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Low phonon thermal conductivity of layered (Bi2)m-(Bi2Te3)n thermoelectric alloys
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We examined the thermal conductivity of the (Bi2)m-(Bi2Te3)n alloys, which are composed of alternating
sequences of Bi2 and Bi2Te3 structural units. The phonon thermal conductivity of these alloys was sharply
reduced relative to that of elemental Bi and Bi2Te3 for temperatures below 100 K. Our measurements suggested
that defects reduce the thermal conductivity in these materials. Using the Debye-Callaway model for heat
transport, we link this reduced thermal conductivity to point defects.
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I. INTRODUCTION

The phonon thermal conductivity κP of thermoelectric al-
loys should be reduced as much as possible in order to increase
the efficiency of thermoelectric devices.1 Understanding how
a low κP occurs in different thermoelectric materials is also an
interesting problem in phonon transport. In some bulk alloys,
such as the skutterudites, “rattling” guest atoms in the open
spaces of the crystal structure are thought to strongly scatter
phonons,2 thus lowering κP. Strong bond anharmonicity3

and nanostructuring2 may also increase phonon scattering.
In general, crystal structure, the nature of atomic bonding,
and microstructure will all influence κP at the same time.4,5

Understanding why certain thermoelectric materials have low
κP then amounts to uncovering the dominant phonon-scattering
mechanism.

Bi2Te3 is one of the best thermoelectric materials due
to its low κP. One can combine excess Bi with Bi2Te3

and form a series of intermetallic phases,6 where excess
metal ions form in charge-neutral bilayers interleaved between
Bi2Te3 blocks.7 Depending on the amount of excess Bi, many
different layered structures are possible. Materials with layered
crystal structures often have a reduced κP,8,9 originating from
interface scattering or changes in phonon band structure in
analogy to artificial superlattices.10 It is therefore interesting
to see if κP changes systematically with the “superlat-
tice” structure of the (Bi2)m-(Bi2Te3)n series or whether
other mechanisms dominate the thermal transport in this
system.

While both the Seebeck coefficient and resistivity ρ have
been measured for several (Bi2)m(Bi2Te3)n compounds,7 κP

has not been reported and is the focus of the present work.
Here, we found that while these alloys had a reduced κP relative
to elemental Bi and Bi2Te3 below 100 K. The κP reduction did
not change systematically with Bi content, even though the
stacking sequence of Bi bilayer and Bi2Te3 structural units
had changed, because our measurements were only sensitive
to the in-plane thermal conductivity of these materials. Using
calorimetry, we inferred that κP must be reduced from a
decrease in the phonon mean free path, which suggests that
microscopic defects increase phonon scattering. We used the
Debye-Callaway approximation of the Boltzmann equation
to model κP based on the hypothesis that defects increase

phonon scattering. In this way, point defects were linked
to the reduction of κP. The magnitude of the point defect
scattering rate suggested that vacancies or antisite defects, at
concentrations of 2%–6%, were the relevant point defects in
these materials.

II. SYNTHESIS

We prepared samples of (Bi2)m-(Bi2Te3)n in two different
ways in order to control the grain size and porosity of the
material used for measurements. The reasons for these control
experiments are further explained in Sec. V and VI.

In the first method, we prepared Bi2Te3, Bi2Te, BiTe, and
Bi6Te7 using solid-state reaction routes previously reported by
Bos et al.7 Stoichiometric amounts of powder Bi2Te3 (99.99%)
and Bi (99.99%) obtained from Alfa Aesar were mixed and
ground together in an agate mortar. The mixed powders were
pressed into 13-mm pellets under a load of 3000 pounds and
sealed in quartz tubes under 100 Torr of hydrogen. The samples
were sintered under the following conditions: Bi2Te3 at
525 ◦C, Bi6Te7 at 485 ◦C, BiTe at 430 ◦C, and Bi2Te at 285 ◦C,
each for 2 days. Sintering temperatures were chosen based on
the equilibrium phase diagram.6 The resulting pellets were
checked for phase purity and the correct lattice parameters, as
compared to Bos et al.,7 using powder x-ray diffraction (XRD).
These pellets were then reground for consolidation using
spark plasma sintering (SPS) using a Dr. Sinter, SPS-515S
unit. In this technique, precursor powders are sintered at
low temperature, under pressure and high electric currents.
SPS samples were prepared from both sieved and unsieved
prereacted powders for reasons described later. Powders for
SPS consolidation were loaded into a 13-mm graphite die
coated with BN, which avoided loss of current from the sample
to die and contamination. For each sample, current was injected
through the die/sample at 100 A/min under pressure. A drastic
change in piston displacement indicated that sintering had
begun, at which point the current (and sintering temperature)
was kept constant for 10 min before furnace cooling (∼15 min)
to room temperature. The SPS conditions for each sample
were Bi2Te3: 175 A, 350 C; BiTe: 150 A, 350 C; Bi2Te:
100 A, 250 C; and Bi6Te7: 200 A, 360 C. All samples were
loaded with a force of 5 kN. Phase purity and lattice parameters
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were unchanged after the SPS step. Phase purity was further
checked using transmission electron microscopy (TEM) after
SPS processing. We used this SPS route because we found
that porosity could be greatly reduced and grain size did not
change from that of the precursor powder.

