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Charge state readout and hyperfine interaction in a few-electron InGaAs double quantum dot
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A laterally defined InGaAs double quantum dot with an integrated charge readout sensor is realized in an
InGaAs/InP heterostructure. The charge states of the double quantum dot are measured with the use of the charge
readout sensor in the few-electron regime in which the current is too weak to be observable by direct measurements
of electron transport through the double dot. We also measure the leakage current of the double quantum dot in
the Pauli spin-blockade few-electron regime and study the singlet-triplet state mixing by the hyperfine coupling
to the nuclear spins. The measurements of the leakage current in the weak external-magnetic-field region and for
weak interdot couplings allow us to extract an effective nuclear magnetic field in the double-dot system. We also
study spin relaxation and transport processes in the Pauli spin-blockade region at large external magnetic fields
and observe transport through the excited triplet state in the few-electron double quantum dot.
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I. INTRODUCTION

The control of electron spins in few-electron quantum dots
has seen intensive interest and progress in the last couple of
years since a proposal to use double quantum dots as spin
qubits for quantum-information processing1,2 first appeared.
The hyperfine coupling between the electron spins on the dots
and the surrounding nuclei has a fundamental effect on spin
transport and is a source of spin decoherence in materials with
a nonzero nuclear spin.3–7 In order to control the spin decoher-
ence in these systems, knowledge of state-mixing induced by
the electron-nuclear interaction is critical.8,9 Additionally, the
hyperfine coupling to the nuclear spins could be used to store
quantum information.10,11 Double quantum dots were first
realized primarily in high-electron-mobility GaAs/AlGaAs
heterostructures.12,13 These laterally defined double quantum
dots can be integrated with a charge readout sensor and have
been extensively used in charge-detection experiments,14–17

coupled-spin-manipulation experiments,18 and measurements
of spin relaxation due to the hyperfine coupling to nuclear
spins.3,4 However, due to a negligibly small Rashba spin-orbit
coupling coefficient in GaAs/AlGaAs heterostructures,19 it
is difficult to control the spins in the quantum dots and
the coupling between spins in the neighboring quantum
dots by an electrical way desired for quantum information
processing applications. Vertically configured double quantum
dots have been realized with InAs-based heterostructures.8,20

Double quantum dots have also been realized with InAs
nanowires.6,21,22 The large spin-orbit-coupling coefficients in
these material systems make InAs-based double quantum
dots one of the most promising platforms for solid-state-
based quantum-information processing. However, in both the
vertically configured double quantum dots and the nanowire
double quantum dots, it is technically very challenging to
integrate a high-performance charge readout element, although
such an integration is not absolutely impossible.23–25

Here, we report the realization and measurements of a
laterally defined few-electron double quantum dot in an
InGaAs/InP heterostructure with an integrated quantum point
contact (QPC) charge-readout sensor. Recently, progress has
been made in the fabrication of lateral single- and double-

quantum-dot devices in InGaAs/InP heterostructures.26–29 The
large g factor26,27 and tunable spin-orbit interaction30 in the
materials make InGaAs-quantum-dot systems yet another
promising platform for quantum-information-processing ap-
plications. However, it is very difficult to achieve a high-
performance few-electron-quantum-dot device with an inte-
grated charge readout sensor in an In-contained heterostructure
by top-gate technology. In this work, a technology of com-
bining etched trenches and fine finger gates is developed for
defining high-performance quantum devices in In-contained
heterostructures and is employed for the fabrication of our
double-dot device in an InGaAs/InP heterostructure. With
the help of the charge-readout sensor, we tune our fabricated
double-dot device to the last few-electron charge-state con-
figurations and study the singlet-triplet state mixing caused
by the hyperfine coupling in the Pauli-spin-blockade region.
In particular, the magnetic-field dependence of the leakage
current is analyzed for different interdot tunnel couplings
and at different levels of detuning. Based on the analysis, an
effective nuclear magnetic field of the order of a few millitesla
in strength in the double-quantum-dot system is extracted.
We also study spin relaxation and transport processes in the
Pauli-spin-blockade condition at large external magnetic fields
and observe transport through the excited triplet state in the
double quantum dot.

