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High-density limit of the two-dimensional electron liquid with Rashba spin-orbit coupling
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We discuss by analytic means the theory of the high-density limit of the unpolarized two-dimensional electron
liquid in the presence of Rashba or Dresselhaus spin-orbit coupling. A generalization of the ring-diagram
expansion is performed. We find that in this regime the spin-orbit coupling leads to small changes of the
exchange and correlation energy contributions, while modifying also, via repopulation of the momentum states,
the noninteracting energy. As a result, the leading corrections to the chirality and total energy of the system stem
from the Hartree-Fock contributions. The final results are found to be vanishing to lowest order in the spin-orbit
coupling, in agreement with a general property valid to every order in the electron-electron interaction. We also
show that recent quantum Monte Carlo data in the presence of Rashba spin-orbit coupling are well understood
by neglecting corrections to the exchange-correlation energy, even at low density values.
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I. INTRODUCTION

The effect of the spin-orbit coupling in semiconductor
heterostructures, and more specifically the role of the Rashba
spin-orbit interaction induced by the asymmetry of the
transverse confining potential in electronic two-dimensional
systems,1 has attracted in recent years great interest. While a
main motivation lies in the potential of new applications,2–4

based on the control of the single-particle spin-dependent
dynamics through electrical gating,5–10 the corresponding
many-body problem is of fundamental relevance and not yet
fully investigated.

The two-dimensional electron liquid, in the presence of
Coulomb interaction and a rigid neutralizing background,
is a classic problem in solid-state physics, if the simplest
effective mass approximation is assumed for the kinetic term.11

On the other side, concomitant band-structure effects have
often large observable consequences.10,12,13 The special form
of a generalized spin-orbit coupling applicable in a number
of cases is described in Ref. 14, together with a detailed
analysis of the exchange energy. Several other aspects of
the electron-electron interaction in the presence of spin-
orbit couplings were addressed in Refs. 15–32, for example
the quasiparticle properties,15,16,23,26–28,32 the Hartree-Fock
phase diagram,17,22,23 the spin susceptibility,19,23,30,32 and the
plasmon modes.18,21,24,31,32 We restrict ourselves here to pure
Rashba,1 or equivalently Dresselhaus,33,34 spin-orbit coupling.
In this case, quantum Monte Carlo data for the total energy
were recently obtained in Ref. 25. Numerical results for the
total energy also appear in Ref. 29, within the random-phase
approximation (RPA). We focus in the following on the
high-density limit, when the effect of the Coulomb interaction
can in general be studied perturbatively.

The leading correction to the noninteracting energy is the
exchange contribution, while higher order terms correspond
to higher powers of the standard density parameter rs [see
Ref. 11 and Eq. (3) below]. The first two terms of the small rs

expansion of the correlation energy in two-dimensions are well
known in the absence of spin-orbit coupling.35 They consist of
the second-order correlation energy and a rs ln rs contribution

which is obtained as an infinite sum of diverging ring diagrams.
The elegant resummation procedure patterns the treatment of
the leading ln rs correlation energy in the three-dimensional
case.36 An exact formula for the polarization dependence of
the rs ln rs contribution was recently derived in Ref. 37.

Here, an additional dependence on the (dimensionless)
Rashba coupling ᾱ is present. However, the strength of the
spin-orbit interaction is more appropriately expressed in terms
of a parameter g which is proportional to rs [see Ref. 14
and Eq. (4) below]. Hence, an additional density dependence
is introduced by g. This makes the effect of the spin-orbit
interaction small, since the correction to the total exchange-
correlation energy is multiplied by a factor at most of order
g2 (i.e., an even power in the spin-orbit coupling), which is
vanishingly small at high density. Therefore, an accurate result
is obtained perturbatively. In fact, a general argument for the
energy expansion was derived in Refs. 23 and 28 and implies
that the g2 term is actually vanishing (see also Ref. 29).

In this paper, we analyze how the high-density expansion of
the energy is modified in the presence of spin-orbit coupling.
The explicit analytic form of the leading exchange-correlation
correction is obtained in the following and found indeed to
be proportional to g4 ln g, from the exchange energy. The
second-order correlation energy is studied numerically, as in
the case without spin-orbit interaction, and the extension of
the ring-diagram sum is also discussed, and shown to display a
nonanalytic behavior in the limit of small rs and g. Corrections
to these higher order contributions are also found to be of
higher order than g2, as expected, and can therefore be usually
neglected. Finally, while the main body of the paper is devoted
to the asymptotic expansion at small rs (a regime often relevant
for heterostructures with large spin-orbit coupling), we also
analyze the quantum Monte Carlo results of Ref. 25, which are
all at rs � 1. We propose here a simple interpolation formula
for the energy which is in remarkable agreement with the
numerical data.

The detailed outline of the paper is as follows: In Sec. II we
formulate the problem and establish our notation. We review
the properties of the noninteracting system and the known
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results for the exchange-correlation energy in the absence of
spin-orbit coupling. We also define here the corrections to the
exchange-correlation energy of the electron liquid due to the
spin-orbit interactions, which are the main focus of our work.
We first show in Sec. III that such corrections are generally
small, by reminding the reader about some useful exact
properties of the perturbative expansion23,28 and by an analysis
of the quantum Monte Carlo results of Ref. 25. We then
explicitly determine such corrections in the high-density limit
of the electron gas. The exchange energy, the second-order
correlation terms, and the classic ring expansion of Ref. 35 are
revisited and extended in Sec. IV where we obtain the change
of the exchange-correlation energy and of the momentum
space occupation to leading order in the spin-orbit coupling.
Both analytical and numerical results are provided, which are
summarized in Sec. V. In this last section, an alternate physical
limit is also discussed. Finally, the details of a number of
calculations have been provided in Appendices A, B, and C.

