direction, which equally repels the two separate QD
electrons.
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the case Z = 1 is manifested in the presence of the (L = 2,
S = 0) state which was not seen in the lowest energy levels
shown in Fig. 5(b) for Z = −1.

IV. COUPLED QUANTUM DOTS

Numerical results for the singlet-dot case were discussed
in detail, mostly for λ = 2 corresponding to l0 = 2a∗

B =
20.6 nm. This value of λ was studied based on the realistic
sizes of GaAs single QDs. However, we also theoretically
discussed the results for a typical range of λ = (1,2) as
seen in Fig. 3(a). For the coupled-QD problem, we used
the optimized parameter set after Ref. 22 where l0 = 10.01
nm (h̄ω0 = 11.24 meV). Mapped on the single-dot case, the
coupled-two-dot system will have “λ” ≈ 1. The model of
coupled dot system in the presence of a charged impurity
can be schematically described in Fig. 7. We plotted the
impurity potential in the top panel for the case in which
the impurity is located along the line connecting the two
minima of the double well and in the inset for the case
along the growth direction. It is clear that the impurity
effect is largest when the impurity is at either of the two minima
of the confining potential well in the former case, whereas the
latter case has the largest impurity effect when the impurity is
found at the center of the system, i.e., R = 0. We label the two
impurity coordinates as R1(2) = (x1(2),y1(2),z1(2)).

A. Singlet-triplet splitting

1. Impurity-position dependence

In the coupled QD system without impurity and without
magnetic field (B = 0), the two lowest energy levels are the
maximally entangled exchange spin states, respectively, the

singlet �S
1 and the triplet �T . The next higher excited states

are the linear combination of the two doubly occupied singlets

which result in “bonding” (ψS
2 +ψS

3√
2

) and “antibonding” (ψS
2 −ψS

3√
2

)
states.

Let us first consider the simplest case, when the system
contains only a single charged impurity R1 = (x1,y1,z1)
(effective charge Z1) and the impurity plays only as a weak
perturbation to the coupled-dot system. However, there will be
no restrictions to the impurity location in or outside the system.
Such a system allows us to provide a direct comparison with
the single-dot case discussed earlier.

In the case in which the e-I interaction is attractive coupling,
i.e., Z1 < 0, the singlet-triplet exchange energy J is shown
in Fig. 8(a). When the impurity is located along the z axis
[see the black solid curve in Fig. 8(a)], the presence of the
impurity increases the singlet-triplet spin splitting J between
the two electrons as compared with the case when no impurity
is present [see horizontal gray dotted curve in Fig. 8(a)]. This is
understood as both electrons are attracted toward the impurity.
Because the impurity equally couples to the electrons, the
system favors the antiparallel electron spin state. This type of
e-I coupling reduces the total energy of the system [negative
binding energy presented as black solid curve in Fig. 8(c)].
As the impurity is moved away from the origin [z1 �= 0 –
still the black solid curve in Fig. 8(a)], J will decrease. Such
a decrease can be evaluated via Eq. (A4) (see Appendix A)
as the product of an exponential and complementary error
function.

When the impurity is located along the z direction of either
the two separate dots, e.g., of the right dot i.e. R1 = (am,0,z1)
[see red dashed curve in Fig. 8(a)], J remains larger than the
J for the case in which without impurity, Z1 = 0. However, J

0 1 2 3 4 5

0.20

0.22

0.24

0 1 2 3 4

0.16

0.18

0.20

0.22

0 1 2 3 4 5

-1.8

-1.2

-0.6

0 1 2 3 4 5

0.6

1.2

1.8J
 (m

e
V

)

z
1
/l

0

Z
1
=-0.1

R1= (0,0,z1)

R1= (l0,0,z
1
)

R1=(am,0,z1)

(a)

J
 (m

e
V)

z
1
/l

0

Z
1
=0.1 (b)

B
in

di
ng

 e
ne

rg
y

(m
eV

)

z
1
/l

0

(c)

B
in

di
ng

 e
ne

rg
y

(m
eV

)

z
1
/l

0

(d)

5

FIG. 8. (Color online) Singlet-triplet splitting energy calculated as a function of z1 coordinate of a single impurity in the case Z1 = −0.1
[(a) and (c)] and Z1 = 0.1 [(b) and (d)] for three different positions of the impurity x coordinate, x1 = 0 (black solid curve), x1 = l0 (red dashed
curve), and x1 = am, either of the two double-well minima (blue dashed-dotted curve). Vb is taken to be 30 meV. For comparison purposes, we
recall the value of J ≈ 0.204 meV as the horizontal dashed-dotted line in the case when no impurity is present for B = 0. Insets (c) and (d)
show the corresponding total binding energy of the three cases plotted in each main plot (a) and (b).
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behaves very differently from the above two cases, x1 = 0 and
x1 = l0. The impurity not only no longer attracts equally the
two-QD electrons (similar to the x1 = l0 case) but also affects
the doubly occupied states most. J in this case intersects the
splitting energy of the Z1 = 0 case at z1 ≈ l0. Close to the
QD sample, i.e., z1 � l0, J is always smaller than the splitting
energy for the without-impurity case, about 10%. We reserve
the detailed physical discussion around (±am,0) for a later
discussion when we examine the case for the impurity located
along the x axis.

We expect that a repulsive impurity induces an opposite
spin order of the two-electron spin orientations: the parallel
spin state. This is illustrated in Fig. 8(b). A weakly repulsive
impurity (Z1 = 0.1), located along the z axis (black solid
curve), has the smallest exchange energy (≈ 0.17 meV) when it
is, apparently, at the origin: z1 = 0. The reason is the impurity
now repels both electrons. The e-I addition energy lifts up,
by approximately a few millielectron volts, the total energy of
the coupled-two-dot system [see the positive binding energy
presented in Fig. 8(d)]. J rapidly increases and reaches the
value of the nonimpurity case as the impurity is engineered
relatively far from the origin, say 3l0.

The ground state consists of all three Hund–Mulliken
singlets, i.e., the total wave function �GS = {ψS

1 ,ψS
2 ,ψS

3 }.
However, two doubly occupied states play a small part, which
are ≈2%, to the total wave function.

The binding energy of the impurity, which is defined as the
energy difference of the system with and without a charged
impurity, shown in Figs. 8(c) and 8(d), was partially discussed
above. In both cases Z1 = ∓0.1, around z1 = 0, the absolute
value of the binding energy is found largest in the case in

which the impurity is placed closer to either of the two minima
of the well (x1 = am): 2.2 meV compared with 2 meV and
1.53 meV of the x1 = l0 and x1 = 0 cases, respectively.
Beyond a critical z1, say z1 > 2l0, the most dominant bind-
ing energy case (x1 = am, black solid curve) becomes less
dominant and compatible with the other cases, x1 = 0 and l0.
All three curves in Figs. 8(c) and 8(d) convert to the situation
without impurity at the large-z1 limit.

Now, we consider the case when the impurity is found inside
the QD. In particular, we discuss the impurity effect when the
impurity is found on the x or y axis, along which the confining
potential is constructed.

Because the Z1 = ∓0.1 case was found to weakly affect the
QD qubits and that the doubly occupied states have very small
contributions to the singlet-triplet splitting, we can now use
Heitler–London model to analytically check our numerical
results. We found qualitative agreement between the results
presented in, e.g., Fig. 9 and the analytical results shown in
Eq. (B1), in particular the minimum (maximum) in J for
Z =−0.1 (0.1). Details are collected in Appendix B.