In the second method of preparation, we synthesized Bi4Te3

from the melt in order to achieve large grain sizes. The Bi4Te3

sample was prepared by melting stoichiometric amounts of Bi
(99.99%) and Te (99.99%) from Alfa Aesar in an evacuated
quartz tube at 700 C. The melt was quenched from 700
C in liquid nitrogen, then annealed at 400 C for 2 weeks.
After annealing, this sample was found to be phase pure
through x-ray diffraction and TEM microscopy. We were
not able to grow large single crystals at the time of this
writing, so all measurements reported are on polycrystalline
specimens.

III. MEASUREMENTS

We conducted transmission electron microscopic (TEM)
observations of these materials using a JEOL 2010F in-
strument (JEOL Ltd., Japan) operated at 200 keV. Samples
were prepared for TEM observation by mechanical dimpling
followed by Ar+ ion milling in a liquid-nitrogen-cooled ion
mill (Fischione, Model 1010).

The phase purity and lattice parameters of all samples
were obtained by x-ray powder diffraction using a Scintag
diffractometer with Cu-Kα radiation fitted with an HPGe
planar photon detector. Grain size and texture measurements
were conducted using electron backscatter diffraction (EBSD)
contrast in an SEM. Qualitative metallography was performed
on polished samples in an optical microscope.

We used the thermal transport option of the physical
property measurement system (PPMS, Quantum Design) for
κ and ρ measurements. These measurements were conducted
under high vacuum. Low resistance ohmic contacts were
achieved by first polishing the sample surface down to 800
grit, then electroplating nickel contact pads. Electrical leads
(gold plated copper) were fixed to the nickel contacts using
EPO-TEK H20B silver epoxy. The dimensions of each sample
were kept constant (∼ 2 × 2 × 7mm3). Radiation errors in
the thermal conductivity were negligible in the low-T region
(<100 K) of interest. The heat-capacity option of the PPMS
was used to obtain specific-heat (C) measurements using a
relaxation method down to 2 K.

IV. STRUCTURE OF (Bi2)m-(Bi2Te3)n ALLOYS

Figure 1 shows the crystal structures of BiTe, Bi2Te, and
Bi6Te7 compared to Bi2Te3. Each compound is made up of
alternating layers of Bi2Te3 and Bi2 subunits. The evidence
for this structural model is summarized in Ref. 7.

To confirm the phase identification for our compounds, we
analyzed the materials using selected area electron diffraction
on individual single-crystal grains in the TEM, while lattice
parameters were calculated from bulk powder XRD patterns.
The lattice constants for the prepared Bi-Te phases were
obtained by first modeling the reported structures for these
compounds using Crystal Maker R© (CrystalMaker Software
Ltd, Oxford, England, www.crystalmaker.com); generating

a simulated XRD powder pattern for each compound using
Crystal Diffract (also from CrystalMaker Software); and then
using the simulated peak positions and hkl index assignments
to assign hkl indexes to the x-ray data. Lattice parameters
were then determined using Cohen’s method for noncubic
systems,11 and agreed with those found by Bos et al.7

Selected area electron-diffraction patterns (Fig. 1) collected
in the TEM were further used to identify each phase using the
indexing scheme discussed in Ref. 7. This indexing scheme
allows diffraction data from different structures within the
compositional series to be unambiguously compared as pertur-
bations of a single, simple unit cell. Specifically, the structures
in the (Bi2)m(Bi2Te3)n series are referenced to a hypothetical
rhombohedral subcell with abc stacking (space group R3̄m).
This subcell (a ∼ 4.4 Å and c ∼ 6.0 Å in the hexagonal
setting) is chosen to give the primary diffraction reflections
associated with the short-range periodicities of the crystal
structure, but not the additional superlatticelike reflections
that are associated with the long-range compositional and
structural modulations, which vary as a function of Bi fraction.
Distortions relative to this idealized structure are described by
introducing an additional “modulation vector,” q = γ [0001]∗.