II. FORMULATION OF THE PROBLEM

The system is described by the Hamiltonian

Ĥ =
∑

i

Ĥ
(i)
0 + 1

2

∑
i �=j

e2

|r̂i − r̂j | , (1)

where terms related to the presence of a uniform neutralizing
background have been omitted for simplicity. The single-
particle operator Ĥ0 is given by

Ĥ0 = p̂2

2m
+ α (σ̂xp̂y − σ̂yp̂x), (2)

where we consider electrons confined in the (x,y) plane and
σ̂x(y) are Pauli matrices. The spin-orbit term is usually referred
to as a linear Rashba spin-orbit coupling and is generally
present when the confining potential in the z direction of
a quantum well is asymmetric.1 An equivalent term, the
Dresselhaus spin-orbit coupling, arises instead for a lack of
inversion symmetry in the crystal structure.33 We consider
Eq. (2) as a model case, although a similar analysis can be
carried out for other types of spin-orbit interaction, relevant in
other experimental cases.10,12,14

We use in the following dimensionless units. The properties
of the electron liquid are completely determined by

ᾱ = h̄α

e2
and rs = 1√

πna2
B

, (3)

where ᾱ is a dimensionless spin orbit coupling and rs the usual
density parameter, with aB the effective Bohr radius and n the
number density. It is also useful to introduce the following
dimensionless coefficient g:

g =
√

2ᾱrs, (4)

which better than ᾱ represents the strength of the spin-orbit
term. In fact, g is approximately equal to the ratio of the
spin-orbit energy to the kinetic energy, which are respectively
proportional to g/r2

s and 1/r2
s [see also Eq. (10)]. The wave

vectors are expressed in terms of the Fermi wave vector kF =√
2πn and the energies are in Ry units. Finally, throughout the

paper we often use the notation p = k + q and p′ = k′ − q (so
that q will not explicitly appear in many expressions).

A. Noninteracting electrons

The noninteracting problem is completely determined by
g. The eigenstates of H0 can be written as

ϕk,±(r) = eik·r
√

2L2

( ±1
ieiφk

)
≡ eik·r

√
L2

|k±〉, (5)

where L is the linear size of the system and φk is the angle
formed by k with the x axis. The eigenstates have spin
quantized perpendicular to the wave vector k, as described
by the spinor functions |k±〉 [which are defined by Eq. (5)].
The corresponding eigenenergies (in Ry units) are equal to
2
r2
s
ε±(k) where

ε±(k) = k2 ∓ g k. (6)

We also define the generalized chirality χ , which deter-
mines the occupation functions n±(k) in momentum space.17,22

The two relevant regimes are depicted in Fig. 1. At high
density (second panel of Fig. 1), two bands are occupied and
χ coincides with the regular chirality: χ = N+−N−

N++N−
, where N±

is the total number of electrons in each band. The occupation
takes the form

n±(k) = θ (
√

1 ± χ − k) for 0 � χ < 1, (7)

where θ (x) is the usual step function. At low density (first
panel of Fig. 1), the higher band is empty and the occupation
function reads

n+(k) = θ (
√

χ + 1 − k) − θ (
√

χ − 1 − k), (8)

where χ � 1. We note that Eq. (8) corresponds to a ring in
momentum space and the regular chirality is 1 in this case,
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FIG. 1. Two different ways of occupying noninteracting chiral
states in k space.
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irrespective of the precise form of the occupation. The Fermi
surfaces are determined in all cases by the radii

k± =
√

|1 ± χ |. (9)

The noninteracting energy at generic χ is expressed as
follows (when χ < 1):

E0(g,rs,χ ) = 1 + χ2

r2
s

− 2g

r2
s

√
|1 + χ |3 −

√
|1 − χ |3

3
. (10)

The first term is the kinetic energy, and one has to replace
1 + χ2 with 2χ if χ > 1. The second term is the spin-orbit
energy. The noninteracting ground state is specified by the
value of χ which minimizes Eq. (10) for given values of ᾱ and
rs and is therefore uniquely determined by the parameter g of
Eq. (4):

χ0(g) =
⎧⎨
⎩g

√
1 − g2

4 for 0 � g <
√

2,

g2

4 + 1
g2 for g �

√
2.

(11)

The corresponding ground-state energy is obtained accord-
ingly:

E0(g,rs) = E0(g,rs,χ0(g)). (12)

B. Exchange-correlation energy

The exchange-correlation energy of the electron liquid
without spin-orbit coupling is a relatively well known
quantity.11 The perturbative expression at high density reads35

(for the unpolarized case)

Exc(rs) = − 8
√

2

3πrs

− 0.385 − 2
√

2

3π
(10 − 3π ) rs ln rs + . . . ,

(13)

where the first term is the exchange energy. The constant results
from the numerical integration of the second-order correlation
energy, and the last contribution is obtained from the infinite
sum of diverging ring diagrams, similar to the original
calculation for the three-dimensional case.36 At generic values
of the density, Exc(rs) is obtained numerically with the Monte
Carlo method11,38 (see however Ref. 37 for the polarized case).

