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Phonon-mediated decoherence in triple quantum dot interferometers
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We investigate decoherence in a triple quantum dot in a ring configuration, in which one dot is coupled to a
damped phonon mode while the other two dots are connected to a source and a drain, respectively. In the absence
of decoherence, single-electron transport may get blocked by an electron falling into a superposition decoupled
from the drain; this is known as a dark state. Phonon-mediated decoherence affects this superposition and leads
to a finite current. We study the current and its shot noise numerically within a master equation approach for the
electrons and the dissipative phonon mode. A polaron transformation allows us to obtain a reduced equation for
only the dot electrons, which provides analytical results in agreement with numerical ones.
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I. INTRODUCTION

Coherently coupled quantum dots enable the experimental
investigation of electron transport through delocalized orbitals
and the associated coherent superpositions. The latter are
visible in the charging diagram of double or triple quantum
dots as broadened lines between regions in which an electron
is localized in one or the other dot. The consequence for the
current-voltage characteristics is that Coulomb steps discern
into multiple steps, each corresponding to an orbital that
enters the voltage window.1–4 When coupled quantum dots are
arranged in a ring configuration as sketched in Fig. 1, electrons
can proceed in two ways from the source to the drain.5 Then
interference effects emerge, provided that the tunneling is
coherent. For certain phases of the tunnel matrix element, a
superposition decoupled from the drain is formed such that an
electron may become trapped in the interferometer.6–9 Owing
to Coulomb repulsion, these so-called dark states block the
electron transport. Detuning the energy of one of the dots
forming the superposition resolves this blockade, but leads
to temporal trapping by off-resonant tunneling to and from
the detuned dot. This leads to avalanche-like transport with
super-Poissonian noise.7,10

The natural enemy of interference is decoherence, i.e., the
loss of the quantum-mechanical phase. The common scenario
for this process is that the considered system interacts with
environmental degrees of freedom, and thus becomes entan-
gled with them. Then tracing out the environment diminishes
interference and the system tends to behave classically. A
frequently employed model for describing decoherence is the
linear coupling of a central system to a bath of harmonic
oscillators representing, e.g., phonons or photons.11–14 Owing
to the linearity of both the bath and its coupling to the system,
the former can be eliminated,15 yielding a master equation or a
path-integral description of the now dissipative central system.
If decoherence stems from the coupling to fermionic baths
such as nuclear spins or defects, a spin bath model is more
appropriate.16–18 Electron spin decoherence can be induced
by hyperfine interaction of an electron placed in a single19

or double quantum dot, where decoherence affects the spin
blockade regime.20

A slightly different scenario is the so-called “third-party
decoherence,”21 in which a quantum system couples via an
additional small quantum system to a bath consisting of many

degrees of freedom. A particular case is the coupling of the
quantum system via a harmonic oscillator to a bath of harmonic
oscillators. This system-oscillator-bath model is equivalent to
a system-bath model with a spectral density peaked at the
oscillator frequency,22–24 unless nonlinearities of the oscillator
are taken into account.25

Coherent coupling of discrete electronic states with discrete
phonon modes leads to effects similar to those obtained with
phonon cavities. Experimentally, such coupling has been found
in carbon nanotubes,26 and also in single27 and double28,29

quantum dots. In these systems, the phonon mediates “third-
party decoherence” to the electrons. Here we investigate
how the coupling of dot electrons in a triple quantum
dot interferometer to a localized dissipative single-phonon
mode influences the destructive interference. We focus on
the regime of weak dot-lead tunneling in which a master
equation description is appropriate. Nevertheless, the electron
dynamics may exhibit non-Markovian effects stemming from
the coupling to the oscillator. Therefore, it is technically
advantageous not to eliminate the oscillator but to treat it as
part of the central system.

Our paper is organized as follows. In Sec. II, we introduce
the phonon-system-lead Hamiltonian and derive a quantum
master equation. In Sec. III, we use the quantum master
equation to investigate the impact of decoherence on the
current and its noise. Section IV is devoted to an effective
master equation for only the dot electrons based on a polaron
transformation. Some technical details of the derivation of the
effective master equation and the computation of the oscillator
correlation function are deferred to the Appendix.