II. EXPERIMENTAL TECHNIQUES

The device studied in this work is fabricated in a
modulation-doped In0.75Ga0.25As/InP heterostructure con-
taining a two-dimensional electron gas (2DEG) in a 9-nm-thick
InGaAs quantum-well layer located 40 nm below the surface.
At a temperature of 300 mK, the 2DEG shows a mobility and
a sheet electron concentration of 1.0 × 105 cm2V−1s−1 and
7.5 × 1011 cm−2, respectively. By electron beam lithography
(EBL) and wet chemical etching, a 700-nm-long and 150-
nm-wide quantum wire is defined in the 2DEG. A QPC
with a width of 250 nm is simultaneously defined in close
proximity to the quantum wire. By atomic-layer deposition,
a 20-nm-thick HfO2 film is grown locally on the top of the

235302-11098-0121/2011/83(23)/235302(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.235302


M. LARSSON AND H. Q. XU PHYSICAL REVIEW B 83, 235302 (2011)

device, acting as a gate dielectric. Finally, six local finger
Ti-Au gates are deposited over the device by EBL and thermal
evaporation. Among them, five finger gates are placed locally
over the quantum wire and the remaining one is on the top of
the QPC. The width of the finger gates is about 40 nm and the
periodicity of those five finger gates over the quantum wire
is 80 nm. Figure 1(a) shows a scanning-electron-microscope
image of the fabricated device.

Transport measurements are performed in a dilution re-
frigerator at a base temperature of about 100 mK. A dc bias
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FIG. 1. (Color online) (a) Scanning-electron-microscope image
of the measured device. The five gates over the quantum wire define
a double quantum dot while the QPC is used as a charge readout
to probe the charge states of the double quantum dot. The scale bar
is 200 nm. (b) Charge-stability diagram showing the conductance
through the double quantum dot as a function of Vlg2 and Vlg4

in the regime of strong interdot coupling on a logarithmic color
scale. (c) Charge-stability diagram showing the transconductance,
dIQPC/dVlg2, of the charge readout QPC as a function of Vlg2 and Vlg4

measured simultaneously with (b). (d) Conductance of the charge
readout QPC as a function of Vlg2 and Vlg4 (charge-stability diagram)
in the few-electron regime. Here, a background-conductance plane
is subtracted. The levels of the conductance seen in the figure
correspond to different charge-state configurations. Four charge states
are indicated by labels (m,n) in this figure, where m and n are the
exact numbers of electrons in the left and right dots, respectively. (e)
Close-up view of the region marked by the dashed lines in (d). (f)
Traces along the dashed lines in (e) showing the actually measured
QPC conductance as a function of gate voltage.

voltage, Vsd, is applied symmetrically between the source and
drain contacts of the double quantum dot and a dc bias voltage,
Vsd,QPC, is applied between the QPC contacts. Negative dc
voltages are applied to the local finger gates, lg1, lg3, and lg5,
to induce electrostatic tunnel barriers along the quantum wire
to form a double quantum dot. Here, gates lg1 and lg5 are used
to set the coupling to the source and drain reservoirs and gate
lg3 is used to tune the interdot coupling. Gates lg2 and lg4 are
used to tune the energy levels of the left and right dots while
the QPC conductance is tuned by gate lgq to allow sensing
of the charge states in the double quantum dot.31 To achieve
a maximum sensitivity, the conductance of the QPC is tuned
to the region of GQPC < 2e2/h, where the transconductance
dIQPC/dVlgq is high.

III. TRANSPORT AND CHARGE STATE READOUT
MEASUREMENTS

Figure 1(b) shows the conductance through the double
quantum dot, created by setting Vlg1 = −380 mV, Vlg3 =
−180 mV, and Vlg5 = −420 mV, as a function of Vlg2 and
Vlg4 in the linear-response regime on a logarithmic color scale.
Hexagon patterns of high conductance, typical for the electron
transport through a double quantum dot, can be clearly seen in
the figure. The finite conductance lines caused by cotunneling,
connecting the degeneracy points, i.e., the hexagon corners,
indicate that the system is in the strong interdot-coupling
region. Figure 1(c) shows the transconductance, dIQPC/dVlg2,
of the charge readout QPC as a function of Vlg2 and Vlg4