On the other hand, the exchange-correlation correction due
to the spin-orbit coupling is to date not accurately known. We
introduce the following definition:

E(g,rs) = E0(g,rs) + Exc(rs) + δExc(g,rs), (14)

where the noninteracting energy is given by Eq. (12)
and δExc(g,rs) represents the correction to the exchange-
correlation energy associated with the spin-orbit coupling.
The latter is generally neglected, for example in density
functional studies including spin-orbit interactions.39,40 A
partial justification to this procedure is given in Ref. 28, which
shows that this correction is actually vanishing to quadratic
order in g for the particular case of the Rashba or Dresselhaus
spin-orbit interaction. However, such a correction is not zero in
general and can reasonably lead to important effects in the case
of large g (e.g., at low density) or for other types of spin-orbit
interaction.14

Formally, under the assumption that the system behaves
as a Fermi liquid, the total energy of the interacting system
can be obtained as a perturbative expansion (see next section)
constructed from a particular noninteracting state, as for
example the one used to obtain Eq. (10). Therefore, in the case
with spin-orbit coupling, the total energy acquires an additional
dependence from the chirality χ of the noninteracting state
used in the perturbative expansion. This does not need to be
the starting noninteracting ground state. As a consequence, we
can quite generally write the total energy as

E(g,rs,χ ) = E0(g,rs,χ ) + Exc(rs) + δExc(g,rs,χ ), (15)

where E0(g,rs,χ ) is given by Eq. (10). The dependence of the
total energy on χ , at given values of g and rs , is also obtained
in the Monte Carlo study of Ref. 25, where χ corresponds to
the occupation of the initial trial wave function. The data are
reproduced in Fig. 2 .

The actual value of the interacting generalized chirality
χ (g,rs) is obtained by minimization of Eq. 15, which also
yields the corresponding ground-state energy Eq. (14). It
is important to realize that there are the two different
contributions to δExc(g,rs). The first one is given directly by
δExc(g,rs,χ (g,rs)), while the second one arises from the renor-
malization of χ (i.e., the repopulation) in the noninteracting
energy E0(g,rs,χ ).

III. FORMAL PROPERTIES OF THE DIAGRAMMATIC
EXPANSION

We report here, in view of their usefulness, two exact results
concerning the perturbative expansion of the energy and the
quasiparticle self-energy. These results have been obtained in
Refs. 23 and 28 for a generic two-body potential v(q). The
first of the two results pertains to all diagrams D contributing
to the total energy and reads

∂2D

∂2χ

∣∣∣∣
0

= ∂2D

∂2g

∣∣∣∣
0

= − ∂2D

∂χ∂g

∣∣∣∣
0

. (16)

This allows one to infer that, for small g and χ , the total
correction to the exchange and correlation energy must behave
as

δExc(g,χ ) = C(g − χ )2 + . . . , (17)

where in general C is an unknown constant.
The second result concerns the self-energy �μ(k,ω) which

is seen to satisfy a similar exact relation to linear order in g:

∂�μ(k,ω)

∂g

∣∣∣∣
0

= −μ

2

∂�0(k,ω)

∂k
, (18)

where �0(k,ω) is the (interacting) self-energy in the absence of
spin-orbit coupling (i.e., g = χ = 0). This relationship allows
us to write

�μ(k,ω) = �0

(
k − μg

2
,ω

)
+ . . . . (19)

From this formula we conclude that to linear order in g all
quasiparticle properties (e.g., the lifetime16,26,27) on the Fermi
surfaces k± � 1 ± g

2 are the same as in the absence of spin-
orbit coupling.
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For applications of these exact results we refer to Ref. 16,
which shows the validity of Eq. (19) within the RPA, and
to the numerical calculations of the quasiparticle lifetime
of Refs. 26 and 27 The total energy was obtained in the
quantum Monte Carlo study of Ref. 25 and we present
in Fig. 2 their numerical data, together with the simple
approximation of setting δExc(g,rs,χ ) = 0 in Eq. (15). The
value of the exchange-correlation energy Exc(rs) in the absence
of spin-orbit coupling is taken from Ref. 38. As seen, not
only are the data at higher density (rs = 1) in very good
agreement with the curves obtained neglecting δExc(g,rs,χ ),
but also the low-density data are well described by this
approximation. This implies that the spin-orbit coupling shift
of the exchange-correlation energy is generally small. Notice
that the accuracy of the numerical data does not allow us to
extract the constant C of Eq. (17) as function of rs . This we
were able to obtain analytically in the limit of small rs , as
described in the following sections.

IV. PERTURBATIVE CONTRIBUTIONS OF THE
COULOMB INTERACTION

We examine in this section how the first terms of the high-
density expansion are modified by the spin-orbit coupling. In
particular, we discuss the exchange energy, the second-order
correlation energy, and the sum of the ring diagrams. One has
to notice that, if the bare value of the spin-orbit coupling ᾱ is
kept constant, the rs → 0 limit also corresponds to a vanishing
strength of the spin orbit coupling g. This is clear from Eq. (4)
and is simply understood as follows: At high density the
spin-orbit energy grows as αh̄kF , but becomes negligible with
respect to the kinetic energy, which is proportional to k2

F .
Furthermore, since χ (g,rs) is given in first approximation

by the noninteracting expression Eq. (11), this limit corre-
sponds also to a vanishing value of χ � g. Therefore, we will
obtain an expansion of Eq. (15) in the small parameters rs , g,
and χ , which are all of O(rs).

Using the result of the previous section at small g and χ

one can infer that to a generic contribution of order O(rn
s ) (in

the absence of spin-orbit coupling) corresponds a correction
∝ rn

s (g − χ )2 which is vanishing to lowest order for the
ground-state energy. Therefore, the leading analytic contri-
bution to δExc(g,rs) in Eq. (14) is O(rn

s g4) = O
(
rn+4
s ᾱ4

)
.

This argument is valid for the exchange energy and the
second-order correlation terms. On the other hand, due to
their nonperturbative resummation of all orders, the series of
diverging ring diagrams requires a more careful analysis.