As signified in the top plot in Fig. 1, the absolute value of the
effective e-I coupling exhibits a maximum at the either of the
two well minima and decreases rapidly as the impurity position
is out of the minima [analytical matrix elements are presented
in Eq. (A5) in Appendix A]. However, the overlap between
the two coupled QDs has a maximum at the origin (see, e.g.,
Ref. 23). In the weak impurity perturbation, i.e., Z1 � 1, these
two terms compete with each other. As a result, the singlet-
triplet spin splitting J for Z1 = −0.1 has the impurity position
dependence as shown in Fig. 9. J has a maximum at the origin
where the overlap between the two coupled dots is largest, and
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FIG. 9. (Color online) Singlet-triplet splitting energy as a function of the x coordinate of the impurity position for (a) Z1 = −0.1 and
(b) Z1 = 0.1 for Vb = 30 meV. The y and z coordinates of the impurity position, Ry and Rz, are varied from the origin (black solid curve)
to Ry = 0.2l0 (green dotted curve), Ry = 0.5l0 (violet short-dashed curve), Rz = 0.2l0 (blue dash-dotted curve), Ry = 0.2l0,Rz = 0.2l0 (red
dashed curve), and Rz = 0.5l0 (dash-dotted-dotted curve). The omitted coordinates are implied to be 0. We cover many different possible
positions of the impurity such that it can be along the x axis or along the y axis, or around the either the two minima with both x1 and y1

coordinates slightly changed while z1 = 0, etc. Notice the case where the impurity is shifted along the y axis. This shift does not add much
physics to the system. For example, see the insubstantial difference between the exchange energies in the black solid curve (y1 = x1 = 0) and
green dotted (y1 = 0.2l0) curve, or between the blue dashed-dotted (z1 = 0.2l0) and red dashed (y1 = z1 = 0.2l0) curves, etc, presented in both
(a) and (b).
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FIG. 10. (Color online) (a) Singlet-triplet spin splitting J as a function of the impurity effective charge Z1 within the range Z1 = (−1,1)
for three different positions of the impurity along the z axis and (b) the singlet-triplet state diagram as a function of the impurity charge Z1 and
its position along the z axis. Vb=30 meV. S and T refer, respectively, to the singlet and triplet state. When the impurity is positioned close to
the origin [z1 = 0 (black solid curve) and z1 = 0.25l0 (red dashed curve) in (a)], the system exhibits a triplet-singlet transition at Z1 = 0.54
and 0.8, respectively. The green dotted curve is added for reference purposes which shows that as the impurity is found at (or close) to either
the left or right minimum of the well, the system is always the singlet.

the binding energy exhibits a maximum around x1 = 1.6l0
which is identical to the quasi-bottom positions of the left
and the right dots, ±a. Compared with the case in which
the impurity is located along the z direction, the considered
case has a minimum around the point x1 ≈ 2l0 (see Fig. 9)
which is identical to the analytical minimum obtained using
the Heitler–London approximation (see Appendix B). We note
that such a minimum is obtained for an attractive impurity
which has a positive charge Z1 < 0 and |Z1| � 1. Moving the
impurity out of the dot system (blue dashed-dotted, red dashed,
and cyan dash-dotted-dot curve in Fig. 9) will lead to a decrease
in J . This situation can be considered as the coupled QDs
interacting with charged impurities found close to the surface
during the growth process. In particular, the case in which the
impurity y coordinate is displaced to 0 < y0/l0 � 1 has only
a small difference in J from the case in which the impurity
is positioned exactly along the x axis, y0 = 0 (see the green
short-dotted curves and solid black curves in Fig. 9).

2. Impurity charge dependence

The above critical point x1 ≈ 2l0 at which the singlet-triplet
splitting exhibits a maximum or minimum (see Fig. 9) depends
on the effective impurity charge Z1 and the well barrier height
Vb. In this subsection, we examine the Z1 dependence of the
singlet-triplet spin splitting J .

Besides, we notice the physics sampled around the origin in
Figs. 8(d) and 9(b), where the presence of a repulsive charged
impurity significantly lowers the singlet-triplet spin splitting
J . It is expected that, by further increasing the impurity charge
Z1, the system can be visited in the triplet state, i.e., J < 0.

Such triplet-singlet transition occurs as Z1 is larger than ≈
0.55. In both cases the impurity is located along the z axis and
along the x axis as shown, respectively, in Figs. 10 and 11.
Our calculations for the attractive coupling case Z1 < 0 show
that there is no triplet-singlet transition (see Figs. 10 and 11)
due to the fact that a positively charged impurity attracts both
electrons; therefore the favored spin state is always the singlet.

The triplet-singlet transition is further explored for different
negative charges Z1 > 0 as seen in both Figs. 10(a) and 11(a)
for different impurity locations: at the center [black solid curve
in Fig. 10(a) and full rectangles with black solid curve in 11(a)]
and off-center – slightly away from the origin. We examine
the triplet-singlet transition only for the systems with the e-I
coupling smaller than or compatible with the e-e interaction.
In fact, the limit of Z1 = ±1 does not bear much physical
meaning. However, we theoretically examine that limit to
support a complete understanding of the effective e-I strength
on the exchange electron qubits in the zero B field.

It is undoubted that when the impurity equally interacts
with the two-QD electrons and the e-I interaction strength is
considerable, the triplet ground state occurs at a smaller Z1,
compared with the unequal electron(s)-impurity interaction
case. This argument is clarified in, e.g., Fig. 11(a), where the
singlet state occurs by increasing Z1 to ≈0.54 for R1 = 0 and
further up to 0.7 for R1 = am/4 (≈0.43l0). On the other hand,
at a certain strong enough Z1, the triplet state in the case when
the impurity is located along the x axis remains longer than
in the case when the impurity is located along the z axis. For
example, for Z1 = 1, we obtain that the triplet state stays up to
x1 ≈ 0.6l0 while it is found only up to z1 ≈ 0.46l0. It is worth
noting that, at a higher Vb = 35 meV, due to the influence of
the impurity potential, the triplet state remains up to a larger
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FIG. 11. (Color online) (a) Singlet-triplet spin splitting of a coupled two-dot system as a function of the effective charge Z1 within the range
−1 < Z1 < 1 for x1 = 0 (full squares with black solid curve) and x1 = am/4 (full circles with red solid curve). (b) Singlet-triplet state diagram
plotted in the impurity-position−effective-charge R1 − Z1 plane. Vb is taken to be 30 meV. Horizontal dotted line in (a) is used to clarify the
triplet-singlet transition. In the region close to the center of the system, at ≈0.07l0 (about 0.04am), a relatively large repulsive impurity potential,
say Z1 = 0.54, is enough to induce a triplet-singlet transition [see the state diagram (b)]. The stronger the effective charge, the broader the
triplet region. Consequently, when moving the impurity close to the right bottom it requires a larger Z1 to observe the triplet-singlet transition
occur. S and T stand, respectively, for the singlet and triplet states.

x1 in comparison with the 30-meV case. For example, such a
triplet-singlet transition is obtained at x1 = 0.42l0 and 0.72l0
for Z1 = 0.6 and 1, respectively.