II. TRIPLE QUANTUM DOT IN A RING CONFIGURATION

We consider three quantum dots in the ring configuration
sketched in Fig. 1. The electronic part consists of three
quantum dots that are mutually tunnel-coupled. Since we will
focus on decoherence effects stemming from the interaction
with a phonon mode, we neglect the spin degree of freedom.
Moreover, we restrict ourselves to the limit of strong interdot
and intradot Coulomb repulsion such that only the states with
zero or one excess electron on the ring are relevant. Thus, the
only relevant states are the empty state |0〉 and the one-electron
states |i〉 = c

†
i |0〉, where i = 1,2,3 refers to the dot on which
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FIG. 1. Triple quantum dot in a ring configuration with mutual
tunnel couplings τ . Dots 1 and 3 possess on-site energies ε1,3 = 0
and are tunnel-coupled to the source and the drain, respectively. Dot 2
interacts with a damped vibrational mode with frequency ω0, while its
on-site energy can be tuned by a gate voltage such that ε2 = Vgate/e.
Dot 2 has a vibrational degree of freedom, while dots 1 and 3 are
rigidly attached to the contacts.

the electron resides and c
†
i is the associated electron creation

operator. Then the electronic part of the Hamiltonian reads

HTQD =
3∑

i=1

εini + τ
∑
i>j

(c†i cj + H.c.) , (1)

where τ is the tunnel matrix element between dots i and j , and
ni = c

†
i ci is the occupation number of dot i. We consider the

situation in which dots 1 and 3 are degenerate and possess
on-site energies ε1 = ε3 = 0. In contrast, dot 2, placed in
one path of the interferometer, shall be tunable by a gate
voltage such that ε2 = eVgate. To include the Aharonov-Bohm
phase produced by a flux � through the ring,30 we multiply
the operator for tunneling from dot 1 to dot 3 by eiφ , while the
corresponding back tunneling acquires a factor e−iφ , where
φ = 2π�/�0 with the flux quantum �0 = h/e.

Dots 1 and 3 are tunnel coupled to metallic leads, which is
described by the Hamiltonians

Hleads =
∑
�,k

ε�kc
†
�kc�k, (2)

Hdot-leads =
∑

k

(VLkc
†
Lkc1 + VRkc

†
Rkc3 + H.c.), (3)

where c
†
�k and c�k (� = L,R) create and annihilate an electron

in the left and right lead, respectively. The tunnel matrix
elements V�k enter only via their spectral density 	� =
2π

∑
k |V�k|2δ(ε − ε�k), which we assume to be independent

of the energy ε. Then 	� is the tunnel rate between lead � and
the respective dot.

A. Electron-phonon interaction

An electron on dot 2 interacts linearly with a localized
phonon mode according to31

Hph = h̄ω0a
†a, (4)

Ve-ph = λc
†
2c2(a† + a), (5)

which can be interpreted as a dynamical energy shift. In turn,
an electron on dot 2 entails a force on the oscillator, such that
the latter acquires information about the path that an electron
takes on its way from the source to the drain. Such “which way
information” influences interference properties. Notice that we
treat the coupling energy λ as a parameter despite the fact that
it can be determined from microscopic considerations.31

Dissipation of the localized phonon mode stems from the
interaction with a bosonic environment such as substrate
phonons. The environment and its coupling to mode a are
described by the system-bath Hamiltonian

Henv =
∑

ν

h̄ωνa
†
νaν, (6)

HD = (a† + a)
∑

ν

λν(a†
ν + aν), (7)

where aν and a†
ν are the creation and annihilation operators

of the bath modes, while λν are the coupling constants. The
influence of the environment is fully determined by its spectral
density I (ω) = π

∑
ν |λν |2δ(ω − ων), which we assume to

be Ohmic, i.e., I (ω) = γω, where γ denotes the effective
damping rate.