A. Exchange energy

The exchange energy is the main contribution of the
electron interaction at high density. The Hartree-Fock approx-
imation of the two-dimensional electron liquid in the presence
of spin-orbit coupling was already studied in our previous
work.14,22,23 We derive here the explicit form of the exchange
correction for the specific case of Rashba or Dresselhaus
spin-orbit coupling. This is expressed as follows:14

δE (x)
xc (g,rs) = δEx(χ )

rs

, (20)

rs 1

0.141

0.283

g 0.707

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

1.5

2.0

g
,
r
s
,

χ

rs 5

0.141

g 0.707

1.0 0.5 0.0 0.5 1.0
0.32

0.30

0.28

0.26

0.24

0.22

g
,
r
s
,

χ

rs 10

0.283

0.707

g 1.414

1.0 0.5 0.0 0.5 1.0

0.18

0.17

0.16

0.15

0.14

g
,
r
s
,

χ

rs 20

0.283

0.566

g 2.828

1.0 0.5 0.0 0.5 1.0

0.100

0.095

0.090

0.085

0.080

χ

g
,
r
s
,

χ

FIG. 2. Numerical data (solid dots) from Ref. 25 for the total
energy E(g,rs,χ ) of Eq. (15), as functions of χ and at different values
of g and rs . We obtain the solid lines by setting δExc(g,rs,χ ) = 0 in
Eq. (15) and using the value of Exc(rs) of Ref. 38. For reference,
the empty dot in the top panel is the noninteracting energy without
spin-orbit coupling (at g = χ = 0 and rs = 1).

where δEx(χ ) is plotted in Fig. 3. The expansion of δEx(χ ) at
small χ is given by

δEx(χ ) =
√

2

48π
χ4

(
ln

χ

8
+ 23

12

)
+ . . . , (21)

where higher order terms are O(χ6). The term quadratic in χ

is missing, in agreement with Eq. (17) (with C = 0).
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0
δ

x

FIG. 3. Correction to the exchange energy (in Ry units at rs = 1)
for the unpolarized state with Rashba spin-orbit coupling, at finite
values of χ . To obtain the value for generic rs one simply divides by
rs [see Eq. (20)].

By making use of Eqs. (10), (14), (20), and (21), one obtains
that the energy is minimized when

χ (g,rs) = χ0(g)

[
1 −

√
2

24π
rsg

2

(
ln

g

8
+ 13

6

)
+ . . .

]
,

(22)

an expression that represents the analytic form of the small
enhancement of the chirality numerically obtained in Ref. 14.
The relative correction is of order O(r3

s ) and, as anticipated, it
is quadratic in the spin-orbit coupling.

In calculating the correction to the total energy, one has to
notice that χ0(g) is a stationary value of the noninteracting
energy, and therefore the corrections to the noninteracting
energy due to the renormalized value of χ are of order
O

( (g3rs )2

rs2

) = O(r6
s ) and can be neglected. The leading term

is therefore given by

δE (x)
xc (g,rs) =

√
2g4

48πrs

(
ln

g

8
+ 23

12

)
+ . . . , (23)

which represents the leading contribution to the exchange-
correlation energy correction. We discuss next the higher order
correlation terms.

B. Second-order correlation energy

The second-order correlation energy E2(g,χ ) is obtained
by standard perturbation theory. In the intermediate state two
electron-hole pairs are present, such that occupied states with
wave vectors k, k′ and chiral indexes μ, μ′ have scattered to
new unoccupied states

(k,μ) → (p,ν) and (k′,μ′) → (p′,ν ′), (24)

where p = k + q and p′ = k′ − q. As it is well known, there
are two different ways to scatter back to the original states. For
direct processes

(p,ν) → (k,μ) and (p′,ν ′) → (k′,μ′), (25)

0 0.2 0.4 0.6 0.8

g 2

-0.63

-0.625

-0.62

-0.615

2D
g
,

χ 0
g

0 0.2 0.4 0.6 0.8

g 2

0.23

0.232

0.234

0.236

0.238

2X
g
,

χ 0
g

FIG. 4. Plot of the second-order correlation energy for the non-
interacting ground state, as function of g. The generalized chirality
is χ = χ0(g) and the range of both plots is such that g <

√
2, which

gives χ < 1. The top panel shows the direct term ED
2 (g,χ0(g)) and

the lower panel the exchange term EX
2 (g,χ0(g)). The points represent

numerical results from Monte Carlo integrations of Eqs. (26) and
(28), and the solid lines serve as a guide for the eye.

which gives

ED
2 (g,χ ) = − 1

4π3

∑
μ,μ′,ν,ν ′

∫
dq
q2

∫
dk

∫
dk′

× nμ(k)nμ′(k′)[1 − nν(p)][1 − nν ′(p′)]
εν(p) − εμ(k) + εν ′(p′) − εμ′(k′)

× |〈p ν|kμ〉|2 |〈p′ ν ′|k′μ′〉|2. (26)

For exchange processes

(p,ν) → (k′,μ′) and (p′,ν ′) → (k,μ), (27)

which corresponds to

EX
2 (g,χ ) = 1

4π3

∑
μ,μ′,ν,ν ′

∫
dq

q|k − k′ + q|
∫

dk
∫

dk′

× nμ(k)nμ′(k′)[1 − nν(p)][1 − nν ′ (p′)]
εν(p) − εμ(k) + εν ′ (p′) − εμ′(k′)

×〈p ν|kμ〉 〈kμ|p′ν ′〉 〈p′ν ′|k′μ′〉 〈k′μ′|p ν〉.
(28)

Finally, the total second-order correlation energy is

E2(g,χ ) = ED
2 (g,χ ) + EX

2 (g,χ ). (29)
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g
,

χ 0
g

0 0.2 0.4 0.6 0.8

-0.38

-0.385

-0.39

FIG. 5. Plot of the total second-order correlation energy
E2(g,χ0(g)), with noninteracting occupation, as a function of g. The
inset shows the region of small g, when χ < 1, and is obtained as the
sum of the curves displayed in Fig. 4. The points represent numerical
results, and the solid lines serve as a guide for the eye.