The modulation vector is denoted by an index m, which is
added to the conventional {hk(i)l} reciprocal-space indexing
[i.e., {hk(i)l;m}]. The positions of the superlattice reflections
are then given by linear combinations (in reciprocal space)
of the reflections of the reference lattice, characterized by the
index l, and the modulation vector multiplied by m. Along
the {000l} row in the diffraction pattern, these positions
are gl;m = g3;0(mγ + l)/3. We have used this indexing ap-
proach to characterize the diffraction patterns obtained from
our materials. We measured the peak positions along the
{000l} rows of selected area electron-diffraction patterns
obtained from

〈
21̄1̄0

〉
or

〈
101̄0

〉
oriented grains. The peak

positions were normalized by the distance to the {0003;0}
reflection (g3;0) to eliminate errors due to uncertainty in the
instrumental camera-length calibration. For each pattern, we
computed γ for each observed reflection between {000-3;0}
and {0003;0} from γ = (

3gl;m
/
g3;0 − 1

)/
m. The γ values

reported in Fig. 1 were averaged from at least three separate
grains and agreed within one standard deviation to the γ

values found in Ref. 7. In summary, our XRD and TEM
diffraction experiments confirm that each sample was phase
pure and had the expected crystal structures as shown in
Fig. 1.

V. PHONON THERMAL CONDUCTIVITY OF
(Bi2)m(Bi2Te3)n ALLOYS

We measured κP (Fig. 2) for Bi2Te, BiTe, and Bi6Te7 and
compared the results to Bi2Te3, prepared under the same
conditions. The samples in Fig. 2 were synthesized using
unsieved precursor powder for SPS in order to reduce porosity.
We estimated κP by subtracting the estimated electronic
thermal conductivity κE from the measured total thermal
conductivity κTOTAL. κE is usually approximated by the
Weidemann Franz (WF) law, κE = L0σT , where L0 is
the Lorenz number and σ (= 1/ρ) is the electrical conductivity.
We found a typical carrier concentration of ∼1020 cm−3
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γ = 1.199 1.2481.229 1.314

FIG. 1. Crystal structure of Bi2Te3, BiTe, Bi2Te, Bi6Te7. These compounds are composed of Bi2 layers and Bi2Te3 blocks, as confirmed
by selected area diffraction patterns collected in a transmission electron microscope and powder x-ray diffraction (not shown). The parameter
γ , which parametrizes the periodicity of each compound, agreed within one standard deviation of that found in previous diffraction studies of
these materials. Other compounds of the form (Bi2)m(Bi2Te3)n exist but were not studied here.

in these alloys so that L0 takes the Sommerfeld value of
2.44 × 10−8 W/K2, appropriate for degenerate electron sys-
tems. Using the WF law and the measured ρ for each
compound (Fig. 2, inset), κP = κTOTAL − L0σT of the Bi2-
Bi2Te3 alloys appears significantly smaller for T < 100 K
compared to Bi2Te3 and elemental Bi.12 For T > 200 K and
up to room temperature, κP increases with increasing T, likely
due to bipolar thermal conduction that has not been estimated
here. Radiation errors could also cause the apparent κP to
increase with T above 200 K, but this error amounts to 10% or

less at 300 K. In this work, we will focus on the T < 100 K
behavior of κP where bipolar conduction and radiative losses
are negligible.

In Fig. 2 we assumed that the WF law is a good
approximation for κE. In conventional metallic materials,
elastic scattering from defects affects the thermal and electric
currents the same way so that the WF law is valid.13 For
electron-phonon scattering, the WF law no longer predicts κE

when inelastic collisions involve phonons of a wave vector (q)
much smaller than the Fermi wave vector (kF).14 Therefore in
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FIG. 2. (Color online) Phonon thermal conductivity of
(Bi2)m(Bi2Te3)n alloys. BiTe, Bi2Te, and Bi6Te7 have a reduced
κP relative to Bi2Te3 below 100 K. We calculated κP using the
Weidemann-Franz law and the measured electrical resistivity for each
compound (inset).

order to judge if we have appropriately used the WF law, we
must estimate the importance of small q phonons (relative to
the magnitude of kF).

The dominant phonon q is directly proportional to T.
Phonons with q � 2kF will result in a violation of the
WF law. In the Bi2-Bi2Te3 alloys we have studied, carrier
concentrations (n) are ∼1020 cm−3,15 leading to an upper limit
for kF ∼ (3π2n)1/3 ∼ 107 cm−1. The effective temperature
below which electron-phonon scattering sets in for low
carrier concentration systems (i.e., with kF � qD , the Debye
wave vector) is given by θ∗ = 2kFvSh/2πkB,16 where vS is
the sound velocity, h is Planck’s constant, and kB is the
Boltzmann constant. WF violations are therefore expected
for T � θ∗. Using the estimated kF and an upper limit of
vS ∼ 2.85 × 105 cm/s reported for Bi2Te3

17, θ∗ ∼ 56 K. In
As, which has n ∼ 1020 cm−3 (Ref. 16) and a maximum
vS ∼ 4.61 × 105 cm/s,18 θ∗ ∼ 91 K and κE/σT only deviates
from L0 (by at most −25%) below 10 K.19 Thus in the
Bi2-Bi2Te3 alloys, we expect that the κP for 10 K < T < 100 K
reported in Fig. 2 almost entirely represents lattice thermal
conduction.