When the impurity is located at the right well bottom for
Z1 = ∓1, the ground state is always a singlet; however, the
maximally entangled component ψS

1 is replaced by one of
the two double-occupied components {ψS

2 ,ψS
3 } as the major

contribution to the total wave function.
We summarize in Figs. 10(b) and 11(b) the occurrence of

the triplet or singlet as the ground state when changing the
impurity position R1 and its effective charge Z1 for Vb =
30 meV. The triplet state starts to occur when Z1 is increased
to ≈0.54 at R1 = 0. The largest triplet region [R1 = (0,0.38l0)
in Fig. 10(b) and (0,0.6l0) in Fig. 11(b)] is, apparently, seen
for the largest considered Z1 (=1). In particular, close to the
origin, the triplet region is rapidly shortened. For example, for
Z1 = 0.6 the triplet region is in R1 = (0,0.3), while such a
region squeezes to (0,0.07) as Z1 decreases to 0.54. Note that
we show the singlet-triplet state diagram on the right half of
the x (z)axis. As the impurity is positioned along the other half
of the x (z)axis, the state diagram is found similarly.

3. Interdot separation dependence

In this subsection, we study the interdot dependence of
the singlet-triplet splitting J . First, we place the impurity
at the center of the dot system, i.e., R1 = (0,0,0), and tune
the barrier height from Vb = 35 meV down to 13 meV. In
the meantime, the interdot separation (2am) will decrease
from 2am = 35 nm (≈3.5l0) to 17 nm (≈1.6l0). It is worth
noting that the case in which the impurity is placed exactly at
either of the two well bottoms does not have any physical
meaning in this case because the bottoms of the double
well change concomitantly with Vb changing (see Fig. 1). In

fact, the impurity position should be fixed; thus its position
varies relatively only with respect to the double-well minima
of different Vb systems. Consequently, different Vb two-dot
systems exhibit various impurity effects on J . We obtain
the interdot separation dependence of the singlet-triplet spin
splitting J for Z1 = −0.1 in Fig. 12 and Z1 = 0.1 in Fig. 13.

For Z1 = −0.1, the splitting energy J becomes smaller as
the interdot separation increases (see Fig. 12). However, J is
found larger than that of the case without charged impurity,
as illustrated in, e.g., the full rectangles with the black solid
line (R1 = 0) and open rectangles with magenta short dashed
line (no impurity) in Fig. 12. In this case, this means that
the potential-well height is “weakened” by the attractive
impurity which attracts the electrons toward and therefore
supports the antiparallel spin interaction of the two electrons.
Displacing the impurity away from the center of the double-dot
system (full rectangles) along the x axis results in changes
as seen in a series of J presented as full circles with a red
solid curve (for R1 = 0.5l0), full up-triangles with green dotted
curve (for R1 = 0.7l0), full down-triangles with blue solid
curve (for R1 = l0), full rhombuses with dashed-dotted (for
R1 = 1.5l0), full right-triangles with yellow short-dotted curve
(for R1 = 2l0), full circles with dash-dotted-dotted curve (for
R1 = 2.5l0), and full stars with solid curve (for R1 = 3l0).
First, we analyze the data for the lowest case of Vb = 13 meV
(corresponding to 2am ≈ 1.65l0). The minimum in J for this
case is found at x1 ≈ 1.3l0

33 while the maximal value in J

is always found at the origin R1 = 0. Moreover, the system
tends to covert to the nonimpurity situation when the charged
impurity is engineered far enough from the center of the dot
system. Therefore, from the R = 0 case to the R = 0.7l0 case
we obtained such a decrease in J from ≈2.12 to 1.87 meV
but for R = l0 we obtained J almost identical to the J of a
similar system but without impurity. Note that this impurity
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FIG. 12. (Color online) Singlet-triplet splitting energy J calcu-
lated as a function of the interdot separation 2am for different positions
of the impurity when it is located along the x axis for Z1 = −0.1,
Z2 = 0. We added data in case no impurity is present as the open
squares with the magenta dashed line. Because Vb changes (from 35
down to 13 meV), effectively controlling the interdot separation,
i.e., am, while the impurity position should be fixed during the
Vb modification, we examine different locations of the impurity.
Several examples of corresponding (Vb,2am) are (35 meV,3.5l0),
(30 meV,3.3l0), and (25 meV,2l0). Inset is the magnification of the
region sampled by the big open circle for the high-Vb limit.

position l0 is considered still close to the right bottom of the
well barrier. This feature is similar to the physics around the
impurity position R ≈ 1.2l0 for Vb = 30 meV as previously
examined in full squares with the black solid curve in Fig. 9.
Further increasing x1 to 1.5l0 and 2l0 (as seen in the full
rhombuses with cyan dashed-dotted and full right triangles
with short-dotted cureves, respectively) we obtain the increase
back in the latter case. This is found due to the fact that both
1.5l0 and 2l0 are located on the right-hand side of the minimal
point in J . The latter case exhibits an increase because the
system to this extent tends to convert to the nonimpurity case.
In the furthermost case R1 = 3l0 (full stars with solid line),
J is found closer to that of the nonimpurity case, which has
higher energy than the cases R1 = 1.5l0,2l0, and 2.5l0.

Such a shift in the maximum of J by changing Vb can
be seen in Fig. 12 and its inset for the high-Vb limit where
the furthermost impurity positions R1 = 1.5l0,2l0,2.5l0, and
3l0 stay closer to the nonimpurity case in comparison with the
small-Vb cases. This is related to the fact, which was mentioned
above, that the relative distance of the impurity position to the
minimal point of J varies where the impurity can be found
either in the left- or the right-hand side of the minimal J

as Vb changes. For Vb = 30 meV (corresponding to 2am ≈
3.3l0), from the center R1 = 0 to the l0 case the singlet-triplet
spin splitting stays higher in energy while the others (R1 =
1.5l0,2l0,2.5l0, and 3l0) have lower J than the nonimpurity
case. The minimal point for this system is ≈2l0. Therefore,
the R1 = 1.5l0 case has a higher J than the R = 2l0 case,
which was opposite in the previous case, Vb = 13 meV. As
a consequence, there appear crossings in J for different R1.

Obvious crossings are seen for the cases R1 = 1.5l0,2l0,2.5l0,
and 3l0. For example, J for the R1 = 0.5l0 case (full rhombuses
with cyan dashed-dotted curve) stays lower in energy; however,
it changes as Vb varies and is found higher (or equal) in energy
than the J in the others (see the inset as a magnification for
the high-Vb limit).

Apparently, when placing the impurity close to the ori-
gin, we always obtain a larger singlet-triplet spin splitting
compared with the nonimpurity case. The largest case has
	J ≈ 0.6 meV for R1 = 0 and Vb = 13 meV. It is worth
noting that a larger Vb results in a smaller difference in J

which can be understood as a lower “tunneling” rate of the
two electrons in the two separate QDs. Quantitatively, such a
decrease can be roughly estimated by Eq. (B1).

It was made clear in the presence of an attractive charged
impurity the e-I coupling increases the tunneling rate between
the two dots. Positioning the impurity at different locations
inside the coupled two-dot system, in particular around
the (x1 ≈ 2l0,0) point, gives rise to different Vb-dependent
singlet-triplet splitting which has crossings between different
R1 curves. As illustrated now in Fig. 13 for the Z1 = 0.1
case, J in the R1 = 0 case (full squares with black solid
curve) stays lowest in energy and the J difference compared
with the nonimpurity case is found largest. For example,
	J ≈ 5.5 meV for Vb = 13 meV. J in the furthermost case,
R1 = 3l0 (full stars with navy solid curve), stays slightly
above the nonimpurity curve (open squares with magenta
short-dotted curve). This implies that such an impurity position
is on the right-hand side of the maximum point in J for all
the considered Vb [∈(13, 35) meV] in Fig. 13. It is found
opposite to the Z1 = −0.1 case where the R1 = 3l0-J curve
stays slightly lower than in the nonimpurity one. Crossings
between different R1-dependent J curves are still obtained in
the current case Z1 = 0.1, e.g., the one around 2am = 2.1l0
(corresponding to Vb = 15.5 meV) between the l0 (full down-
triangles with blue solid curve) and the 3l0-J curves, or the
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FIG. 13. (Color online) The same plot as Fig. 12 for Z1 = 0.1.
As the impurity position is engineered farther away from the origin,
the double-dot system reveals crossings between different J for
different R1.
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one at 2am ≈ 2.61l0 (Vb = 20 meV) between the 1.5l0 (full
rhombuses with cyan dashed-dotted curve) and the 2l0-J curve
(see also the inset of Fig. 13), etc.