As in the case without spin-orbit coupling, Eqs. (26) and
(28) cannot be evaluated analytically in general. Furthermore,
computing these multidimensional integrals with spin-orbit
coupling is complicated by the presence of singularities in the
integration domain, from the energy denominators. In fact, the
excitation energy is guaranteed to be positive when χ = χ0(g)
but in the general case the energy denominator can be zero
or negative. By restricting ourselves here to the simplest case
χ = χ0(g), which is correct to leading order at high density,
we plot in Fig. 4 the direct and exchange second-order integrals
as functions of g for g <

√
2 (corresponding to χ < 1). The

sum of the two is plotted in a wider range of values in Fig. 5.
We notice in Fig. 4 that in the limit g → 0 both functions ED

2
and EX

2 display a flat behavior in agreement with the vanishing
of the g2 contribution. The direct term is larger and dominates
the sum as displayed in the inset of Fig. 5. The characteristic
behavior, similar to the case of the exchange energy (see
Fig. 3), suggests a g4 ln g leading term. It is also remarkable
that at large values of g the correlation energy diverges. This
limit of large spin-orbit coupling is highly nonperturbative, as
already revealed by the Hartree-Fock treatment. Within that
approximation, the noninteracting states are strongly distorted
by the Coulomb interaction and form special spin textures in
momentum space.17,22,23

Analytic formulas for the second-order correlation energy
can be obtained at small g and χ . Expanding to second order
yields

ED
2 (g,χ ) � − 0.614 − (g − χ )2

4
+ . . . , (30)

EX
2 (g,χ ) � 0.229 + . . . , (31)

in agreement with Eq. (17) (with C = − 1
4 and C = 0 respec-

tively). The explicit calculation is detailed in Appendix A.

C. Ring diagrams

The higher order terms (n � 3) in the perturbative treatment
of the two-dimensional electron liquid are in general diverging
for the bare Coulomb interaction. However, a method to

obtain the next leading correction to the correlation energy
was devised for the three-dimensional case.36 It consists of
summing to infinite order the (regularized) most diverging
diagrams so that the final result is finite.11 This method was
applied in the two-dimensional case in Ref. 35 and is extended
here with suitable modifications to include the Rashba or
Dresselhaus spin-orbit coupling.

The expression of the ring diagrams reads (n > 1)

E (n)
R (g,rs,χ ) = − (−1)n

πnr2
s

∫ +∞

−∞
du

∫ ∞

0
q2dq

(
Qq(u)rs

2
√

2πq

)n

,

(32)

where Qq(u) is given by

∑
μ,ν

∫
dk nμ(k)[1 − nν(p)]

[εν(p) − εμ(k)]|〈pν|kμ〉|2
[εν(p) − εμ(k)]2/4 + u2q2

.

(33)

E (n)
R (g,rs,χ ) has a (formal) dependence on rn−2

s . Except for the
n = 2 term, which is merely a compact formula for Eq. (26),
these expressions diverge. Summing them up to infinite order
we arrive at

ER(g,rs,χ ) = 1

πr2
s

∫ +∞

−∞
du

∫ ∞

0
q2dq

[
ln

(
1 + Qq(u)rs

2
√

2πq

)

−Qq(u)rs

2
√

2πq
+ 1

2

(
Qq(u)rs

2
√

2πq

)2
]
. (34)

Rather than plunge into a numerical analysis, we endeavor
next to extract the analytic behavior of this contribution on the
variables rs , g, and χ . We begin by assessing the behavior of
the function Qq (u) for g,χ → 0. We first notice that the q → 0
limit of this function is not analytic. To see this consider that,
as shown in Appendix B, for fixed q and g,χ → 0, Qq(u)
behaves according to the general form given by Eq. (17), i.e.,
as

Qq(u) � Q(0)
q (u) + Q

gg
q (u)

2
(g − χ )2 + . . . , (35)

where Q(0)
q (u) is the value of Qq(u) for g = χ = 0 and

Q
gg
q (u) = ∂2Qq (u)

∂g2

∣∣∣
0

is given in Eq. (B1). On the other hand

this relationship does not hold as q → 0 for fixed g and
χ . In this case one can neglect in Eq. (33) terms involving
scattering to the opposite branch. This is justified since the
factor |〈νp|μ k〉|2 is ∼1 for the intraband and ∼q2 for the
interband contributions. Then

Q0(u) �
∑

μ

∫
dk
q

2 nμ(k)[1 − nμ(p)] (k − μg

2 ) cos φk(
k − μg

2

)2
cos2 φk + u2

= 2πk+
k̃+

R

(
u

k̃+

)
+ 2πk−

k̃−
R

(
u

k̃−

)
, (36)

where R(u) = 1 − 1/
√

1 + 1/u2 and we have assumed χ < 1
so that k± = √

1 ± χ . We have also defined k̃± = k± ∓ g/2.
In particular, by setting χ = g, we obtain

Q0(u) � 4πR(u) − πug2

2(1 + u2)3/2
, (37)
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which of course is in violation of Eq. (17).41

As a consequence one cannot immediately infer that
Eq. (34)does in fact satisfy the general property Eq. (17).
This however proves not to be a problem since Eq. (36) only
applies within a region of q values of extension much smaller
than g and χ . Accordingly, in order to obtain the leading
contributions to ER(g,rs,χ ) when χ,g → 0 one can safely
make use of Eq. (35) for Qq(u). Therefore, the correction to
the generic ring diagram can be formally written as

δE (n)
R = − (−1)n

2πr2
s

(g − χ )2
∫ +∞

−∞
du

∫ ∞

0
q2dq

×
(

Q(0)
q (u)rs

2
√

2πq

)n
Q

gg
q (u)

Q
(0)
q (u)