B. Quantum master equation

To derive a master equation for the dissipative dynamics of
the triple quantum dot and the localized mode, we start from the
Liouville–von Neumann equation for the full density operator,
ih̄Ṙ = [Htot,R], where Htot is the sum of all the Hamiltonians
appearing above. Using standard techniques,32 we obtain for
the reduced density operator the equation of motion

ρ̇ = − i

h̄
[H0,ρ] − 1

h̄2 Trleads+bath

∫ ∞

0
dt[HV ,[H̃V (−t),R]]

(8)

≡ Lρ, (9)

which can be evaluated under the factorization assumption
R ≈ ρleads,0 ⊗ ρbath,0 ⊗ ρ. We have defined H0 = HTQD +
Hph + Ve−ph. The tilde denotes the interaction picture
X̃(t) = U

†
0 (t)XU0(t), where U0(t) = exp{−i(H0 + Hleads +

Hbath)t/h̄}. The coupling of the central system to the leads and
the heat bath has been subsumed in the interaction Hamiltonian
HV = Hdot-leads + HD .

We insert Hdot-leads and HD and evaluate the trace of the
electron and phonon reservoirs to obtain the Liouvillian33,34

Lρ = − i

h̄
[H0,ρ] − 	L

h̄
(2c1ρc

†
1 − c

†
1c1ρ − ρc

†
1c1)

− 	R

h̄
(2c3ρc

†
3 − c

†
3c3ρ − ρc

†
3c3)

+ γ

2
(n̄ + 1)(2aρa† − a†aρ − ρa†a)

+ γ

2
n̄(2a†ρa − aa†ρ − ρaa†), (10)

where n̄ = [exp(h̄ω0/kBT ) − 1]−1 is the thermal occupation
number of the localized mode at temperature T . Restricting
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ourselves to the limit in which all dot states lie within the
voltage window, we have replaced the Fermi function of the
left lead by 1 and that of the right lead by 0. Only in this limit
do the dot-lead tunnel terms proportional to 	L,R assume this
simple form. Moreover, we consider the oscillator dissipation
within a rotating-wave approximation.35

To obtain a current operator in the reduced Hilbert space,
we start from the definition of the current as the change of
the charge in the right lead, eNR . The corresponding current
operator J = (ie/h̄)[Htot,NR] still depends on lead operators.
These are eliminated within the approximations that yield the
master equation (10). The result can be separated into two
contributions, J + and J −, which describe electron tunneling
from the triple quantum dot to the right lead and back,
respectively.36 In the present case of unidirectional transport,
J − = 0, while

J + = e	3

h̄
c
†
3ρc3. (11)

Then the stationary current expectation value reads

I = TrJ +ρ∞, (12)

where ρ∞ denotes the stationary solution of the master
equation (10).

Additional information about the transport process is
provided by the zero-frequency noise S, which is essentially
the rate at which the charge variance in one lead changes, i.e.,
S = limt→∞〈�Q2

R〉/t . It can be computed in the same way
as the stationary current but with NR replaced by N2

R . For
unidirectional transport, one obtains38

S = e TrJ +ρ∞ − 2e TrJ +L̂−1J +ρ∞, (13)

where L̂−1 is the pseudo-inverse of L, whose action on
Lρ∞ ≡ X is computed by solving LX = J +ρ∞ under the
condition Tr X = 0. We will always discuss the noise strength
in relation to the current. This motivates the definition of the
Fano factor F = S/eI , which assumes the value F = 1 for a
Poisson process.

For a numerical solution, we will have to truncate the
Hilbert space of the localized phonon mode at some max-
imal phonon number N . Unless explicitly stated otherwise,
truncation at N = 20 ensured numerical convergence.

III. TRANSPORT PROPERTIES: NUMERICAL RESULTS

To outline the behavior of the triple dot under the influence
of the dissipative phonon, we investigate numerically two
situations. In the first one, all dots are in resonance, such
that a dark state blocks transport. The second situation is that
of a strongly detuned dot 2, in which the blocking becomes
imperfect. We also consider a magnetic flux through the triple
quantum dot to ascertain interference.