measured simultaneously with the data presented in Fig. 1(b)
with Vsd,QPC = 1 mV. Dips in the transconductance, corre-
sponding to the changes in the charge states of the two dots,
are clearly seen as white lines, which overlap nicely with
the conductance peaks in Fig. 1(b). With this gate voltage
configuration, the number of electrons in each dot is around 10.
By monitoring the QPC conductance, the charge state (m,n),
where m and n are the numbers of electrons on the left and
right quantum dots, can be determined even in the case when
the current through the double quantum dot is too small to
be measured in our experimental setup. Figure 1(d) shows
the conductance of the QPC in the gate-voltage region where
each quantum dot contains two or less electrons. Here, as in
Ref. 15, a background-conductance plane is subtracted in order
to more clearly see the charge-state dependence of the QPC
conductance. The static gate voltages used in this measurement
are Vlg1 = −370 mV, Vlg3 = −200 mV, and Vlg5 = −420 mV.
Figure 1(e) shows a close-up view of the region marked by
the dashed lines in Fig. 1(d). Four constant values of the
conductance, corresponding to the four different charge-state
configurations, i.e., (0,0), (0,1), (1,0) and (1,1), are clearly
seen in the figure. Figure 1(f) shows traces of the real QPC
conductance along the dashed lines in Fig. 1(e). The jump in
the conductance, corresponding to a unit change in the number
of electrons on the left dot, is about �Gleft = 0.3 × 10−3 e2/h,
and it is about �Gright = 0.1 × 10−3 e2/h for a unit change
in the number of electrons on the right dot. However, the
current through the double quantum dot at these charge states
is completely suppressed or it is too small to be measured due
to the weak tunnel couplings of the double dot to the source
and drain leads.
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IV. PAULI SPIN BLOCKADE AND TRIPLET TO SINGLET
RELAXATION VIA HYPERFINE INTERACTION

Figure 2(a) shows a stability diagram of the current through
the double quantum dot in the (2,6) → (3,5) charge-state
transition at a finite bias voltage of Vsd = 1 mV, where the
current through the device is large enough to be measured.
The static gate voltages used in this and the following
measurements are Vlg1 = −390 mV and Vlg5 = −440 mV
with the voltage of Vlg3 indicated in the figures. At a finite bias
voltage, the degeneracy points, or triple points, have developed
into triangular regions [outlined by the white dashed lines in
Fig. 2(a)] of finite current, where the size of the triangles is
determined by the applied bias voltage.13 Along the base line of
the triangles, the chemical potentials of the two dots are aligned
and within the bias voltage window and the resonant transport
through the double-quantum-dot system via singlet states
can occur. Inside the triangular area, the chemical potentials
of the two dots are detuned and the transport is inelastic,
resulting in a smaller current than for the resonant case.
Outside of the triangular regions, electron transport is Coulomb
blockaded. Figure 2(b) shows the current through the double
quantum dot via the (3,5) → (2,6) charge state transition at a
negative bias voltage of Vsd = −1 mV with Vlg3 = −255 mV.
The triangles are now mirrored with respect to the triangle
baseline and we see that the current is strongly suppressed
at the baseline, except at the baseline edges. We also see a
new line of high current running parallel to the baseline at a
constant detuning, �, of the energy levels in the two dots. This
current-rectification behavior can be explained by Pauli spin
blockade.20,32