The reduction of κP below 100 K does not systematically
vary across the Bi2-Bi2Te3 series [Fig. 3(a)], suggesting
that the layered crystal structure shown in Fig. 1 does not
play a direct role in this phenomenon. With increasing at.
% Bi, both unit-cell size and the number of Bi bilayers
change within the Bi2-Bi2Te3 structure yet the peak in κP

(e.g., κP is maximum, ∼1.4 W/Km, at 25 K in BiTe in
Fig. 2) is constant within the error bars. The anisotropic
crystal structure shown in Fig. 1 suggests that (Bi2)m-
(Bi2Te3)n single crystals might have a larger in-plane to
cross-plane κP ratio than that of Bi2Te3 [κ11/κ33 ∼ 1.2 at 100 K
(Ref. 20)] due to the presence of Bi2 bilayers. Furthermore,
this κP anisotropy should change with Bi content. However,
the materials measured in Fig. 2 were untextured polycrystals,
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FIG. 3. (Color online) (a) The peak κP for Bi6Te7, BiTe, and Bi2Te
was reduced by factor of ∼3 compared to Bi2Te3, but did not change
systematically with at. % Bi. Data were collected on samples made
from unsieved (open symbols) and sieved (solid symbols) precursor
powders. (b) The specific heat (C) for each compound was very
similar indicating similar elastic properties. The low-temperature
slope of C/T versus T 2 (inset), a measure of sound velocity, also had
little variation. The small variation of this slope could be explained
using effective-medium theory simulations (solid lines) for each
compound by considering them as simple mixtures of Bi and Bi2Te3.

confirmed through EBSD measurements in a scanning electron
microscope (SEM). In materials with an anisotropic thermal
conductivity of κin−plane > κcross−plane, the averaging rule for a
bulk polycrystal with randomly oriented grains is very close to
that of a polycrystalline thin film giving the effective thermal
conductivity as (2κin−plane + κcross−plane)

/
3.21 Given that these

materials are polycrystals and that κP is independent of m
for m > 0, we are likely measuring κ11 and that κ11 > κ33.
Thus Fig. 3(a) implies that the in-plane κP of these materials
is significantly reduced compared to that of Bi2Te3 and of
elemental Bi (e.g., κP ∼ 30 W/K m at 60 K).22

Using calorimetry, we found no significant change in the
specific heat at constant pressure (C) and thus the average
sound velocity (v), which influences κP through the kinetic
formula, κP ∝ Cvl, where l is the phonon mean free path.14 For
all the compounds studied, C [Fig. 3(b)] is weakly T dependent
near 300 K and close in magnitude to the Dulong-Petit value
(∼24.9 J/mole at. K). C then begins to decrease near 150 K for
all these materials, suggesting that they all have similar Debye
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temperatures (	D). At low T, where C ∝ (T/	D)3 for phonons,
we found little difference in the slope (inversely proportional
to 	D) of C/T versus T 2 [Fig. 3(b), inset]. We compared
the differences in slope of the C/T versus T 2 curves with
that expected from considering these compounds as simple
mixtures of Bi and Bi2Te3. Using the bounds on the elastic
constants of mixtures, 23 the shear and bulk elastic moduli for

Bi (Ref. 24) and Bi2Te3,25 and assuming v =
√

G
/
ρ, where

G is the bulk modulus, we estimated the change in 	D ∝
v,26 given that 	D ≈ 164 K for Bi2Te3.25 The slope of C/T
versus T 2 simulated using this effective-medium approach for
each material [solid lines, Fig. 3(b) inset] shows a variation
comparable to that of the experimental data. Variations in
v for (Bi2)m(Bi2Te3)n compounds are thus less than 10%,
validated by considering this system as a mixture of Bi
and Bi2Te3, and cannot explain the large observed reduction
in κP.

