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We present a numerical approach which allows the solving of Bethe equations whose solutions define the
eigenstates of Gaudin models. By focusing on a different set of variables, the canceling divergences which occur
for certain values of the coupling strength no longer appear explicitly. The problem is thus reduced to a set
of quadratic algebraic equations. The required inverse transformation can then be realized using only linear
operations and a standard polynomial root-finding algorithm. The method is applied to Richardson’s fermionic
pairing model, the central spin model, and the generalized Dicke model.
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I. INTRODUCTION

The correspondence between the Bethe ansatz and an
ordinary differential equation (ODE) was found some time
ago1 on the basis of the similarity between the T-Q system
(Transfer Matrix/Auxiliary Matrix) of the Bethe ansatz and
functional relations including spectral determinants on the
ODE side. For extensive review we refer to Ref. 2. The
correspondence is related to the Langland correspondence
where the ODE part has to do with so-called Miura opers.3

It has many interesting links with conformal field theory,
quasiexact solvability, supersymmetry, and PT-symmetric
quantum mechanics. It was also used in the context of physics
of cold atoms and the quantum impurity problem.4 Here we
develop further this remarkable correspondence to facilitate
the solution of otherwise difficult-to-solve Gaudin systems
and implement it in several physically interesting situations.

Indeed, numerous integrable models derived from a gen-
eralized Gaudin algebra have been used to describe the
properties of physical systems. The Richardson fermionic
pairing Hamiltonian5 has been used to explain most properties
of superconducting nanograins,6,7 numerous studies of the
decoherence of a single electron spin trapped in a quantum
dot rely on the central spin model,8 while the inhomogeneous
Dicke models9 have been used to study light-matter interaction
in many cavity-based systems.

The quantum integrability of such systems brings major
simplifications to the structure of their eigenstates. In a system
containing N degrees of freedom, they can be fully described
by a number M of complex parameters that we call rapidities.
M is here a number of the same order as N despite the
exponentially large Hilbert space. The possible values of this
set of parameters can be obtained by finding solutions to a set of
M coupled nonlinear algebraic equation: the Bethe equations.
However, analytical solution of the Bethe equations remains
impossible except in very specific cases. The problem is still
numerically approachable but solution of nonlinear equations
remains a challenge that only iterative methods can tackle.

While previous efforts in designing algorithms have shown
promising results,10–14 methods which are sufficiently fast and
stable for systematically finding a large number of eigenstates
remained elusive. As was shown by one of the authors, efficient
computation of only a small fraction of the complete Hilbert

space can be sufficient to access static,15 dynamical,16 and even
nonequilibrium dynamical properties of these systems,17,18

making such a method highly desirable.
This paper presents an algorithm which finds solutions

to the system of equations with unprecedented speed and
stability. The first section discusses general considerations
related to the quantum systems discussed here. Section III
describes in detail the method used to solve for a set of
intermediate variables, and we show in Sec. IV how one can
recover the rapidities from these variables. Explicit numerical
applications to the Richardson model, the generalized Dicke
model, and the central spin model are presented in Sec. V and
we conclude in the remaining section.

II. THE MODELS

Let us first introduce the generalized Gaudin algebra
defined by the operators Sx(λi),Sy(λi),Sz(λi) with λi any
complex number, and the commutation rules they obey:19,20

[Sx(λi),S
y(λj )] = i[Y (λi,λj )Sz(λi) − X(λi,λj )Sz(λj )],

[Sy(λi),S
z(λj )] = i[Z(λi,λj )Sx(λi) − Y (λi,λj )Sx(λj )],

[Sz(λi),S
x(λj )] = i[X(λi,λj )Sy(λi) − Z(λi,λj )Sy(λj )],

[Sκ (λi),S
κ (λj )] = 0,κ = x,y,z. (1)

In this paper, we deal with the rational family of Gaudin models
for which

X(λi,λj ) = Y (λi,λj ) = Z(λi,λj ) = g

λi − λj

. (2)

The generalized Dicke model that we also consider is, however,
obtained from a trigonometric Gaudin model21 defined by

X(λi,λj ) = Y (λi,λj ) = g

sin(λi − λj )
,

(3)
Z(λi,λj ) = g cot(λi − λj ).