In the following discussion, it is enough to only consider
the spin states of unpaired spins in the dots. We will therefore
refer to the (2,5) charge state as the [0,1] state, since the two
excess spins of the electrons in the left dot and the four excess
spins of the electrons in the right dot pair off. Similarly, the
(3,5) charge state will be referred to as the [1,1] state and
the (2,6) charge state as the [0,2] state. We now investigate
the [1,1] → [0,2] transition in more detail. In the [1,1] state
configuration, one excess electron is assumed to occupy the
right dot, while the left dot is loaded by an electron from
the left lead. In the limit of weak interdot tunnel coupling, the
exchange energy is small and the two electrons in the different
dots can be considered almost independent. Therefore, the
electron entering the left dot can be loaded either into
the singlet [1,1]s state or into a triplet [1,1]t state of the double
quantum dot. If a spin-down electron enters the left dot, the
double-dot system is in the [1,1]s state, see the left diagram
in Fig. 2(d). This electron can tunnel to the right dot to form a
[0,2]s singlet state and, finally, leave the double-quantum-dot
system through the right lead. However, if a spin-up electron
is loaded into the left dot to form a double-dot triplet [1,1]t
state, this spin-up electron can not tunnel to the right dot since
the [0,2]t triplet states are too high in energy, nor can it tunnel
back to the left lead if the state is below the Fermi level, see
the right diagram in Fig. 2(d). Transport is therefore blocked,
this is referred to as Pauli spin blockade. At the lower edge of
the triangle baseline, there is a small increase in current. Here,
a spin-up electron loaded into the [1,1]t state is within the
thermally broadened Fermi level of the left lead. The electron
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FIG. 2. (Color online) (a) Current through the double quantum
dot at the (2,6) → (3,5) charge-state transition showing a pair of
triple-point triangular regions of high current at a finite positive
bias voltage of Vsd = 1 mV. (b) and (c) Current through the double
quantum dot at a negative-bias voltage of Vsd = −1 mV with Vlg3 =
−255 mV and Vlg3 = −262 mV, respectively. Pauli spin blockade
results in a suppression of the current in the triangle region. The line
of high current, which is parallel to the triangle base line, corresponds
to the electron transport through an excited triplet state at a large finite
detuning. (d) Schematic energy diagram showing sequential tunneling
through the double quantum dot when the left dot is loaded with a
spin-down electron (left) and Pauli spin blockade when the left dot is
loaded with a spin-up electron (right).

can therefore tunnel out to the left lead and be replaced by a
spin-down electron. This spin-down electron can then tunnel
to the right lead through the [0,2]s state. At the upper edge of
the triangle baseline, there is an equivalent hole cycle leading
to an increase in the current. The high-current line that runs
parallel with the triangle baseline marks the point where the
[0,2]t states are aligned with the chemical potential of the left
dot and resonant transport through the double quantum dot
via the [0,2]t states becomes possible. In Fig. 2(c), the tunnel
coupling between the two dots has been reduced by setting
Vlg3 = −262 mV. This reduction has resulted in an increase in
the leakage current along the triangle baseline, indicating that
the triplet to singlet relaxation in the double dot is enhanced.

The triplet to singlet relaxation leading to an increase
in leakage current in the Pauli-spin-blockade region seen in
Fig. 2(c) can be attributed to the hyperfine coupling of the
electron spin with the nuclear spins as has previously been
reported for GaAs and InAs double-quantum-dot systems.3,4,6

The random unpolarized and uncorrelated nuclear spins in
the two dots yield an inhomogeneous effective nuclear mag-
netic field (so-called Overhauser field) pointing in a random
direction with a strength, Bn, of the order of a few mT for
the dot sizes studied here.3,6 This effective nuclear magnetic
field gives rise to a mixing of the [1,1]s and [1,1]t states
when En > Est , where En = |g∗|μBBn is the Zeeman splitting
energy of the two spin states caused by the effective nuclear
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magnetic field and Est = |E[1,1]s − E[1,1]t | is the singlet-triplet
splitting energy.

Figure 3(a) shows the current through the double quantum
dot as a function of external magnetic field, B, applied parallel
to the quantum wire and level detuning, �, measured along
the white dashed line in Fig. 2(c). Here, the gate voltage
has been converted to energy. The high current peak around
zero field and zero detuning is the leakage current caused
by sequential transport through the [1,1]s and [0,2]s states.
The peak is clearly suppressed and moves toward higher
detuning at larger fields. This is caused by the split-off [1,1]t+
state at the applied magnetic field. Transport through this
level is unlikely since it requires a spin flip to occur and
therefore the current is suppressed. However, when the [1,1]t+
state is aligned with the [0,2]s state, nuclear-field mixing is
possible and results in a weak current peak. The current peak
at � = 0.7 meV is caused by sequential tunneling through
the [1,1]t and [0,2]t states and does not change with the
applied magnetic field. The two weak peaks splitting off from
the strong triplet peak correspond to the [1,1]t+ → [0,2]t0
and [1,1]t0 → [0,2]t− transport processes (positive slope)
and to the [1,1]t0 → [0,2]t+ and [1,1]t− → [0,2]t0 transport
processes (negative slope), respectively. Transport through
these levels require higher-order spin-flip processes and thus
results in a current peak weaker than the � = 0.7-meV peak.
By fitting the magnetic-field dependencies of the two weak
peaks, a g factor of 2.3 was extracted for an electron in the
double-dot system. This value is in a good agreement with
the previous studies of few-electron quantum dots made in the
same material system.27