A. All dots in resonance

For a small gate voltage such that |ε2| 	 τ , all three dots
are near resonance, and therefore interference is important. For
the present configuration in which all three inter-dot tunnel
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FIG. 2. Current at zero detuning, ε2 = 0, as a function of the
scaled magnetic flux φ for two values of the phonon damping
strengths γ compared to the current in the absence of the phonon (λ =
0). The dot-lead tunneling rate is 	 = 0.1ω0. In the noninteracting
case, the current drops to zero at semi-integer values of the quantum
flux. The Aharonov-Bohm amplitude is reduced by the phonon-
mediated decoherence of the dark state.

couplings are equal, it has been shown that for ε2 = 0, an
electron is trapped in the superposition6,7

|�dark〉 = 1√
2

(|1〉 − |2〉). (14)

Obviously, it is orthogonal to state |3〉 and, thus, is decoupled
from the drain. This implies that once an electron populates
state (14), it cannot leave the triple dot. Since Coulomb
repulsion inhibits further electrons from entering the dots, the
current vanishes. At zero flux, φ = 0, the two paths |1〉 → |3〉
and |1〉 → |2〉 → |3〉 interfere destructively at the drain.6,7

If φ is changed, a finite current flows unless φ assumes a
semi-integer value,7,8 as is visible from the Aharonov-Bohm
oscillations depicted in Fig. 2. Figure 2 also shows that when
coupling dot 2 to the oscillator, Aharonov-Bohm oscillations
fade out with increasing dissipation strength γ , which is a
signature of the influence of decoherence. Moreover, it can
be seen that this fading can be read off faithfully at φ = 0;
therefore, henceforth we will restrict ourselves to this value.

The insets of Fig. 3 show the current as a function of the
detuning for various electron-phonon coupling strengths λ and
two different temperatures for small detuning. An interesting
observation is that with increasing electron-phonon coupling
(see the insets of Fig. 3), the minimal current not only grows
but is also shifted from ε2 = 0 to the value ε2 = λ2/h̄ω0. This
shift can be obtained by a polaron transformation, as we will
detail in Sec. IV. This motivates us to consider henceforth the
renormalized detuning ε = ε2 − λ2/h̄ω0 as a free parameter.

Figures 4(a) and 5 show the current as a function of the
electron-phonon coupling and the temperature, respectively,
for a detuning ε = 0, which corresponds to the dark state.
Both plots confirm that the current blockade is resolved
with increasing electron-phonon coupling and temperature,
underlining the growing importance of decoherence. The
current saturates at the value ID ≈ 0.02e	/h̄ as a function
of the electron-phonon coupling λ; see Fig. 4(a). A similar
behavior has been found for an interferometer that consists of
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FIG. 3. Current as a function of the detuning ε2 for various values
of the electron-phonon coupling λ. The interdot tunneling and the dot-
lead tunneling rates are τ = 0.01h̄ω0 and 	 = 0.1ω0, respectively,
while the dissipation strength is γ = 0.05ω0. The temperatures are (a)
T = 0 and (b) T = 1.5h̄ω0/kB . Insets: enlargement of the region near
ε2 = 0 demonstrating a shift of the current minimum with increasing
electron-phonon coupling.

two quantum dots.39 Figure 4(b) depicts the associated current
noise in terms of the Fano factor. As the electron-phonon
coupling increases, both the current and the shot noise become
larger. Initially, the current grows faster than the shot noise,
and consequently the Fano factor is reduced; see Fig. 4(b).
Once the electron-phonon coupling λ becomes of the order
h̄ω0, this tendency is reversed. While the current saturates,
the shot noise keeps growing, as is visible in the behavior of
the Fano factor. For larger values of λ, numerical convergence
requires taking an increasing number of oscillator states into
account, which limits the observable range.

B. Dot 2 far from resonance

When dot 2 is strongly detuned, i.e., for |ε2| � τ , tunneling
from and to this dot becomes off-resonant. Then the direct
path from dot 1 to dot 3 is much more likely than the detour
via dot 2. Then without the oscillator, we expect interference
effects to play a minor role. Nevertheless, electrons may be
trapped in dot 2 such that the current flow is interrupted
until the trapped electron tunnels off-resonantly to dot 3
and transport is restored. Consequently, the electron transport
becomes bunched.10 The current plotted in Fig. 3 demonstrates
that this scenario needs to be refined when the electron on dot 2
couples to a vibrational mode, because then temporal electron
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FIG. 4. Current and Fano factor as a function of the electron-
phonon coupling for the dark state, i.e., for the detuning ε = ε2 −
λ2/h̄ω0 = 0, at zero temperature and two values of the dissipation
strength γ . All other parameters are as in Fig. 3(a). The dotted lines
mark the results obtained with the reduced master equation (24).
Numerical convergence was reached when considering N = 25 Fock
states of the phonon mode.