, (38)

to lowest order in g and χ . Summing the geometric series (for
n > 2) we have

δER = rs

16π3
(g − χ )2

∫ +∞

−∞
du

∫ ∞

0
dq

[
Q(0)

q (u)
]2

Q
gg
q (u)

2
√

2πq + Q
(0)
q (u)rs

,

(39)

where the integral is logarithmically divergent at rs → 0,
due to the small q integration region. Therefore we can
approximate

δER � − rs ln rs

2
√

2(2π )4
(g − χ )2

∫ +∞

−∞

[
Q

(0)
0 (u)

]2
Q

gg

0 (u)du,

(40)

where Q
(0)
0 (u) � 4πR(u) [with R(u) defined below Eq. (36)]

and Q
gg

0 (u) � −3π |u|/(1 + u2)5/2 which results from the
small q limit of (B1). We can then integrate Eq. (40) to obtain

δER(g,rs,χ ) =
(

56 − 15π

40
√

2π
(g − χ )2 + . . .

)
rs ln rs, (41)

where as usual we neglect higher order terms in g and χ .
A discussion of the physically different limit of small rs and

finite g, χ , for which Eq. (36) becomes applicable, is provided
in next section.

V. DISCUSSION

By adding up the contributions from the previous sections
we obtain that the total energy per particle in the presence of
spin-orbit coupling of the Rashba or Dresselhaus type has the
following form, in the limit of high density and small values
of g and χ :

E(g,rs,χ )

= E0(g,rs,χ )

−
[

8
√

2

3π
+

√
2

48π
χ4

(
ln

χ

8
+ 23

12

)
+ . . .

]
1

rs

−
[

0.385 + (g − χ )2

4
+ . . .

]
+

[
− 2

√
2

3π
(10 − 3π )

+ 56 − 15π

40
√

2π
(g − χ )2 + . . .

]
rs ln rs,

(42)

where the noninteracting energy E0(g,rs,χ ) is given in
Eq. (10). We included in Eq. (42) all the quadratic terms in χ

and g as well as, for the exchange energy only (third line), the
term of order O(χ4) which represents in practice the leading
correction at high densities. The fourth line shows the contribu-
tion of the direct and exchange second-order diagrams, from
Eqs. (30) and (31). Finally, the last term (in the fourth and
fifth lines) represents the ring-diagram correlation energy. For
g = χ = 0 this expression recovers the classic result for the
two-dimensional electron liquid of Rajagopal and Kimball of
Ref. 35.

From Eq. (42) it becomes clear that for small rs and given
spin-orbit coupling ᾱ, the largest effect of the interaction is
due to the exchange energy. In particular, we could obtain
in Eq. (22) how the best possible repopulation, i.e., the
value of χ in equilibrium, is modified by the interactions to
leading order. We also determined in Eq. (23) the leading
correction of the exchange-correlation energy due to the
spin-orbit coupling. In agreement with the general property
discussed in Sec. III, such corrections are very small. Beyond
the perturbative regime, we have shown (see Fig. 2) that recent
quantum Monte Carlo data are well reproduced by neglecting
the correction to the exchange-correlation energy due to the
spin-orbit coupling. Our results lend some measure of comfort
to the otherwise uncontrolled procedure of making use of
spin-orbit coupling free exchange and correlation functionals
within density functional calculations.39,40

We end our discussion with an analysis of the formally
interesting case of the limit of small rs at finite g and χ . This
corresponds to the case of a diverging bare spin-orbit coupling
constant ᾱ [see Eq. (4)], a scenario that does not apply to the
plain two dimensional electron liquid treated up to this point. In
this case the otherwise small “anomalous” integration region
contributing to Eq. (34) becomes dominant and Eq. (36) is the
appropriate form for Qq(u). While the reader is referred to
Appendix C for the details of the calculation, we give here the
result for the correlation energy to quadratic order in g and χ :

δER(g,rs,χ ) � − rs ln rs

6
√

2π

[ (
208

5
− 51π

4

)
g2

−
(

42

5
− 9π

4

)
χ2 + 27

10
(−16 + 5π ) g χ

]
.

(43)

This expression is distinct from Eq. (41) and violates the
general form ∝ (χ − g)2. As a consequence, the quadratic
term in the spin-orbit coupling survives and the correction is
proportional to g2rs ln rs instead of g4rs ln rs (using χ � g).
For the exchange energy and the second-order correlations the
nonanalyticity in the rs,g → 0 limit is not present, and the
same results obtained before are valid here. Despite this fact,
the ring-diagram contribution remains a subleading correction
since Eq. (43) is applicable only when g � rs which clearly
implies g4 ln g/rs � g2rs ln rs ; i.e., the exchange energy
correction is larger.

As a final remark, we notice that the nonanalyticity of
the rs,g → 0 limit discussed here becomes relevant in gated
heterostructures since the increase of the density is naturally
accompanied by a modification of the confining potential.
If smaller values of rs require higher values of the external
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electric field (e.g., proportional to the electron density12),
larger values of the spin-orbit coupling ᾱ are obtained at the
same time, thereby making the limit of Eq. (43) meaningful.
Furthermore, in heterostructures with a back gate, rs and ᾱ can
be controlled separately.
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APPENDIX A: DERIVATION OF EQUATIONS (30) AND (31)

We consider here the second derivatives of ED
2 (g,χ ) and

EX
2 (g,χ ), given by Eqs. (26) and (28), respectively. We start

by listing some useful formulas for spin summations:

∑
{μi }

N∏
i=1

〈piμi |pi+1μi+1〉 = 2, (A1)

∑
{μi }

μjμk

N∏
i=1

〈piμi |pi+1μi+1〉 = 2
pj · pk

pjpk

, (A2)

from which the following three identities are obtained:∑
μ,ν

μ(νp − μk)|〈pν|kμ〉|2 = 2k · q
k

, (A3)

∑
μ,μ′,ν,ν ′

|〈p ν|kμ〉|2 |〈p′ ν ′|k′μ′〉|2

(A4)
×(νp − μk + ν ′p′ − μ′k′)2 = 8q2,

∑
μ,μ′,ν,ν ′

〈p ν|kμ〉 〈kμ|p′ν ′〉〈p′ν ′|k′μ′〉 〈k′μ′|p ν〉
(A5)

×(νp − μk + ν ′p′ − μ′k′)2 = 0,

where, as in Eqs. (26) and (28), p = k + q and p′ = k′ − q.