It is important to note that the |Z1| = 0.1 case studied so
far has not exhibited any crossing between the singlet and
triplet states, i.e., the triplet state always stays higher in energy
than the singlet state. The presence of an attractive impurity
increases the singlet-triplet splitting as opposed to the effect
seen for a repulsive impurity. The extreme behavior of J is
obtained at either of the two minima of the potential well.
An attractive impurity seems to increase the tunnel rate of the
coupled-double-dot system.

B. Energy spectrum

In the single QDs, as discussed in Sec. III, the impurity
effect on the energy spectrum of the system is substantial
as e-I interaction is competitive with the e-e interaction. We
obtained different crossings between low-lying excited states
and anticrossings with varying energy gaps. If such a similar
effect is found in the coupled-double-QD system, the question
of “whether quantum operations in the coupled-dot system are
affected” attracts our attention.

To examine the validity of using coupled dots containing
charged impurities as the basis of quantum logic gates in
quantum computation, we mainly look into the low-level
energy spectrum.

The energy spectrum of double QDs containing a single
impurity located at R1 = (0,0,z1) and (0.5l0,0,z1), respec-
tively, is shown as solid and dash-dotted curves in Fig. 14(a).
The latter case (dash-dotted curve) has a larger impurity effect
on the energy gap between the first two lowest levels and the
two highest energy levels which can be understood from an
earlier discussion. The energy levels bend down to the z1 = 0
as its x coordinate x1 �= 0 as compared with the case x1 = 0
because the impurity has a stronger interaction to the electrons
when it is closer to the well bottoms.

The x1 dependence of the energy spectrum is studied
in Fig. 14(b) for two different z1 = 0 and z1 = l0/2. The
minimum, discussed earlier in Fig. 9, related to the physics
of having an impurity around the well bottoms, is seen in
the energy levels of Figs. 14(b) for z1 = 0. The spin splitting
between the two fully filled states is most affected also when
the impurity is at the well minima. The probability of finding
the two electrons in the right dot (containing the impurity)
increases. The absolute value of the e-I coupling for the right
(in the present case) doubly occupied state is maximal at
(am,0).

For Z1 = 0.1 [see Fig. 15(b)], it is found opposite to the
attractive Z1 = −0.1 case. The impurity (in the right dot) now
tends to repel both electrons which leads to a higher probability
of finding the two electrons in the left dot. Consequently, the
doubly occupied state of the right dot gains energy via the
e-I interaction and stays higher in energy (blue dashed-dotted
curve) than the singlet state (green dotted curve) of the left
dot. Such a maximum around the bottom (am,0) in the blue
dashed-dotted curve in Fig. 15(b) has physics similar to
that discussed earlier for Z1 = −0.1. Remember that, in the
attractive case, the singlet-triplet spin splitting has a minimum
around 2l0 (see Fig. 9) which results due to i) the competition
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FIG. 14. (Color online) Energy spectrum of the QD system
studied (a) in Fig. 8(a), and (b) in Fig. 9(a), respectively, as a
function of the impurity position (along the z and the x axes) for
Z1 = −0.1,Z2 = 0. Vb = 30 meV. Because there is no crossing
or anticrossing in the energy spectrum, we use the same style of
line for a certain R1 dependence. In (a), solid curves depict the
impurity-position dependence when the impurity is located along the
z axis and, dash-dotted curves depict the situation when the impurity is
outside the double-dot system [along the line (y1 = 0; x1 = 0.5l0)].
In (b), solid curves depict the case R1 when is changed along the
x axis, and dash-dotted curves depict the situation where the impurity
is outside the double-dot system but along the x direction. The
latter case of (a) with x1 = 0.5l0 (dashed-dotted curves) reveals a
stronger impurity effect on the coupled qubits in comparison with
the case when the impurity is on the z axis [solid curves in (a)].
The R1 = (0,0,z1) case induces equal exchange coupling to the two
electrons mostly found on the individual dots. The latter case of
(b), on the other hand has a much weakened impurity effect on the
double-dot system in comparison with the case where the impurity is
found on the line connecting the two confining potential minima.

between the wave function overlap of the coupled two-dots
and the impurity potential on the right-dot electron and ii) the
doubly occupied states have a relatively small contribution to
the total singlet state (the ground state). Now, the effective
charge changes its sign (0.1) and we obtain a maximum [see
the inset of Fig. 15(b)]. The other left-dot fully occupied
state [green dotted curve in Fig. 15(b)] shows a decrease only
in x1.

Even though the presence of the impurity changes the
singlet-triplet splitting, as discussed above, the energy gap 	ε
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FIG. 15. (Color online) The same plot as shown in Fig. 14 for a
repulsive impurity Z1 = 0.1. There is a change in the relative order of
the two excited states in (b) as compared to the above case Z1 = −0.1
(see Fig. 14).

between the highest spin state that stores information and the
lowest unwanted state, in this case the first- and the second-
excited states, remains much larger than the singlet-triplet
splitting energy J . In the case Vb = 30 meV, J/	ε is typically
� 0.07. This means that the adiabatic condition is satisfied so
that higher excited states are not involved when the system is
evolved to its desired state.

C. Strong electron-impurity coupling destroys coupled qubits

1. Strong perturbation

In the following, we discuss in detail the influence of a
strongly perturbative impurity on the energy spectrum for
Z1 = ∓1. Results for other intermediate Z1 (e.g., ∓0.6, ∓0.8)
are collected in Appendix C.

We plot in Fig. 16 the impurity-position dependence of the
singlet-triplet spin splitting J when the impurity is located
along the z axis for (a) Z1 = −1 and (b) Z1 = 1. The former
case has a qualitative curve similar to the case Z1 = 0.1
with a much larger exchange energy J . The latter case
has a triplet-single transition which occurs at z1 = 0.38l0 as
obtained already in the singlet-triplet state diagram, Fig. 10(b).
This property results from the strong e-I interaction as Z1 is
increased to 1.

For the case in which the impurity is located along the x axis
and Z1 = 1, we obtain in Fig. 17 and its inset the entire triplet
state for the case in which the impurity is engineered at the
origin or very close to the origin, say R1 < 0.6l0 (see the inset).
The R1 = 0 case has the impurity that equally repels the two
electrons in the two individual QDs and the impurity is kept
distant from the two well minima. As a result, the favored state
becomes the triplet with two electron spins aligned parallel
to each other. Moving the impurity off-center means that
there appears a bias in the impurity-electron coupling with
the two electrons. Such a triplet state becomes weakened and
disappears when the bias increases to its maximum for the
case when the impurity is found around the bottoms of the
confining potential.