trapping can be caused also by emission and absorption of
phonons. This leads to dips and peaks in the current whenever
ε2 is detuned by roughly an integer multiple of h̄ω0. For
finite temperature and negative detuning [Fig. 3(b) for ε2 < 0],
the dips are caused by the predominating phonon emission,
while those for positive detuning are due to more frequent
absorption. The different size of the peaks and dips for positive
and negative values of ε [Fig. 3(b)] stems from spontaneous
processes that render emission more likely than absorption. In
the zero-temperature limit [Fig. 3(a)], phonon absorption no
longer occurs and, consequently, the dips at positive detuning
vanish. Then small peaks emerge, which correspond to the
relaxation of electrons that temporally populate in dot 2.

IV. ELIMINATION OF THE DISSIPATIVE PHONON

To obtain a reduced master equation for the triple quantum
dot, we eliminate the phonon via a polaron transformation
under a weak-coupling assumption.31,40 This converts the
electron-phonon coupling into a renormalized interdot tun-
neling and additional dissipative terms. To keep decoherence
effects stemming from the phonon-bath coupling, we have to
apply this transformation also to those terms of the master
equation (10) that describe phonon dissipation.
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FIG. 5. Current as a function of the temperature for electron-
phonon coupling λ = 0.15h̄ω0 and detuning ε = ε2 − λ2/h̄ω0 = 0,
corresponding to the dark state. All other parameters are as in Fig. 3.
The dotted lines are obtained with the reduced master equation (24)
for the dot electrons.

A. Polaron transformation

We start with the unitary transformation40,41 O → Ō =
SOS† of the master equation (10), where

S = exp

[
λ

h̄ω0
n2(a† − a)

]
. (15)

This corresponds to the replacements

a → a − λ

h̄ω0
n2, (16)

c2 → c2X
† (17)

with the phonon displacement operator

X = exp

[
λ

h̄ω0
(a† − a)

]
. (18)

Notice that all lead and bath operators remain unchanged. The
Hamiltonian H0 of the dot electrons and the phonon then reads

H̄0 = εn2 + τ (c†1c3 + c
†
2c3X + c

†
1c2X

† + H.c.) + h̄ω0a
†a,

(19)

where ε = ε2 − λ2/h̄ω0 denotes the effective detuning.
The form (19) of the system Hamiltonian allows us to

eliminate the phonon within second-order perturbation theory
in the interdot tunneling. Then we obtain a master equation
for the electron operators that still depends on electron-
oscillator correlations. Next, the phonon is traced out under the
assumption that the polaron transformation captures most of
these correlations, such that the density operators in the polaron
picture factorizes, ρ = ρe ⊗ ρph. A similar route was already
taken in Refs. 31 and 40; it is equivalent to the noninteracting
blip approximation common in quantum dissipation.42–44 Here
we only discuss the resulting master equation, while details of
the derivation are provided in Appendix A.

The resulting quantum master equation contains the effec-
tive dot Hamiltonian

HTQD,eff = εn2 + τ (c†1c3 + H.c.) + τ̄ (c†2c3 + c
†
1c2 + H.c.),

(20)

where the electron tunneling between dot 2 and the two other
quantum dots is renormalized according to

τ → τ̄ = τ 〈X〉 = τ exp

{
− 1

2

∣∣∣∣ λ

h̄ω0

∣∣∣∣
2

coth

(
h̄ω0

2kBT

) }
.