Figure 3(b) shows a close-up view of the area within
the white dashed lines in Fig. 3(a). The influence of the
effective-nuclear-field mixing of the singlet and triplet states
on the leakage current in the Pauli spin-blockade region is
more clearly seen in this figure. For a small interdot coupling,
the leakage current is at a maximum at zero detuning and
zero magnetic field [see Fig. 3(b)]. However, in the case
of a larger interdot coupling [see Fig. 3(c)], the leakage
current has a minimum at zero detuning and zero magnetic
field and is enhanced with the increase of detuning or the
increase of external magnetic field. This behavior of the
leakage current can be explained by considering the different
competing energy scales given by: the Zeeman-splitting
energy, Eext = |g∗|μBB, caused by the external magnetic field,
the Zeeman-splitting energy from the effective nuclear field,
En = |g∗|μBBn, and the splitting energy, Est , between the
triplet states [1,1]t and the singlet states, i.e., hybrid states
of the [1,1]s and [0,2]s states. This singlet-triplet splitting
is effectively controlled by the interdot tunnel coupling set by
Vlg3 and the detuning. At � = 0, the hybridization of the [1,1]s
and [0,2]s states gives rise to an anticrossing [see Fig. 3(d)],
where the energy gap (indicated by two short blue solid arrows)
depends on the interdot coupling. A smaller interdot coupling
gives rise to a smaller energy gap [blue solid lines in Fig. 3(d)],
while a larger coupling gives rise to a large energy gap [gray
dashed lines in Fig. 3(d)]. Efficient mixing of the singlet and
triplet [1,1] states is only possible when the splitting from
the nuclear field, En, of the [1,1]t state is larger than the
singlet-triplet splitting, Est . For a small interdot coupling this
leads to efficient mixing at small detuning [as well as over the
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FIG. 3. (Color online) (a) Current through the double quantum
dot as a function of external applied magnetic field and detuning cut
along the dashed white line in Fig. 2(c). (b) Zoom-in view of the area
within the white dashed line in Fig. 3(a). (c) The same measurement
as in (b) but with a smaller interdot tunnel coupling. (d) Schematic
representation of the energy evolution of the [1,1]s, [1,1]t , and [0,2]s
states as a function of detuning, �. The hybridization of the [1,1]s
and [0,2]s due to the finite interdot coupling leads to an anticrossing
at � = 0. The blue solid lines correspond to a small interdot coupling
while the blue dashed lines correspond to a larger interdot coupling.
At a finite external magnetic field, the triplet state splits into three
levels (dashed red lines).

whole range of detuning in Fig. 3(b)], while for a large interdot
coupling, the mixing is possible only at finite detunings [see
Fig. 3(c)]. At a finite external magnetic field, the [1,1]t triplet
state will split. This can result in a decrease in leakage
current in the weak-interdot-tunnel-coupling case [Fig. 3(b)].
However, in a strong-interdot-coupling case, the split triplet
states [1,1]t± may move closer to the two well-separated
hybrid-singlet states at the zero and small detunings, and
can therefore enhance the mixing of the triplet states with
the singlet states via the random nuclear magnetic field. In
this finite-magnetic-field situation, the triplet states may also
decay to the singlet [0,2]s states via spin-orbit interaction.
Physically, both processes will result in an increase in leakage
current at a finite magnetic field the strong-interdot-coupling
case, as seen in Fig. 3(c). Nevertheless, at sufficiently large
detunings, an application of an external magnetic field will
suppress the leakage current in both weak- and strong-interdot-
tunnel-coupling cases considered in Figs. 3(b) and 3(c).