2. Destroy of coupled qubits

The impurity effect of small effective charges shown in
Figs. 9 and 15 as discussed above for Z1 = ∓0.1 results in
a relatively small coupling between the three Hund–Mulliken
singlets in the ground-state singlet. Quantitatively, the major
(≈98%) component is the ψS

1 ; therefore the mixing of ψS
1

with the other two singlets ψS
2,3, with the probability of about

1% each, can be neglected. The considerable impurity effect
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FIG. 16. Singlet-triplet spin splitting J calculated as a function of the impurity position along the z axis for (a) Z1 = −1 and (b) 1. Vb = 30
meV. S and T stand for, respectively, singlet and triplet. The horizontal dotted line in (b) is used to clarify the triplet and singlet states. Such a
triplet-singlet transition is obtained at z1 = 0.3l0 for Z1=1.
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FIG. 17. Singlet-triplet spin splitting J of a singly doped charged
impurity coupled-double-dot system as a function of the impurity
position when it is located along the x axis for Z1 = 1. Vb = 30 meV.
The inset is the magnification of the circled region in the main plot
which highlights the triplet-singlet transition in the small-x1 region.

is observed in the excited singlets where such full bonding
and antibonding states are no longer found at B = 0 when the
impurity is found in either of the two individual QDs. Plus, the
probability of finding the electrons in a fully occupied state is
increased.

In the next examination, we study the case when the
coupling between the electron and the impurity is compatible
with the electron-pair Coulomb interaction by increasing the
absolute effective impurity charge Z1 to ±1. The energy
spectra are now shown in Figs. 18(a) and 18(b). For the
attractive impurity case [see Fig. 18(a)], the triplet remains
as the first-excited state while the ground state now mixes
three singlets, with the leading term varying either the spin
exchange singlet, �S

1 , or the right-dot doubly occupied state
ψS

3 . The other singlet ψS
2 (left dot) has a slightly larger than

zero contribution.
Particularly, the singlet-triplet splitting in the case Z1 = −1

changes mostly differently in comparison with the weak-
impurity-potential case Z1 = −0.1. J now has somewhat
similar physics to the case Z = 1 around the right bottom
of the potential well. A maximum in J (≈6 meV) was seen in
both cases, as shown in the insets of Figs. 18(a) and 18(b).

Now, the strong e-I interaction leads to the triplet-singlet
transition at R1 ≈ 0.6l0 (as discussed already) for Z1 = 1 and
“virtual” coupling between the three states ψT , ψS

1 , and ψS
2

with each other.
As compared with the weak-perturbative case, where the

minor contributions of the ψS
2,3 states, up to 1% each, are

negligible, such contributions now start increasing and can
exceed 50% and even larger for the doubly occupied singlet
of the dot containing the attractive impurity (the right dot,
i.e., the ψS

3 ) and of the dot without impurity (the left dot,
i.e., the ψS

2 ) for the repulsive case. Consequently, the doubly
occupied state can become the ground state and the exchange
spin singlet becomes the first excited singlet. From Fig. 18(a),
the green short dotted curve corresponds to the ψS

3 (major) and
the blue dashed-dotted curve corresponds to the ψS

2 (major)
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FIG. 18. (Color online) Energy spectrum of a coupled-QD system exhibits a strong impurity effect examined as a function of the (single)
impurity position located along the x axis for a (a) positively (Z1 = −1) and (b) negatively (Z1 = 1) charged impurity. The inset in each layer
is the corresponding singlet-triplet spin splitting J where both exhibit a maximum around the right bottom of the well. Different from the
attractive case Z1 = −1 in (a), the repulsive case Z1 = 1 in (b) overcomes a triplet-singlet transition at ≈0.6l0 [see the inset of (b)]. The green
dotted curve in (a) represents either the ψS

3 singlet or the ψS
1 singlet (see discussion in text) while the green dotted curve in (b) represents either

the ψS
2 singlet or the ψS

1 singlet. The red dashed curves in both (a) and (b) are the triplet states. Circles that sample the anticrossings indicate
the transition of ψS

1 as the ground state to the first excited state and the transition back to the ground state as x1 increases. Anticrossings and
an almost zero-energy gap between the first and second excited states in both (a) and (b) are the evidence to claim that the coupled qubits are
“destroyed” and the adiabatical condition is violated.
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state in the region R1 < 0.8l0 and R1 > 2.7l0. The region
in between 0.8l0 < R1 < 2.7l0 has the ground state as the
doubly occupied singlet ψS

3 in Fig. 18(a) and ψS
2 in Fig. 18(b).

The minor components in the first-excited state in both cases,
respectively, ψS

1 plus ψS
3 and ψS

1 plus ψS
2 , fluctuates around

7% and 3% as the impurity is located close to the center of
the system. In Fig. 18(b) we see a switch between the left and
right doubly occupied singlets where the singlet of the right
dot (with impurity, blue dashed-dotted curve) stays higher in
energy than the one of the left dotted curve (green dotted
curve).

The “virtual” coupling between the three singlets and the
triplet addressed above is now examined in both cases Z1 =
∓1. At the well right bottom R1 = (am,0), the triplet (red
dashed curve) “couples” with the first excited singlet as the
green dotted curve [ψS

3 in Fig. 18(a)] and [ψS
2 in Fig. 18(b)].

The energy gap between the triplet and the first-excited state
is found close to zero. This virtual coupling can be understood
by the two anticrossings between ψS

1 and ψS
3 in Fig. 18(a) and

between ψS
1 and ψS

2 in Fig. 18(b).
To better understand the physics manifested in the mixing

of different singlet states as well as the “coupling” between
the triplet and the first-excited singlet as shown in Figs. 18(a)
and 18(b) and the triplet-singlet transition in case Z1 = 1, we
calculate the probability of finding the three singlet states as
functions of the impurity position inside the double-dot system
for weak and strong e-I coupling, respectively, in Figs. 19(a)

FIG. 19. (Color online) Probability of finding the three singlet
states as defined in Eq. (17) in the ground state as a function of
the impurity position for different Z1 for weak (a) [Z1 =−0.1 and
(b) 0.1] and strong (c)[Z1 =−1 and (d)1] impurity potentials. The
triplet state can be the ground state and only “couples” (e.g., via an
anticrossing, as discussed earlier in Fig. 18) but does not mix with
the singlet; states therefore the probability of finding such a state is
always 1. The impurity position is R1=(x1,0,0). The top dash-dotted
horizontal line corresponds to the probability of finding the �S

1 state
in the case without impurity for B = 0.

and 19(b) and Figs. 19(c) and 19(d) for the ground state.
We first explain for the triplet-singlet transition in the case
Z1 = 1 [see Fig. 17(a)] and the “coupling” of the first excited
singlet and the triplet in case Z1 = ∓1 [see Figs. 18(a) and
18(b)]. The triplet-singlet transition can be understood from
Fig. 19(d), where the region x1/l0 � 0.6 has zero probability
of finding the ψS

1 state in the ground state. It is because the
triplet state becomes the ground state and the singlet ψS

1 is the
major component of the first-excited-state wave function in
this considered region. The dominant of the doubly occupied
singlet ψS

3 in the ground state for Z1 = −1 and of the ψS
2 for

Z1 = 1 is now specified as the region 0.8l0 < x1 < 2.7l0 in
Figs. 19(c) and 19(d). This region is identical to the maximal
behavior of J as seen in Figs. 18(a) and 18(b) and their two
insets. For the weak-impurity-potential cases Z1 = ∓0.1, there
are no anticrossings in the energy spectrum and the doubly
occupied singlets remain always as the excited singlets with
small probability [see Figs. 19(a) and 19(b)].