We can eliminate several potential causes for the decrease of
the in-plane κP in these alloys; a decreased sound velocity will
decrease κP, but our C measurements reveal a small variation
in average sound velocity across this series and implies that
phonon scattering decreases κP. Note that sound velocity
is averaged in a very similar way as thermal conductivity
in specific-heat experiments on polycrystals.27 Each sample
had a very similar grain-size distribution (quantitative grain
sizes are discussed in Sec. VI) as judged from qualitative
optical microscopy. The porosity varied from ∼2%–5% across
this series, which cannot explain (e.g., using an effective-
medium theory28) the observed large decrease in κP in Fig. 2.
Furthermore, we prepared a set of samples with SPS using
powder that passed through a 50-μm sieve but not a 25μm
sieve in order to artificially increase porosity.29 While the
porosity of these sieved samples approximately doubled, κP

remained unchanged. From these control experiments, we
can rule out grain-boundary and porosity based mechanisms
for phonon scattering. We therefore suggest that microscopic
defects are the main source of phonon scattering in the
(Bi2)m-(Bi2Te3)n compounds. In order to further identify a
specific microscopic defect responsible for the low κP, a
model for how defects affect phonon thermal transport must
be compared to the experimental data.

VI. BOLTZMANN TRANSPORT ANALYSIS OF PHONON
THERMAL CONDUCTIVITY

The influence of different defects on κP was studied
using the Boltzmann equation for phonon transport. Using
a combination of simulations and fitting, we were able to
match the experimental data with the Boltzmann model
and extract scattering rates for several kinds of defects.
Finally, we validated the Boltzmann model fit by comparing
the microstructural information implied by the scattering
rates (e.g., grain size, dislocation density) with our own
microscopy observations and those found in the literature. All
computations were carried out using a custom code written in
MATHEMATICA R©.

We modeled the (Bi2)m-(Bi2Te3)n series using the Debye-
Callaway approximation (DCA) of the Boltzmann transport
equation.30 In this approach, an integral equation for κP

results after the relaxation time approximation is used to solve
the linearized Boltzmann equation and a Debye spectrum is
assumed for the phonons. This equation for κP then requires
an expression for the scattering rate (τ−1) in order to model
experimental data. Analytical expressions for the scattering
rate exist for many kinds of defects.

We parametrized the resistive τ−1 as follows:

τ−1 = v
/
L + a

(
h̄γ 2/Mv2θ

)
ω2T e−θ/3T + b

(
V

/
4πv3) ω4

+c
(

2γ 2V 1/3
/

27v
)

ω2 + dω. (1)

L, a, b, c, and d were adjustable parameters for scattering
from grain or sample boundaries, umklapp phonon-phonon
interactions, point defects, stacking faults, and dislocations,
respectively. The symbols ω, v, γ , θ , M, and V represent
acoustic-phonon frequency, sound velocity, Grüneisen con-
stant, Debye temperature, average mass per atom, and average
volume per atom, respectively, and were held fixed for the
calculation. The forms for boundary, umklapp, and point defect
scattering were taken from Ref. 31 and that for stacking fault
scattering from Ref. 32. Reference 33 discusses the expression
for dislocation scattering. The electron-phonon-scattering rate
is ω linear in the degenerate limit,30 and thus indistinguishable
from dislocation scattering in this approach. M and V were
calculated directly from the atomic masses and ratios of Bi
and Te for each compound. θ and v varied by less than 10%
for each compound according to C measurements [Fig. 3(b)];
this variation had a less than 1% effect on the calculation.

Separate scattering rates of the same form of Eq. (1)
were included for longitudinal (L) and transverse (T) phonons
by assuming different γ , θ , and v. The values γL = 1,
γT = 0.7, θL = 96 K, θT = 62 K, vL = 2840 m/s, and vT

= 1590 m/s were taken from Ref. 17. While θ used for the
calculation was different from the polycrystalline averaged
	D determined from low T calorimetry,25 we used the values
from Ref. 17 because they were based on direct measurements
of phonon frequencies at the zone boundary, resolved into L
and T components.34 The γ values of Ref. 17 did not agree
with ab initio calculations,35 where γT ∼ 1.17 and γL ∼ 1.86.
Though 	D and γ varied in the literature, we used the Ref. 17
values since they resulted in an accurate model for the κP

of Bi2Te3,17 which could be used to systematically study the
(Bi2)m(Bi2Te3)n series. As outlined in Ref. 31, the ratio of L
to T phonon-scattering strengths was held constant. Similarly,
normal phonon scattering was taken into account using the
procedure in Ref. 31 and fixing the ratio of umklapp to normal
scattering, keeping the adjustable parameters limited to L, a,
b, c, and d.