(21)

Besides this renormalization, two additional Liouvillians
emerge. The first one describes decoherence of the dark state,
leading to a small residual current. It is directly obtained by the
replacement (16) in the last two terms of the master equation
(10) and reads

Ldecρe = γ

2
(1 + 2n̄)

(
λ

h̄ω0

)2

(2n2ρen2 − n2ρe − ρen2),

(22)

where we have used the operator relation n2
2 = n2. We will

further analyze the corresponding decoherence mechanism
in Sec. IV B. The second Liouvillian stems from the double
commutator in the Bloch-Redfield master equation (A2) and
describes incoherent tunneling between the quantum dots,

Lictρe = −
(

τ

h̄

)2

{(C−ε(n1 + n3) + 2n2Cε)ρe + H.c.}

+ 2

(
τ

h̄

)2

{C ′
−εc

†
2c3ρec

†
3c2 + C ′

−εc
†
2c1ρec

†
1c2

+C ′
εc

†
1c2ρec

†
2c1 + C ′

εc
†
3c2ρec

†
2c3}, (23)

where Cε ≡ C ′
ε + iC ′′

ε denotes the phonon correlation function
in Laplace space, derived in Appendix B. This incoherent
interdot tunneling is responsible for the current dips and peaks
at the resonances ε = nh̄ω0 observed in Figs. 3 and 6. It
occurs with the rates 2(τ/h̄)2C ′

ε (between dots 1 and 3) and
2(τ/h̄)2C ′

−ε (between dot 2 and dots 1 and 3), respectively,
which is in accordance with P (E) theory.45,46

In summary, the effective master equation for the triple
quantum dot under the influence of a dissipative phonon and
with the coupling to the leads reads

ρ̇e = − i

h̄
[HTQD,eff,ρe] + Ldecρe + Lictρe

− 	L

h̄
(2c1ρec

†
1 − c

†
1c1ρe − ρec

†
1c1)

− 	R

h̄
(2c3ρec

†
3 − c

†
3c3ρe − ρec

†
3c3). (24)

Numerical calculations provide evidence that Lict is not
relevant for the behavior of the dark state; see Fig. 4. Thus,
close to ε = 0, we can neglect Lict in the master equation (24),
and then we obtain to lowest order in τ the stationary current
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ID ≈ 4	
[
4g1(τ 2 − τ̄ 2)2 + g1g2τ

2	D + g2τ̄
2		D

]
	(2	 + 3	D)(4g1τ̄ 2 + g2		D) + 4τ 2

(
2	3 + 7	2	D + 12		2

D + 8	3
D

) , (25)

with g1 = 	 + 2	D , g2 = 	 + 	D , and the effective dissipa-
tion rate 	D = ( 1

2 + n̄)γ (λ/h̄ω0)2. The validity of this result
close to the dark state is investigated with Figs. 4 and 5.
The agreement is rather good for any coupling constant
λ and temperature. The corresponding result for the Fano
factor also fits well; see Fig. 4(b). A comparison in a broad
range of detunings, shown in Fig. 6, demonstrates that the
approximation is globally valid.

B. Decoherence mechanism

A physical picture of the electron decoherence can be
developed by considering the influence of the phonon on the
dark state (14). This reasoning will also yield the associated
decoherence rate of the effective Liouvillian (22).

Let us assume that the electron resides in the dark state
|�dark〉 ∝ |1〉 − |2〉. Its time evolution under the influence of
the phonon is determined by the interaction-picture Hamilto-
nian

HI (t) = λn2(t)(a†eiω0t + ae−iω0t ). (26)
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FIG. 6. Comparison of the results with the full quantum master
equation (10) and those of the effective master equation (24) for λ =
0.1h̄ω0, γ = 0.05ω0, τ = 0.01h̄ω0, and 	 = 0.1ω0. The temperature
is (a) T = 0 and (b) T = 1.5h̄ω0/kB .

Since the electron dynamics is much slower than the oscillator,
the number operator n2 is essentially time-independent. Then
the time ordering in the corresponding time-evolution operator

U (t) = T← exp

[
− i

h̄

∫ t

0
ds HI (s)

]
(27)

can be evaluated by employing the commutation relation47

[HI (t),HI (t ′)] = 2iλ2n2 sin[ω0(t − t ′)] (28)

from which we obtain the propagator

U (t) = exp

[
−1

2

∫ t

0
ds ds ′[HI (s),HI (s ′)]θ (s − s ′)

]
V (t).