D. Coupled qubits perturbated by two impurities

For simplicity, we first assume that two impurities have
identical charges Z1 = Z2 and one impurity is kept at one of
the two minima R2 = (−am,0,0). The other impurity can be
arbitrarily located along the other side of the x axis, R1 =
(x1 > 0,0,0). Under these circumstances, the two impurities
generally induce different e-I couplings and hence affect
the qubits asymmetrically except when x1 = −x2 = am(See
Fig. 20). In this case, both doubly occupied singlets are found
compatible which have similar contribution to the two excited
singlet states. Therefore we no longer see a minimum or
maximum, depending on the sign of Z1, in the second- or
third-excited state as obtained in the case Z2 = 0. Such a
pronounced minimum is now “eliminated” due to the presence
of the second impurity, located at the other bottom (left)
of the two-dot system, which induces a competing e-I coupling.
The singlet-triplet spin splitting J has maximal behavior when
the impurity is found close and at the bottom of the right dot.

Another way to study the asymmetric impurity effect in the
considered double-dot system with two impurities is to adjust
the effective impurity charges with respect to each other while
their positions are kept symmetrical to the origin, i.e., Z1/Z2 �=
1 while R1 =−R2. We compute the singlet-triplet spin splitting
for three different values of Z2/Z1 = 1,1.1, and 1.2, while
R1,2, changes for both the positively and negatively charged
cases in Figs. 21(a) and 21(b), respectively. The results shown
in Fig. 21 are obtained for Z2/Z1 slightly different in units
to examine the asymmetry that arises due to the dissimilarity
in impurity charges compared with the asymmetry due to the
impurity positions discussed earlier in Fig. 20 for Z1 = Z2.

Apparently, if one replaces one of the two identical
impurities by an charge opposite to the other, one can revisit the
“asymmetric” phenomenon between the two doubly occupied
singlets in the two dots which now can be enhanced as
a double. Our further calculations show that if Z1 = −Z2

= −0.1 and R1 = −R2 = (−am,0,0), for Vb = 30 meV the
two doubly occupied states have a significantly large energy
gap and the higher level, which is the right-occupied state in
this case, exhibits a maximum around (am,0), one of the two
potential-well minima. Generally, this considered situation
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FIG. 20. (Color online) Singlet-triplet splitting (black solid
curve) of a coupled-two-dot system with the presence of two identical
charged impurities but located asymmetrically along the x axis: one
is fixed at the left bottom and the other is located along the x > 0 axis
for weak e-I coupling: (a) Z1 = Z2 = −0.1 and (b) Z1 = Z2 = 0.1.
Vb is taken to be 30 meV. Violet dashed-dotted curves are the J for
the single-impurity system extracted from Fig. 9.

can be extended to the case in which the charged impurities
are different types and obey a specified charge distribution.
By examining the energy spectrum of the coupled dot, as
illustrated in the above discussion, one can detect the impurity
effect on the singlets of the double-dot system. This can be
made possible due to the distinguishability between the total
positively and the total negatively charged cases. It is also
possible that both impurities are found either in the left or
right dot; however, not much different physics from the case
with only a single impurity will be added.

The last part of this section is reserved to examine one
special case described in what follows. The coupled two-
dot system interacts with two negatively charged impurities
Z1 = Z2 = 1, equal to the electron charge. Now, the two
impurities are engineered such that they are far enough
from the target (A) coupled two-dot sample and induce an
electrostatic interaction only to the two electrons of the target
system. We examine the case in which the two impurities have
varied positions but their center-of-mass coordinates are kept
unchanged, in this case Rc

12 = (R1 + R2)/2 = (5am,0,0). This
center-of-mass location can be imagined as another “center” of
another coupled two-dot system (B) where the two impurities
are mostly found at the well bottoms of system B. That the
relative positions of individual impurities vary with respect
to their center-of-mass position can be imagined as the well
barrier height is tuned, resulting in varying interdot separation
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FIG. 21. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position in the case when the two impurities
are symmetrically located, R1 = −R2, but they are charged slightly
differently: (a) both impurities are positively charged and (b) both
impurities are negatively charged with Z1 = ±0.1 and Z2 = Z1

(black solid curve), 1.1Z1 (red dashed curve), and 1.2Z1 (blue
dashed-dotted curve). Vb is taken to be 30 meV. Vb is fixed at 30 meV,
which corresponds to am ≈ 1.64l0. Note that the system converts to
the situation without impurity at a much larger x1 than the singly
doped impurity case (previously seen around 3.5l0). In this plot, at
x1 = 4l0 the system does not convert to the case without impurity
(e.g., 	J ≈ 0.01 meV) and the total binding energy 	E ≈.0.8 meV
for Z1 = −0.1 [black solid curve in (a)].

in system B. A and B interact only via the e-I Coulomb
interaction. Now, we study the influence of the presence of
system B on the qubits of system A. We plot in Fig. 22
the singlet-triplet spin splitting as a function of one impurity
position for system A. We find that J decreases as the impurity
which stays closer to the system A is positioned further from
the system A. This effect is expected to be significantly
enhanced if one applies an external field to engineer the
impurities in and out the active region of target system A.
As a result, one can see such anticrossings as seen earlier
for Z = ∓1, where the triplet state stays in-between the two
lowest singlets.

V. DISCUSSION AND CONCLUSION

The coupling of two qubits is sensitively affected by the
presence of a charged impurity. A charged impurity which is
found inside the right or the left dot “breaks down” the equality
between the right and the left doubly occupied singlet states.
In the case when the impurity weakly couples with the
electrons, the maximally doubly occupied singlet of the dot
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FIG. 22. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position in case the two impurities (blue
circles) are located relatively far from the two potential minima,
R1 + R2/2 = 5am and the closest impurity to the active coupled
two-dot system (the gray box) starts at R1 = 3.5am. By fixing the
center-of-mass coordinate of the two impurities at Rc = 5am, we
imply such two impurities can be considered as another coupled
two-dot system which has no tunneling coupling with the considered
two-dot system in the gray box. That the relative positions of each
impurity R1,2 vary with respect to the origin (0,0) of the active system
can be mapped to the problem of other two-dot system (in open dotted
box) with varying potential barrier heights. Vb of the active system
is taken to be 30 meV. J is slightly different from that of the system
without impurity.

containing the impurity has a smaller energy due to the e-I
coupling. This can be considered as a tool to distinguish
the doped and undoped QD components in the coupled-QD
system.

A relatively strongly repulsive impurity which almost
equally couples to the two individual QD electrons will result
in an entire triplet state at B = 0 due to the small competition
between the two e-I couplings. This can be observed by
positioning the impurity around the origin of the double-dot
system. When the impurity is found close to the bottoms of
the confining potential well the system will stay in the singlet
state where the two electrons perform the favored singlet state
with spins anti-parallel to each other. Due to this fact, the
influence of the interdot separation in the presence of impurity
can be examined by modulating the well barrier Vb without
changing the single-particle properties in individual QDs. The
reason is that the relative position of the impurity with respect
to the minima of the two-dot system is effectively controlled
by changing Vb. We found that an attractive impurity serves to
increase the “tunnel” rate between the two coupled dots.

In general, charged impurities “destroy” the maximally
entangled singlet state by mixing the different singlets
having varying contributions to the total wave function. A
strongly perturbative impurity really “messes up” the quantum
information obtained from this coupled QDs because the triplet
state couples to the second-excited state by the presence of
anticrossings with a slightly larger than zero-energy gap. The
ground state now can favor a doubly occupied state. Because
the triplet is always obtained with probability 1, it occurs
in between the two lowest singlets: the exchange singlet ψS

1

and the doubly occupied ψS
2 or ψS

3 depending on the sign of
the effective charge Z1. The energy spectrum appears with
anti-crossings, as seen in our results.