We used simulation and curve fitting to model the samples
in Fig. 2 with the DCA equation in order to determine which
scattering mechanism(s) (inferred from adjustable parameters
L, a, b, c, and d) best explains the low κP of the (Bi2)m-
(Bi2Te3)n series. We found that curve fitting alone yielded
ambiguous results. Nonlinear fitting schemes often converge to
different final parameter sets with different initial conditions.36

This occurs in many-parameter models because of the multiple
shallow minima of the error function χ2 (often normalized
by the degrees of freedom, DOF) in parameter space. We
overcame this problem using the following steps. First, we
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FIG. 4. (Color online) (a) Representative polarized optical mi-
crograph of Bi2Te3 showing the grain-size distribution typical for
all samples. Inset: Dark-field transmission electron micrograph of
the same Bi2Te3 sample showing the presence of dislocations. We
found no evidence of other kinds of extended defects. (b) The
Debye-Callaway model (described in text) was fit (solid line) to the
experimental Bi2Te3 κP data (open symbols). The fit parameters of
this model were consistent with microstructural observations and
previous fits to Bi2Te3 materials.

implemented the nonlinear fitting algorithm due to
Transtrum,37 which improves the convergence of the
Levenberg-Marquadt method. Second, we performed a curve
fit to the Bi2Te3 sample, validating the fit by comparing (when
possible) the scattering rates to the microstructure. Finally,
for each m > 0 sample, we ran simulations for κP by varying
each scattering rate independently and comparing the results
to the data. Each scattering rate has a distinct ω dependence,
and therefore leads to a distinct T dependence for κP. This
strategy allowed us to understand the relative importance
of each scattering rate and to generate a variety of initial
conditions for a formal curve fit. The different initial conditions
led to different final parameter sets, so the best fit was that
which yielded the lowest χ2/DOF. We then checked these
best-fit parameters against direct microstructural observations
and microstructural information obtained from the literature.
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FIG. 5. (Color online) Debye Callaway model simulations (black
lines) of grain-boundary scattering (1/t = v/L) for progressively
smaller grain sizes (L) relative to the Bi2Te3 data/best fit (open
circles/red line) as compared to experimental κP data for BiTe (closed
squares). The remaining compounds were omitted for clarity. In order
to reproduce the reduced κP at 100 K in BiTe relative to Bi2Te3, a
hypothetical grain size of ∼30 nm would be needed.

In Fig. 4, we fit the κP of Bi2Te3 to the DCA equation as
just described and compared the results to microstructural ob-
servations. The main panel of Fig. 4(a) shows a representative
optical micrograph for the Bi2Te3 sample. Using EBSD in an
SEM to resolve individual grains based on their orientation,
70% of grains were less than 4 μm wide (ASTM grain size
21.1). We also conducted TEM observations to investigate the
microstructure at higher spatial resolution. We found many
grains with sizes in range of several hundred nanometers.
We also observed extended dislocation networks in some
of the grains. For instance, the inset of Fig. 4(a) shows a
bright-field image of a grain of roughly 500 nm diameter.
Several dislocations extend across the grain.

In Fig. 4(b), the best fit (solid line) is compared to the
experimental κP for Bi2Te3. Five different starting parameter
sets were generated, emphasizing each of the five scattering
rates, and led to three distinct minima in χ2. The fit with
the lowest χ2/DOF (≈ 2.27) is shown in Fig. 4(b). The
parameters found for the lowest χ2 minimum are reported
in Table I. The uncertainties in parameters were estimated
using a Monte Carlo method.38 The value for L (∼0.93 μm)
had the correct order of magnitude in comparison with our
grain-size measurements (70% of grains < 4 μm wide). The
magnitude of the umklapp scattering rate prefactor inferred
from parameter a was comparable to that found from previous
DCA fits to Bi2Te3 materials.17

The point defect parameter b (∼9 × 10−3) found from the
present fit was between that expected for isotope scattering
(b∼8×10−5, a negligible contribution) and an upper limit
to alloy disorder in (Bi,Sb)2Te3 compounds (b∼0.3).17 For
disordered point defects involving two different species,
b = x(1−x)(γ mass + γ bond), where x is the concentration
of defects.39 Point defect scattering of phonons occurs from
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TABLE I. Best-fit parameters and goodness of fit (χ2) normalized by the degrees of freedom (DOF) for the
phonon thermal conductivity of Bi2Te3 within the Debye-Callaway model described in the text, parametrized
according to Eq. (1). The parameters a, b, c, and d were dimensionless. Uncertainties in the parameters were
generated from a Monte Carlo method, corresponding to χ2/DOF ≈ 1.