The model is then derived by taking the large-spin limit of a
Holstein-Primakoff transformation for one of the degrees of
freedom. The resulting limit shares more resemblance with
the rational family of Gaudin models and simply constitutes
its extension to include a bosonic degree of freedom. We
will therefore indiscriminately use the term “rational” to also
include models derived from this particular limit.
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For any given realization of the Gaudin algebra, one can
define a set of N commuting operators Ri allowing one to
build exactly solvable Hamiltonians

H =
N∑

i=1

ηiRi, (4)

for which the Ri are evidently constants of motion. Eigenstates
of these models are, for a given number of excitations M , all
defined by the construction

|{λ1, . . . ,λM}〉 ∝
∏

i

S+(λi)|0〉. (5)

Here S+(u) = Sx(u) + iSy(u) is a family of generalized
creation operators parametrized by the complex parameter u.
Its explicit expression in terms of the fundamental operators
defining a particular realization will be model dependent. The
pseudovacuum |0 > is defined as the lowest-weight vector,
i.e., S−(u)|0 >= 0, and can also differ in distinct realizations
of the Gaudin algebra.

States of the form (5) become eigenstates of the system
provided the M rapidities λi are solutions of a set of
coupled nonlinear algebraic equations: the Bethe equations.
For rational models, these equations can be written, in
general, as

F (λi) =
∑
j �=i

1

λi − λj

, (6)

with Sz(λi)|0 >= F (λi)|0 > defining the lowest-weight func-
tion F .

One of the major difficulties in solving these equations
numerically is the divergences which occur whenever two
rapidities coincide. While they are canceled by similarly
diverging terms on the left-hand side of the equation, they
still have an important impact on numerical stability and
computational speed. To circumvent these potential pitfalls,
we introduce the function

�(z) ≡
M∑

k=1

1

z − λk

= P ′(z)

P (z)
, (7)

where

P (z) =
M∏

k=1

(z − λk) (8)

is the polynomial of degree M whose M roots correspond to
the values of λk .

Since �(z) obeys the following Riccati-type differential
equation:22,23

∂�(z)

∂z
+ �2(z) = −

∑
α

1

(z − λα)2
+

∑
α,β

1

(z − λα)(z − λβ)

=
∑
α �=β

2

(z − λα)(λα − λβ)
, (9)

it is easy to show that when the set {λi} is a solution of the
Bethe equations we have

�′(z) + �2(z) −
∑

α

2F (λα)

(z − λα)
= 0. (10)

One can derive this last equation with respect to z any number
of times to write additional equalities

�′′(z) + 2�(z)�′(z) +
∑

α

2F (λα)

(z − λα)2
= 0,

�′′′(z) + 2�(z)�′′(z) + 2�′(z)2 −
∑

α

4F (λα)

(z − λα)3
= 0,

.... (11)

From this point on, we will assume a particular form for the
F function which, while not general, encompasses a wide
variety20 of physically relevant realizations of the Gaudin
algebra. We restrict ourselves to the following:

F (λα) = −
N∑

i=1

Ai

(εi − λα)
+ B

2g
λα + C

2g
. (12)

The exact physical nature of the parameters g and εi is highly
model dependent, but in the cases treated in this paper it will
be made explicit in Sec. V when discussing their specifics.
In (pseudo)spin models, Ai = |si |
i with |si | the norm of the
local spin degree of freedom, while 
i is an integer relatable
to the degeneracy, i.e., the number of elements of the set {εj }
equal to εi . Consequently, every Ai can then take any integer
or half-integer value.