In the presence of two identical charged impurities,
the breakdown between the two doubly occupied singlets
of the left and the right dots is “mended” if the impurities are
located exactly symmetrically along the line connecting the
two confining potential minima, i.e., the x axis. As a result,
one no longer obtains such a bias between the two doubly
occupied singlets in the left or the right dot, as seen in the
energy spectrum.

The mixing of different singlet states and anticrossing
coupling of the singlet and triplet states due to the impurity
presence results in a significant effect on the qubit operations,
e.g., exchange and C-NOT, in the considered coupled two-QD
system.

Finally, we discuss the implications of our results for the
operation of semiconductor spin qubits. Obviously, without
some quantitative knowledge of impurity locations near the
qubits, no real comparison between our results and exper-
iments would be possible. But we can make some general
remarks based on statistical considerations.

First, semiconductor qubits are typically fabricated by litho-
graphic techniques, creating QDs from parent 2DEG systems.
The low-temperature mobility of the 2DEG is controlled
entirely by the background charged impurity density both
in Si34 and in GaAs35 systems. Theoretical calculations34,35

can provide quantitatively accurate information about the
ensemble-averaged impurity density in the 2DEG from the
mobility measurements. This information about the back-
ground impurity density can be converted to a statistical
probability of finding impurities located in specific QD
structures since the effective active areas of the dots would be
known from the lithographic structures. For example, a typical
GaAs 2DEG would have 1010 to 1011 charged impurities per
square centimeter. whereas Si systems are typically dirtier
with 1011 to 1012 charged impurities per square centimeter.
This crudely translates to one charged impurity every 10 to
100-nm in linear distance statistically. Typical lithographic
qubits are 20–100 nm squares, indicating the presence of
1-5 charged impurities per qubit statistically with GaAs (Si)
being near the lower (higher) number. Of course, the details
of impurity locations matter very much, and the statistical
considerations could be improved and combined with our
exchange splitting calculations to obtain the effective sample
“yield” for a given 2DEG mobility, i.e., estimate the fraction of
samples that would statistically have the impurities far enough
for spin-qubit operations to work. But even these elementary
considerations show that the effective yield is likely to be very
low, with probably only about 1–5% of QD systems being
“lucky enough” to have the impurities located far enough
from the dots for them to work as spin qubits. The rest, even
before taking into account extraneous experimental factors
(e.g., leakage, noise), simply would not work because there
is no effective singlet-triplet coupling providing the necessary
entanglement in the system. A possible way of circumventing
this problem may perhaps be having several electrons per dot
so that the external charged impurity potential is effectively
screened by the QD electrons, but this raises the problem of
having rather weak exchange coupling in multielectron dots.22
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The complex interplay of multielectron dots in the presence
of random-charged impurities in the background is left as an
important future open problem in this subject, which may very
well be the next important step in this direction.

Second, an important effect of background charged
impurities is their fluctuations which produce various charge-
noise signals in semiconductor devices. This charge noise may
very well be the limiting decoherence mechanism in currently
existing semiconductor QD spin qubits.36 Normally, of course,
charge noise would not adversely affect spin configurations,
but semiconductor spin qubits depend on the electrostatic
exchange coupling which is affected by external charged
impurities, as discussed extensively in this paper. Therefore,
any impurity fluctuations would lead to spin-qubit decoherence
through the charge-noise mechanism.37,38 Our current work
provides a quantitative estimate of the strength of such charge
noise if the fluctuation spectrum (or the fluctuation time scale)
is known. Deriving microscopic information about charge
noise from our results could be another future interesting
direction of research.

Third, the inevitable presence of static charged impurities
in the background makes every semiconductor dot spin qubit,
whether in GaAs or in Si (or some other material), unique
since the microscopic electrostatic potential environment for
each qubit will necessarily differ in a random manner from
qubit to qubit due to background impurities, as shown in
this paper. In particular, the singlet-triplet energy separation
and the consequent exchange coupling will thus be somewhat
random in a collection of many qubits. This would in turn
necessitate characterization of each qubit in the eventual
quantum computer rather precisely since the gate operations
depend very strongly on the knowledge of the exchange cou-
pling between the dots. Such a characterization will adversely
affect the scalability of semiconductor spin quantum computer
architectures. Our work shows the importance of having an
ultraclean impurity-free environment even for solid-state quan-
tum computation, similar to the requirements for topological
quantum computation using non-Abelian fractional quantum
Hall states,39 not because spin quantum computation needs
ultra high mobilities,34 but because it requires stable values of
exchange coupling without large qubit-to-qubit variations. Our
current work indicates that an order-of-magnitude reduction
in the background impurity concentration in GaAs, bringing
it down to around 1013/cm2, which is also the goal for topo-
logical quantum computation,39 should lead to the production
of 100–1000 spin qubits with an impurity-free environment
rather easily. Unfortunately, for Si-SiO2 systems this is a
very stringent condition because of the invariable presence
of large oxide charges near the interface,35 but for GaAs34,36

and Si-Ge-based QD systems,32,38,40 low-impurity materials
may become available for quantum computer architectures in
the near future.

Fourth, most of the spin-qubit manipulation experiments in
semiconductor QDs are carried out under transport situations
using an external dc voltage bias. Such external voltage affects
the two dots differentially, somewhat similar to the impurity
effects discussed in the current paper since the confinement
potentials for the two dots are affected differently by the
external voltage. Our technique can be used to study this effect.
Another possible future direction of study could be impurity

effects on the fully coupled-QD energy spectra (i.e., in addition
to just the double-dot exchange energy mainly considered in
the current paper) since in some experiments41 higher energy
levels come into play. It will, in fact, be interesting also in this
context to consider multielectron QD systems with more than
one electron per dot and ask how impurity disorder affects
the energy spectra. This would necessitate a calculation of
the QD electronic structure using many orbitals per dot (e.g.,
s,p,d,f,...), which is beyond the scope of the current work.
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APPENDIX A: COULOMB MATRIX ELEMENTS

1. Single QDs

To evaluate the e-I Coulomb matrix element, we calculate
the integral:

V
n2l2
n1l1

(R̃) =
∫

ϕ∗
n1l1

(̃r)
1

|̃r − R̃|ϕn2l2 (̃r) d r̃, (A1)

where ϕn,l (̃r) is defined in Eq. (7). The denominator on the
right-hand side of Eq. (A1) is eliminated using the Gaussian
identity:

1

r
= 2

π

∫ ∞

0
e−u2r2

du. (A2)

Integrating integral (A1) over θ and setting r̃2 = t , we arrive
at

V
n2l2
n1l1

(R̃) = δl1,l2

√
n1!n2!

(n1 + l+)!(n2 + l+)!

×
∫ ∞

0
t l

+
e−(1+u2)tLl+

n1
(t) Ll+

n2
(t) e−u2R̃2

dtdu.

(A3)

Next, we use one of the properties of the Laguerre
polynomials42:∫ ∞

0
tα−1e−ptLλ

m (at) Lβ
n (bt) dt

= � (α) (λ + 1)m(β + 1)np−α

m!n!

m∑
j=0

(−m)j (α)j
(λ + 1)j j !

(
a

p

)j

×
n∑

k=0

(−n)k(j + α)k
(β + 1)kk!

(
b

p

)k

and the gamma functions for integers to calculate the integral
on the right-hand side of (A3). Finally, we arrive at the formula
presented in Eq. (18).