(29)

The operator V (t) = exp{n2[a†α(t) − aα(t)∗]} describes an
oscillator displacement by

α(t) = λ

h̄ω0
(1 − eiω0t ), (30)

while the integral of the commutator in Eq. (27) is merely a
phase factor that is not relevant for the subsequent discussion
and will be ignored. Thus, the dark state evolves according to

U (t)|�dark〉 = 1√
2

[|1〉|0〉ph − |2〉|α(t)〉ph], (31)

which means that the oscillator turns into a cat state, i.e., a
superposition of two coherent states. In the limit γ t 	 1, the
coherence of such a superposition decays with the rate48,49

	D(t) = (γ /2)(1 + 2n̄)|α(t)|2, which in the average over one
oscillation period reads

	D = γ

2
(1 + 2n̄)

∣∣∣∣ λ

h̄ω0

∣∣∣∣
2

. (32)

Notice that we do not trace out the electrons, but consider the
coherence of the electron-phonon compound.

Since each of the two involved phonon states is linked to
a particular electron state, we can attribute this decoherence
process also to the electrons. Then we can conclude that
the electron coherence also decays with the rate (32), which
complies with the actual rate in the effective Liouvillian
Eq. (22). Thus, the phonon elimination described above is such
that the decoherence of an oscillator cat state turns directly into
decoherence of the dark state.

For larger interdot tunneling, τ � h̄ω0, the interaction-
picture operator n2(t) can no longer be considered time-
independent, thus our reasoning has to be modified. Moreover,
if we used a model in which also dot 1 couples to the phonon,
the dark electron state and the phonon state would factorize and
be ∝ (|1〉 − |2〉)|α(t)〉. Then no phonon-induced decoherence
would take place and, consequently, the dark state would
continue to block the electron transport.
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V. CONCLUSIONS

We have investigated decoherence effects in a triple
quantum dot interferometer stemming from the coupling to
a single dissipative bosonic mode. In our model, the dots
are arranged in a symmetric ring configuration in which
two dots couple to a source and a drain, while the third
dot interacts with a dissipative harmonic oscillator. In the
absence of the oscillator, a strong detuning of the third dot
leads to electron trapping and bunching. When all dots are
close to resonance, in contrast, interference effects dominate.
In particular, ideal destructive interference may occur such
that the current vanishes completely even when all electronic
energy levels lie within the voltage window.

It turns out that the oscillator entails two effects: first,
the current minimum is found at a shifted detuning, and
second, destructive interference is no longer perfect, such that
a finite current always emerges. This suspension of destructive
interference is also visible in the current noise measured in
terms of the Fano factor. When the residual current is very
small, i.e., for small decoherence, the associated shot noise
is enhanced while transport becomes almost Poissonian with
stronger decoherence.

A qualitative understanding of these effects has been
achieved by an analytical approximation after a polaron
transformation leading to a reduced master equation for only
the dot electrons. Within a standard treatment similar to
the noninteracting blip approximation, we have obtained an
effective master equation for the electron transport. Then it
became possible to analytically obtain the current from the
resulting master equation also close to destructive interference.
The results agree well with the full numerical results, provided
that the oscillator frequency is sufficiently large and the
interdot tunneling is small. In turn, we can conclude that our
reduced master equation faithfully describes transport effects
entailed by a dissipative mode. Moreover, this picture provides
evidence that the decoherence of an oscillator cat state turns
directly into decoherence of the dark state.

In summary, our results underline the impact of one phonon
mode on quantum dot interferometers. With our reduced
master equation for the quantum dot electrons, we have put
forward a method for describing such systems efficiently
after eliminating the oscillator. Such a method is particularly
welcome when the oscillator is only weakly damped, since
then an explicit treatment requires taking quite a few oscillator
states into account.
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APPENDIX A : EFFECTIVE MASTER EQUATION

In this appendix, we provide some details of the derivation
of the effective master equation (24) starting with the polaron-
transformed electron-phonon Hamiltonian (19). We treat all

terms that couple dot 2 to the phonon within second-order
perturbation theory, which means that we separate the electron-
phonon Hamiltonian as HTQD,eff + HY , where HTQD,eff is
defined in Eq. (20) and

HY (t) = τ (c†2c3Yt + c
†
1c2Y

†
t + H.c.). (A1)