χ 2/DOF L (μm) grain size a umklapp b point defects c stacking faults d dislocations

2.27 0.93 8.5 8.7 × 10−3 1 × 10−4 1.0 × 10−5

Uncertainties χ 2/DOF ≈1 0.05 0.1 0.4 × 10−3 3 × 10−8 3.5 × 10−9

both mass and bond disorder. γ mass = (M/M)2, where
M = MA – MB between the two species A and B, and
M = xMA + (1 − x) MB . γ bond = ε(δ/δ)2, where δ is the
radius difference between host and impurity, δ is the radius
of the host atom, and ε is an adjustable parameter on the
order of 1–100. In (Bi,Sb)2Te3, x ∼ 0.5 and the upper limit17

for b ∼ 0.3. Letting A = Bi and B = Sb, using the ionic
radii40 δSb = 0.76 Å and δBi = 1.03 Å, we found ε ∼ 10.
In PbTe, ε ∼ 65.41 Our Bi2Te3 sample was n type, with a
carrier concentration of ∼ 3 × 1019 cm−3, implying an excess
Te concentration of ∼0.2%.42 The excess Te enters the Bi2Te3

lattice by replacing Bi,43 suggesting an antisite defect model
for point defect scattering. A value of b ∼ 9 × 10−3, using
ε ∼ 10 with the atomic masses for Bi/Te and ionic radii40

δBi = 1.03 Å and δTe = 2.21 Å, yields a point defect
concentration of ∼0.27%, close to the excess Te concentration
expected from the observed carrier concentration.

The parameter c for stacking fault scattering represents
the number of stacking faults per layer.32 In Bi2Te3, a value
of c ∼ 1 × 10−4 corresponds to about one stacking fault
every 6 μm. This low stacking fault density is difficult to
observe in a TEM experiment. We found no evidence for
stacking faults originating from structural shifts of the lattice.
High-resolution imaging is needed to detect stacking faults due
to compositional shifts in the lattice, but was not performed
here. Other two-dimensional (2D) surfaces may also contribute
to phonon scattering in the same way as stacking faults.
For example, we have found twin boundaries representing a
reversal of the basal plane stacking sequence of the Bi2Te3

structure in ths material.44 The strain field around a grain
boundary may also partly contribute to τ−1 ∼ ω2 scattering.
While twin and grain boundaries may have similar ω dependent
phonon scattering, the scattering magnitude could be very
different.

For dislocation scattering, τ−1 = Ni�0ω,33 where Ni is the
dislocation density, �0 ∼ γ 2B2, and B is the Burgers vector

for the type of dislocation observed. For d ∼ 10−5, γ ∼ 1
and b ∼ 10−10 m, we compute Ni ∼ 1015 m−2. From the
literature, we found Ni ∼ 106 m−2 for single-crystal Bi2Te3,45

and ∼1013 m−2 for commercial large grain Bi2Te3 based
materials.46 The order of magnitude for Ni for the small grain
in Fig. 4(a) imaged with TEM is ∼1014 m−2. Microstructural
observations thus qualitatively agreed with the best fit and
validated our approach for fitting data using the DCA.

Having validated the DCA approach for our Bi2Te3 sample
using microstructural information, we performed simulations
and curve fits for the (Bi2)m(Bi2Te3)n compounds. Starting
from the baseline Bi2Te3 fit, each parameter was adjusted
independently to match the magnitude of κP at 100 K.
Simulations for BiTe are shown in Fig. 5 for progressively
smaller grain sizes. According to Fig. 5, a grain size of
nearly 30 nm is needed to match the magnitude of κP near
100 K, assuming the remaining parameters were the same
as for Bi2Te3. In Fig. 6, we show the simulations for the
rest of the scattering fit parameters for BiTe along with the
observed κP shown in Fig. 2. The simulations for the remaining
compounds (omitted for clarity) showed the same result.
Figures 5 and 6 suggest that changing either stacking fault
or point defect scattering parameters, while keeping the rest of
the parameters fixed at their Bi2Te3 baseline values, captures
the T dependence of κP for the (Bi2)m(Bi2Te3)n compounds.
From the simulations, five different initial conditions were
generated and then input into the fitting algorithm. These
initial conditions did not all converge to the same final
fit parameters. The “best fit” parameters reported for each
compound in Table II were those that resulted in the lowest
χ2/DOF. Parameter uncertainties, generated in the same way
as in Table I, were <1% for χ2/DOF ∼ 1.

According to the best-fit parameters for each compound
(Table II), point defects are the largest contributor to phonon
scattering that resulted in the reduced κP relative to Bi2Te3.
The values for grain size, umklapp, stacking fault, and

TABLE II. Best-fit parameters for Bi2Te, BiTe, and Bi6Te7 compared to Bi2Te3 as reported in Table I. The uncertainties
in parameters were generated in the same way as for Bi2Te3 and were 1% or less. The point defect scattering rate increased
an order of magnitude for the (Bi2)m(Bi2Te3)n series compared to Bi2Te3. The remaining scattering rates remained constant
to within 10%.