We now examine ∂2ED
2

∂g2

∣∣∣
0
. After calculating the second

derivative of the integrand, which only involves the energy
denominator, the spin summation can be evaluated by making
use of (A4). One can next evaluate the angular integration in
the dq integral, and then integrate in dky , dk′

y to obtain the
following expression:

∂2ED
2

∂g2

∣∣∣∣
0

= − 1

π2

∫ ∞

0

dq

q2

∫ 1

−1
dkxdk′

x

L(q,kx)L(q, − k′
x)

(q + kx − k′
x)3

.

(A6)

Here L(q,kx) = ∫
n0(k)[1 − n0(p)] dky , which in the interval

−1 � kx � 1 gives

L(q,kx) =

⎧⎪⎨
⎪⎩

0 if q < 2 and kx � − q

2 ,

�(kx) if kx � −q + 1,

�(kx) − �(kx + q) otherwise,

(A7)

where we defined �(kx) = 2
√

1 − k2
x . We finally have evalu-

ated the integral (A6) and obtained a result numerically equal to
− 1

2 . The remaining second derivatives of ED
2 can be obtained

from the general relation Eq. (16) but, as an example, we
calculate them here explicitly.

The expression of ∂2ED
2

∂g∂χ

∣∣∣
0

can be simplified by making use

of (A1) and (A2). After some further manipulation we obtain

∂2ED
2

∂χ∂g

∣∣∣∣
0

= − 1

4π3

∫
dq
q2

∫
dk

∫
dk′ n0(k′)[1 − n0(p′)]

[q2 + q · (k − k′)]2

×{(k · q) [1 − n0(p)] δ(1 − k)

− (p · q) n0(k) δ(1 − p)}. (A8)

Then, after a change of variable k → −k − q = −p in the
second term in the integrand, angular integration in the dq
integral, and integration in dky and dk′

y , we obtain

∂2ED
2

∂χ∂g

∣∣∣∣
0

= − 1

π2

∫ ∞

0

dq

q2

∫ 1

−1
dkxdk′

x

kx L(q, − k′
x)√

1 − k2
x

×
[

1 − n0(p)

(q + kx − k′
x)2

+ n0(p)

(kx + k′
x)2

]
, (A9)

where p =
√

1 + q2 + 2qkx . Finally, Eq. (A9) can be trans-
formed to the opposite of (A6), by means of an integration by
parts in dkx of the two terms of the integrand and a suitable
change of variable kx → −kx − q in the second one.

The last term is ∂2ED
2

∂χ2

∣∣∣
0
. It is convenient to transform terms

containing double derivatives of the occupation functions in
the following way:∫

f (k)
∂2nμ(k)

∂χ2

∣∣∣∣
0

dk = 1

4

∫
∂f (k)

∂k
δ(1 − k) dk. (A10)

After then performing the spin summations explicitly, a change
of primed and unprimed variables to collect similar terms, and
the angular integration in the dq integral, we obtain

∂2ED
2

∂χ2

∣∣∣∣
0

= − 1

2π2

∫ ∞

0

dq

q2

∫
dk

∫
dk′ n0(k′)[1 − n0(p′)]

×
[(

∂

∂k

1 − n0(p)

q + kx − k′
x

)
δ(1 − k)

−
(

∂

∂p

n0(k)

q + kx − k′
x

)
δ(1 − p)

−2 cos(φk − φp)

q + kx − k′
x

δ(1 − k)δ(1 − p)

]
, (A11)

where in the dk, dk′ integrations, the x axis is chosen to be
along q so that p =

√
k2 + q2 + 2qkx . It is also convenient

to change the variable k → −k − q in the second term in the
large square brackets. The contributions from the first two
terms in the large square brackets involving the derivative
∂n0(p)

∂k
= −δ(1 − p) ∂p

∂k
cancel exactly the third term. In fact,

we obtain that the coefficient, multiplying the product δ(1 −
k)δ(1 − p), has the following form:

∂p/∂k

q + kx − k′
x

− ∂p/∂k

kx + k′
x

− 2 cos(φk − φp)

q + kx − k′
x

, (A12)

which can be simplified using kx = cos φk = −q/2. Further-
more, ∂p/∂k = (k + q cos φk)/p = 1 − q2/2 and cos(φk −
φp) = 1 − q2/2 as well. Therefore (A12) is seen to vanish
identically. The term surviving in Eq. (A11), after integrations
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in dky , dk′
y , is the opposite of (A9). Therefore, we can

summarize the final result as follows:

∂2ED
2

∂g2

∣∣∣∣
0

= − ∂2ED
2

∂χ∂g

∣∣∣∣
0

= ∂2ED
2

∂χ2

∣∣∣∣
0

= −1

2
. (A13)

We turn now to the second derivatives of EX
2 . The fact that

∂2EX
2

∂g2

∣∣∣
0

= 0 is immediately obtained from the spin summation

(A5) and the mixed derivative is also found to vanish upon spin
summation. Finally, the second derivative with respect to χ is
found to be vanishing after rather cumbersome manipulations.
These results are consistent with the general property (16) and
we conclude that