2. Coupled QDs

In general, the Coulomb matrix elements between the
electrons and impurity are obtained numerically. Except for
a few cases with applied constraint conditions to the impurity
position, it is impossible to obtain a closed algebraic form for
this type of Coulomb interaction. Using a similar method as
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FIG. 23. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position along the x axis for (a) Z1 = −0.1
and (b) 0.1. Black solid curves are extracted from Fig. 9 and blue
dashed curves are obtained from Eq. (B1). We receive qualitative
agreement between our numerical calculations and analytical results
where the singlet-triplet splitting energy calculated using these two
methods exhibits (a) a minimum a for Z1 = −0.1 and (b) a maximum
for Z1 = 0.1 around x1 ≈ 2l0.

before to calculate the e-I coupling elements, i.e., 〈�|V̂e−I|�〉,
we obtain

〈ϕL(R)|Ve-I|ϕL(R)〉 = ZV C
0√
π

∫ ∞

0

e−vz2
0− v

v+1√
v(v + 1)

dv,

(A4)
〈ϕL(R)|Ve-I|ϕR(L)〉 = ZV C

0

√
πez2

0−a2
0 erfc(z0),

for R = (0,0,z) and

〈ϕL(R)|Ve-I|ϕL(R)〉 = ZV C
0

√
πe− [(x0±a0)2+y2

0 ]

2

× I0

[
(x0 ± a0)2 + y2

0

2

]
, (A5)

〈ϕL(R)|Ve-I|ϕR(L)〉 = ZV C
0

√
πe−[a2

0− (x2
0 +y2

0 0)

2 ]I0

[(
x2

0 + y2
0

)
2

]
,

for R = (x0,y0,0), where a0 = am/l0, x0 = x/l0,y0 = y/l0,

and z0 = z/l0.
It is of interest to consider the special situation when the

impurity is located along the line connecting the two potential-
well minima, i.e., along the x axis in this case. In the above
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FIG. 24. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position along the x axis for different
Z1 < 0. In this plot one can see the gradual change in J from having
a minimum around x1 ≈ 2l0 to having a maximum at different x1

depending on Z1 as Z1 is increased from −0.1 (black solid curve) to
−0.8 (cyan dash-dotted-dotted curve).

sections, we discussed this case in depth. The Coulomb matrix
elements for the left and the right QD electrons are as follows:

〈ϕL(R)|Ve-I|ϕL(R)〉 = ZV C
0

√
πe− (x0±a0)2

2 I0

[
(x0 ± a0)2

2

]
,

〈ϕL(R)|Ve-I|ϕR(L)〉 = ZV C
0

√
πe−(a2

0+ x2
0
2 )I0

[
x2

0

2

]
. (A6)
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FIG. 25. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position along the x axis for different Z1 > 0.
The maximum in J is found at different x1 as Z1 changes.
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FIG. 26. (Color online) Singlet-triplet spin splitting J as a
function of the impurity position along the x axis for a specific case
of Z1 > 0: 0.6. Inset is the low-level energy spectrum of the system.
As compared with the pronounced anticrossing seen in Fig. 18(b), the
Z1 = 0.6 case has the spectrum which is close to having pronounced
anticrossings as obtained for Z1 = 1 in Fig. 18(b).

APPENDIX B: HEITLER–LONDON–APPROXIMATION

The closed analytical form of the exchange energy between
the two coupled QDs for a single charged impurity located
arbitrarily in the xy plane [R = (x0,y0,0)l0] is obtained by
solving a basic two-level problem:

JHL = − ea2
0

1 − e4a2
0

{
2h̄ω0a

2
0e

a2
0

+ 4V0
(
e

a2
0−2a0a2

0x
a8−a2

0x
a2

8
1+a2

0x + e

a2
0+2a0a2

0x
a8−a2

0x
a2

8
1+a2

0x − 2e
a2

0− a2
0x

a2
8

1+a2
0x

)√(
1 + a2

0x

)(
1 + a2

0y

)
+ 4Vb

(
e

a2
0

1+a2
0bx − ea2

0
)√(

1 + a2
0bx

)(
1 + a2

0by

) + √
πV C

0

[
−

√
2ea2

0

+
√

2I0
(
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0

) − 4Zea2
0− x2

0 +y2
0

2 I0

(
x2

0 + y2
0

2

)
+ 2e
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0 +2a0x0−x2
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0

2 ZI0

(
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0 −y2
0

2 ZI0

(
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0 + 2a0x0 + x2
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2

) ]}
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(B1)

Here, a8 = a/l0, a0x = l0/lx , a0y = l0/ly , a0bx = l0/lbx , and
a0by = l0/lby are dimensionless parameters associated with
a series of lengths such as a,lx,ly,lbx,lby . These parameters,
together with depths V0 and Vb, define the size and the shape
of the confinement double well.

The Heitler–London approximation does not allow one
to examine the impurity effect on the coupled qubit
operations manifested in the mixing of the different singlets
and coupling between the singlet-triplet states as already
observed and discussed in, e.g., Fig. 18(b). The impurity-
position dependence of JHL, as obtained analytically in
the last three terms in Eq. (B1), now can be studied in
Fig. 23 as a function of x0. We see that the presence of the
charged impurity plays a role only as a weak perturbative
interaction to the total energy even in the case when the
effective e-I coupling is found to be relatively large (the case
Z1 = −1). Such a property like the triplet-singlet transition for
a weak repulsive e-I exchange interaction is not found in this
case.

APPENDIX C: SINGLET-TRIPLET SPLITTING J FOR
INTERMEDIATE IMPURITY EFFECTIVE

CHARGES

We show the results obtained for several different inter-
mediate Z1 for both the negatively and positively charged
impurity cases in Figs. 24, 25, and 26. These plots provide a
clearer and deeper look into the triplet-singlet transition (Figs.
25 and 26) for a strongly repulsive impurity as well as the
physics of anticrossings found in the energy spectrum of the
coupled two-dot system. For the Z1 < 0 case, Fig. 24 serves
to explain in detail the transition from having a minimum to
a maximum in the singlet-triplet splitting J between the two
lowest energy levels.

APPENDIX D: SPIN SPLITTING ENERGY OF Si/SiGe
COUPLED QUANTUM DOTS

Si QDs have a relatively large effective mass,
m∗

Si ≈ 2.8m∗
GaAs. Plus, the effective Rydberg energy in

Si QDs, as discussed in Sec. II, is higher than the effective
Rydberg energy of GaAs QDs. These bring in the fact that the
Si QDs have a smaller electron kinetic energy, which means
that the electrons tend to be more localized as compared
with the case of GaAs. Thus the tunnel rate is expected to
be smaller. Our calculations show that for the same model
of a coupled two-dot system in which the shape, the size,
and the barrier height are kept unchanged: e.g., V0 =
−50 meV and Vb = 30 meV (corresponding to
	Vb = 9.65 meV), and the Si/SiGe double-dot system
has h̄ω0 ≈ 6.67 meV (l0 ≈ 8.48 nm). The spin singlet-triplet
splitting J between the two lowest energy levels in Si/SiGe
double dots is found, J ≈ 0.003 meV, much smaller than
the J ≈ 0.204 meV of the GaAs/AlGaAs double dots.
In experiments, the electron tunneling rate in Si/SiGe
coupled-double QDs is indeed found to be much lower
than the tunneling rate in GaAs/AlGaAs coupled QDs
(see, e.g., Ref. 42). In the presence of a charged impurity,
e.g., Z1 = −0.1 located at the origin, we obtained J

increased to J ≈ 0.008 meV for Si/SiGe double QDs
as compared with J ≈ 0.26 meV for GaAs/AlGaAs
double QDs.
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