The latter Hamiltonian will be treated within the Bloch-
Redfield approximation. The phonon part of the interaction,
Y = X − 〈X〉eq, has been defined such that 〈HY 〉eq vanishes.
Then within the usual Born approximation,32 we obtain in the
interaction picture the master equation

d

dt
ρ̃(t) = − 1

h̄2

∫ t

0
ds[H̃Y (t),[H̃Y (s),ρ̃(s)]], (A2)

where the contribution of first order in the perturbation HY

vanishes owing to 〈HY 〉eq = 0. A simplification of the master
equation (A2) comes from the fact that its right-hand side
is already of second order in the interdot tunneling τ , while
higher orders are neglected. It is therefore sufficient in the
interaction-picture representation of HY to omit the tunneling
terms in HTQD,eff , such that the corresponding unperturbed
propagator reads U ′

0 = exp(−iεn2t/h̄).
If the electron-phonon interaction is much smaller than

the phonon energy, λ 	 h̄ω0, the correlation between these
two subsystems is captured by and large by the polaron
transformation. Thus, in the polaron picture, we can evalu-
ate the master equation under the factorization assumption
ρ̃(t) ≈ ρ0

phTrphρ̃(t ′). This corresponds to a noninteracting blip
approximation42–44 for a dissipative quantum system and
has been used also to eliminate a single dissipative phonon
in the context of both quantum transport31,40 and quantum
dissipation.50

Within the Born approximation, it is consistent to replace
in the master equation (A2) the time arguments of the density
matrix by the final time t . When finally tracing out the phonon,
we obtain expectation values of the type

c
†
2ci(t)ρ(t)c†i c2(s)〈X†

sXt 〉, (A3)

c
†
2cj (t)ρ(t)c†2cj (s)〈XsXt 〉, (A4)

c
†
i c2(t)ρ(t)c†2cj (s)〈X†

sXt 〉. (A5)

Terms of the type (A3) give rise to the additional Liouvillian
(23). The following two terms are negligible for different
reasons. The term (A4) depends on the time t + s, and thus
is rapidly oscillating. Therefore, it can be neglected within
a rotating-wave approximation. Finally, terms of the type
(A5) come in pairs with opposite time-ordering and opposite
sign. Therefore, their net contribution is proportional to a
commutator and, thus, is of the order τ , i.e., one order beyond
what is considered in the master equation (A2).

APPENDIX B : CORRELATION FUNCTION

The effective Liouvillian derived in Appendix A contains
averages over one and two phonon displacement operators. We
calculate them using the quantum regression theorem, which is
valid within the Markov approximation.47 The renormalization
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of the coherent tunneling stems from averages of the type

c
†
2cj 〈Xt 〉 = c

†
2cj Trph{Xρph(t)}

= c
†
2cj Trph{Xρph,eq}

= c
†
2cj exp

{
− 1

2

∣∣∣∣ λ

ω0

∣∣∣∣
2

coth

(
h̄ω0

2kBT

)}
, (B1)

with the equilibrium phonon density matrix

ρph,eq = 1

Z
exp(−h̄ω0a

†a/kBT ), (B2)

and the partition sum Z = [1 − exp(−h̄ω0/kBT )]−1.
Using once more the quantum regression theorem, we write

the correlation function as

C(t) = 〈X†(0)X(t)〉eq = Tr{X†(0)XH (t)ρph,eq}, (B3)

i.e., with a Heisenberg operator that fulfills the equation of
motion ȧH = −(iω0 + γ /2)aH . From its solution

aH = ae−(iω0+γ /2)t (B4)

follows the displacement operator in the interaction picture,

Xt ≡ X(t) = exp

[
λ

ω0
(a†e(iω0−γ /2)t − H.c.)

]
. (B5)

Inserting this operator and ρph,eq into the correlation function
(B3) yields

C(t) = exp

[∣∣∣∣ λ

ω0

∣∣∣∣
2{

ie−γ /2t sin(ω0t) + coth

(
h̄ω0

2kBT

)

× [1 + e−γ t − 2e−γ /2t cos(ω0t)]

}]
. (B6)

To compute the coefficients of the master equation, we need
this correlation function in Laplace space, evaluated at z = 0,
defined as

Cε = lim
z→0

∫ ∞

0
dt e−(z+iε)t/h̄C(t) ≡ C ′

ε + iC ′′
ε . (B7)
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