∂2EX
2

∂g2

∣∣∣∣
0

= − ∂2EX
2

∂χ∂g

∣∣∣∣
0

= ∂2EX
2

∂χ2

∣∣∣∣
0

= 0. (A14)

APPENDIX B: SECOND DERIVATIVES OF THE
RING-DIAGRAM CONTRIBUTION

We consider here the second derivatives with respect to g

and χ of Qq(u), defined in Eq. (33). We begin by noting that

∂2Qq(u)

∂g2

∣∣∣∣
0

= 16
∫

dk
q

n0(k)[1 − n0(p)](q + 2kx)

× (q + 2kx)2 − 12u2

[(q + 2kx)2 + 4u2]3
, (B1)

where we have set χ = g = 0 and performed the spin
summation (which gives a factor of 2). Consider now the mixed
derivative

∂2Qq(u)

∂χ∂g

∣∣∣∣
0

=
∫

dk
q2

∑
μ,ν

[
μδ(1 − k)

2
[1 − n0(p)]

− νδ(1 − p)

2
n0(k)

]
(νp − μk)|〈pν|kμ〉|2

× 4[(q + 2kx)2 − 4u2]

[(q + 2kx)2 + 4u2]2
. (B2)

By change of variable k → −k − q and relabeling μ ↔ ν

in the second term of the integrand (from the large square
brackets), we can cancel the n0(p) contribution in the first
term. Finally, the spin summation can be performed by using
Eq. (A3) and the integration in dk gives

∂2Qq(u)

∂g∂χ

∣∣∣∣
0

=
∫ 2π

0

4 cos φ

q

(q + 2 cos φ)2 − 4u2

[(q + 2 cos φ)2 + 4u2]2
dφ.

(B3)

The last second derivative, with respect to χ , gives

∂2Qq(u)

∂χ2

∣∣∣∣
0

=
∫

dk
q

[
δ′(1 − k) − δ(1 − k)

4
[1 − n0(p)]

− δ′(1 − p) − δ(1 − p)

4
n0(k)

− δ(1 − k)δ(1 − p)

2

]
8(q + 2kx)

(q + 2kx)2 + 4u2
.

(B4)

The derivatives only involve nμ(k)[1 − nν(p)], which results
in the large square brackets. The third term in the integrand
is vanishing, since p = q = 1 implies q + 2kx = 0 (note that
p = k + q and q is along x). Furthermore, we can change the
variable in the second term and cancel the n0(p) contribution
of the first term. Therefore, the large square brackets simplify
to [δ′(1 − k) − δ(1 − k)]/4 and the integration in dk is
immediate. The final result coincides with the opposite of
Eq. (B3). Consider now the change of variable cos φ → kx ,
which gives

∂2Qq(u)

∂χ2

∣∣∣∣
0

=
∫ 1

−1

8kxdkx

q
√

1 − k2
x

(q + 2kx)2 − 4u2

[(q + 2kx)2 + 4u2]2

= −
∫ 1

−1

8dkx

q

√
1 − k2

x

∂

∂kx

(q + 2kx)2 − 4u2

[(q + 2kx)2 + 4u2]2

= 32
∫ 1

−1

dkx

q

√
1 − k2

x(q + 2kx)

× (q + 2kx)2 − 12u2

[(q + 2kx)2 + 4u2]3
, (B5)

where we integrated by parts in the second line. No-
tice that for q � 2 (see Appendix A)

∫
dkyn0(k)[1 −

n0(p)] = 2
√

1 − k2
x . This establishes the equivalence

of Eq. (B5) and (B1) for this case. The equiva-
lence of the two expressions holds also at q < 2,
as can be seen applying the change of variable kx → −kx − q

in the integration region −1 < kx < − q

2 of (B5). Therefore,
we conclude that

Qgg
q (u) = ∂2Qq(u)

∂g2

∣∣∣∣
0

= − ∂2Qq(u)

∂χ∂g

∣∣∣∣
0

= ∂2Qq(u)

∂χ2

∣∣∣∣
0

.

(B6)

This is in agreement with Eq. (16) and leads to (35).

APPENDIX C: PHYSICALLY ALTERNATE LIMIT rs → 0
FOR FINITE g, χ

In this appendix we analyze the rs → 0 limit of Eq. (34) for
fixed values of g and χ . In this situation the relevant integration
region in dq is of order rs � g,χ around q = 0, and an
“anomalous” quadratic correction in g to the final result for
the energy is obtained [see the discussion after Eq. (35)]. The
calculation can be patterned after that carried out in the absence
of spin-orbit coupling, as for instance done in Ref. 35. In this
case one can perform the integration in dq (up to an arbitrary
upper limit much larger than rs) and extract the coefficient of
the rs ln rs contribution by writing

ER(g,rs,χ ) � − rs ln rs

3
√

2(2π )4

∫ +∞

−∞
[Q0(u)]3 du, (C1)

which gives the standard result − 2
√

2
3π

(10 − 3π )rs ln rs by using
Q0(u) = 4πR(u). Using for Q0(u) the expression of Eq. (36)
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instead, the result can still be obtained analytically as in
Ref. 37, i.e.,

ER(g,rs,χ ) � − rs ln rs

6
√

2π

[
(10 − 3π )

(
k3
+

k̃2+
+ k3

−
k̃2−

)

+ 3k+k2
−

k̃+k̃2−
F (k̃+,k̃−) + 3k−k2

+
k̃−k̃2+

F (k̃−,k̃+)

]
,

(C2)

where we have defined the following function,

F (x,y) = 4(x + y) − πx − 4xE

(
1 − y2

x2

)

+ 2x2 arccos y

x√
(x − y)(x + y)

, (C3)

in terms of the elliptic function E(x), defined as in Ref. 42.

Notice that one can use the identity
arccos y

x√
x−y

= arccosh y

x√
y−x

when
y > x.
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