Sample L (μm) grain size a umklapp b point defects c stacking faults d dislocations

Bi2Te3 0.93 8.5 8.7 × 10−3 1 × 10−4 1 × 10−5

Bi2Te 0.76 7.68 0.16 1 × 10−4 1 × 10−5

BiTe 1.211 9.85 0.2 1 × 10−4 1 × 10−5

Bi6Te7 0.838 7.9 0.137 1 × 10−4 1 × 10−5
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FIG. 6. (Color online) Debye Callaway simulations (solid lines) of the phonon thermal conductivity for dislocation, umklapp, stacking fault,
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FIG. 7. (Color online) Point defect (red line) and stacking fault
(black line) simulations compared to the phonon thermal conductivity
of a Bi4Te3 sample with large (∼1 mm) grains. In these simulations,
the stacking fault and point defect scattering rates were kept the same
as those for BiTe (lower left and right panel, respectively, of Fig. 6),
while the grain size was increased to 1 mm. Point defect scattering
more accurately captures the experimental κP.

dislocation scattering were unchanged within an order of
magnitude compared to Bi2Te3 across the series. From optical
microscopy, the grain-size distribution was qualitatively the
same for Bi2Te3 and each Bi2-Bi2Te3 compound. The point
defect scattering rate changed by an order of magnitude
compared to Bi2Te3. Point defect scattering did not change
systematically across BiTe, Bi2Te, and Bi6Te7, but this is just
a quantitative way of expressing the conclusions based on
Fig. 3(a) discussed in Sec. V.

Our simulations showed that differences between stacking
fault and point defect scattering were more apparent at large
grain sizes. This larger difference occurs because at larger
grain sizes more stacking fault and point defect scattering
events will occur per grain. A sample with larger grain size
will then help validate the conclusion that point defects were
more important than stacking faults in the DCA model for these
materials. We synthesized a large grain (∼1 mm, confirmed by
optical microscopy) sample of a separate member of this series,
Bi4Te3, and compared its measured κP to our DCA model. By
measuring large grained Bi4Te3 instead of the compounds in
Fig. 2, we could also test the conclusion from curve fitting
that point defect scattering did not change with Bi content.
Figure 7 shows the experimental κP for Bi4Te3 compared to
two different simulations. We took the simulations for stacking
faults and point defects shown in Fig. 6 and manually changed
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the grain size to 1 mm, keeping the rest of the parameters
fixed. Figure 7 shows that the point defect simulation comes
much closer to the experimental κP than that for stacking fault
scattering. Our conclusions based on curve fitting thus apply
to a separate (Bi2)m(Bi2Te3)n sample with much larger grain
size prepared by a very different method. This experiment also
supports the idea that the point defects are intrinsic in these
materials since the sample measured in Fig. 7 was annealed
for a week at 400 C, which should eliminate nonequilibrium
defects.

From Table II, we found b ≈ 0.2 (Table II) for the (Bi2)m-
(Bi2Te3)n series, nearly 20 times larger than that found for
Bi2Te3. These compounds have not been doped in any way so
we need not consider alloy scattering amongst three elements.
If the source of disorder implied by the larger value of b in
Table II is vacancies, then M/M = δ/δ ≈ −1 and b ∼
x(1−x)(1+ε). Using ε ∼ 10 as for Bi2Te3, we found a (Bi or
Te) vacancy concentration of ∼1.9%. Using the same masses
and ionic radii of Bi/Te discussed previously for point defect
scattering in Bi2Te3, a value of b ≈ 0.2 yields an antisite defect
concentration of ∼1.6% when Te substitutes Bi, but ∼6.1%
when Bi substutites for Te. The (Bi2)m-(Bi2Te3)n series occur
as line compounds and should not contain excess Te as in
Bi2Te3. The ∼2% point defect concentration is ten times larger
than that found for Bi2Te3.

VII. CONCLUSIONS
We have shown that the phonon thermal conductivity in

(Bi2)m-(Bi2Te3)n is significantly lower than that of Bi2Te3

and elemental Bi below 100 K. The thermal conductivity
measurements were dominated by the in-plane κP due to the
polycrystalline nature of our samples. The lowered κP was
likely due to static defects rather than the unusual crystal
structure. Using the DCA model, we established that the low
κP originates from point defect scattering and since these

materials are not doped the point defects must be either
vacancies or antisite defects. While κP is low below 100 K for
these compounds, they do not have an improved thermoelectric
figure of merit relative to Bi2Te3 because the added Bi renders
them semimetals, reducing the Seebeck coefficient by more
than half.7 More interesting was the evidence that there may
be large (∼2%) concentrations of point defects, an order of
magnitude beyond that found for Bi2Te3. The point defects
were present in samples prepared by two different methods,
one of which involved annealing the specimen for a week
close to the melting temperature. High-temperature annealing
removes nonequilibrium defects, so we believe that the point
defects inferred from κP measurements are intrinsic to these
materials. Further experiments are needed to confirm the
presence and identity (e.g., vacancy versus antisite) of point
defects, since they cannot be probed using conventional TEM,
as presented here.
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