The magnetic-field dependence of the leakage current at
large detuning and weak interdot coupling can be used to
extract the value of the strength of nuclear magnetic fields in
the system. Figure 4(a) shows the leakage current measured
at detuning � = 80 μeV against the applied magnetic field
[i.e., along the white dashed line in Fig. 3(b)] at three different
weak interdot couplings. Theoretical fits of the experimental
data, based on the quantitative description presented in Ref. 5,
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FIG. 4. (Color online) (a) Plots of the leakage current as a function
of the applied external magnetic field at detuning � = 80 μeV [i.e.,
along the white dashed line in Fig. 3(b)] at three different weak
interdot couplings. Solid lines are theoretical fits of the experimental
data. Offsets have been added to the two upper plots for clarity. (b)
Plots of the leakage current as a function of the applied external
magnetic field at detuning � = 0 μeV in a weak-interdot-coupling
case of Vlg3 = −265 mV (squares) and a strong-interdot-coupling
case of Vlg3 = −255 mV (circles).

are included as solid lines in the figure. The formula adopted
from Ref. 5 for the average current is

〈I 〉/e = �inS(
√

3B/Bn),

where �in is the tunneling rate and

S(x) = 4/x2 − 6/x4 +
√

2πerfi(x/
√

2)(6/x5 − 2/x3)

×exp(−x2/2) − 3πerfi2(x/
√

2)exp(−x2)/x6.

In the fits to the measured data presented in Fig. 4(a), a nuclear-
field strength Bn = 2.7 mT is extracted. This magnetic-field
strength is similar to the previously reported values for GaAs
(see Ref. 3) and InAs (see Ref. 6) double-quantum-dot systems.
Using the experimentally extracted values of g∗ and Bn we
calculate En = 0.4 μeV.

Finally, we note that recent theoretical and experimental
investigations of the competition between hyperfine and spin-
orbit mixing of the singlet and triplet states in a spin-blockaded
double quantum dot have shown that the interdot coupling
plays a fundamental role in determining the spin-relaxation
mechanism.21,22,33 In the weak-interdot-coupling regime, the
hyperfine mixing is expected to dominate in lifting the spin

blockade. In this regime, a peak in the leakage current centered
around zero magnetic field and zero detuning is expected. In
the strong-coupling regime and a large magnetic field, spin-
orbit mixing is expected to play a major role in lifting spin
blockade, giving a dip around zero magnetic field and zero
detuning.21,22,33 Figure 3(b) is in qualitative agreement with
the hyperfine-dominated mixing case showing a peak in the
leakage current for � = 0 meV around zero magnetic field.
In the case of strong coupling seen in Fig. 3(c), the peak has
transitioned into a weak dip around zero magnetic field, which
could be an indication that the system is in the regime where
the hyperfine- and spin-orbit-interaction contributions to the
leakage current are comparable in size. Figure 4(b) shows
the measured leakage current as a function of magnetic field
at zero detuning for a weak- and a strong-interdot-coupling
case. Here, the peak and dip in the leakage current around
zero field are clearly seen. However, in this study, we did
not reach the extremely strong interdot coupling regime in
which the current will show a well-defined dip at zero magnetic
field.21,22,33

V. CONCLUSIONS

In conclusion, we have reported on a charge-sensing
experiment and leakage-current measurements in the Pauli-
spin-blockade regime of a few-electron double quantum dot.
The device is defined in an In0.75Ga0.25As quantum well
by etched trenches and top-finger gates. The magnetic-field
dependence of the leakage current has been analyzed in detail
for different interdot tunnel couplings and at different levels of
detuning. Based on the analysis, an effective nuclear magnetic
field of strength ∼2.7 mT has been extracted for the double-
quantum-dot system. Further investigation of the leakage
current in the strong-interdot-coupling regime is necessary to
determine the effect of spin-orbit interaction on the electron
spin dynamics of the double-quantum-dot system.21,22,33
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19P. S. Eldridge, J. Hübner, S. Oertel, R. T. Harley, M. Henini, and
M. Oestreich, Phys. Rev. B 83, 041301 (2011).

20K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297,
1313 (2002).

21A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Phys. Rev.
Lett. 99, 036801 (2007).

22S. Nadj-Perge, S. M. Frolov, J. W. W. van Tilburg, J. Danon, Yu. V.
Nazarov, R. Algra, E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Phys. Rev. B 81, 201305 (2010).

23D. Wallin, A. Fuhrer, L. E. Fröberg, L. Samuelson, H. Q. Xu,
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