III. SOLVING THE SYSTEM

From the previously found set of differential equations, we
can write a new set of algebraic equations by simply taking the
limits z → εj of Eqs. (13) and (11). Using the previous form
of F (λα) [Eq. (12)] we find

(1 − 2Aj )�′(εj ) + �2(εj ) + B

g
M − Bεj + C

g
�(εj )

+
∑
i �=j

2Ai

�(εj ) − �(εi)

εi − εj

= 0, (13)

(1 − Aj )�′′(εj ) + 2�(εj )�′(εj ) − B

g
�(εj )

−Bεj + C

g
�′(εj ) +

∑
i �=j

2Ai

�(εj ) − �(εi)

(εi − εj )2

+�′(εj )
∑
i �=j

2Ai

εi − εj

= 0, (14)

(
1 − 2

3
Aj

)
�′′′(εj ) + 2�(εj )�′′(εj ) + 2�′(εj )2

−2
B

g
�′(εj ) − Bεj + C

g
�′′(εj )

+
∑
i �=j

4Ai

�(εj ) − �(εi)

(εi − εj )3
+

∑
i �=j

4Ai�
′(εj )

(εi − εj )2

+
∑
i �=j

2Ai�
′′(εj )

εi − εj

= 0,

.... (15)
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One can immediately see that for any nondegenerate spin-1/2
degree of freedom (Aj = 1

2 ), the first differential equation
reduces to a quadratic algebraic one which depends only on
the set of variables {�(εj )}. This is due to the canceling of the
first term (1 − 2Aj = 0).

For Aj = 1, which can occur either due to a doubly
degenerate spin 1/2 or a single spin 1, the two first equa-
tions form a quadratic system of equations depending on
{�(εj )} but also on the first derivative �′(εj ) evaluated at
εj . Larger values of Aj require additional equations, but
it is always possible to write a closed coupled system of
quadratic equations. It will depend on �(εj ) for variables
with Aj = 1

2 , on both �(εj ),�′(εj ) for variables with Aj =
1, on �(εj ),�′(εj ),�′′(εj ) for variables with Aj = 3

2 , etc.
The resulting system of equations is built by using the n

first equations above for any variables with Aj = n
2 and its

solutions give a one-to-one correspondence with the solutions
of the Bethe equations and therefore the eigenstates of the
system.

There is one caveat that readers should be aware of. While
a spin S > 1

2 and a set of 2S degenerate spins 1
2 lead to the

same set of Bethe equations, only in the former case will
the solutions to the Bethe equations give us the full Hilbert
space. This is particularly simple to understand for a system
containing only one spin S = 1 or two degenerate spins 1

2 .
In the first case, the Hilbert space dimension is 3 while in the
second it is 4 and the resulting Bethe equations have only three
distinct solutions. In the degenerate case, the Bethe equations
will give us only the highest-weight states (one can think of
this as the J = 1 triplet for two spins 1

2 ) and the remainder of
the Hilbert space will need to be reconstructed by building the
appropriate set of orthogonal states.

While in principle the system of quadratic equations can
be solved for any spins or degeneracies, for the remainder of
this paper we will focus on the simplest case of nondegenerate
spin-1/2 systems (Aj = 1

2 ∀ j ). In this case, the closed set of
algebraic equations is given by the N following equations:

�2(εj ) =
N∑

i �=j

�(εj ) − �(εi)

εj − εi

− M
B

g
+

(
B

g
εj + C

g

)
�(εj ).

(16)

In the subspace M < N this system of equations is larger than
the original one [Eq. (6)]. However, because the problem is
quadratic and does not have canceling divergences, it is much
easier to tackle numerically.

We also note in passing that the values of �(εj ) determine
the eigenvalues rj of the commuting Hamiltonians Rj . The
eigenvalues of the transfer matrix τ (λ) = 1

2 Tr(S2) are given in
terms of F (λ) [see Eq. (12)] as follows:

τ (λ) = F 2(λ) + F ′(λ) + 2
∑

i

[F (λ) − F (λi)]/(λ − λi),

(17)

with the last term reducing to (BM/2g) + ∑
j Aj�(εj )/(λ −

εj ). Since the eigenvalue rj of the conserved operator Rj

is given by the pole of τ (λ) at λ = εj we can read off this
eigenvalue by looking at the residue of τ (λ) at this pole:

rj = 2Aj�(εj ) − Aj (C + B)/g + 2
∑
i �=j

AiAj/(εj − εi).

(18)

As with any nonlinear system, solution of Eqs. (16)
necessitates an iterative method such as the well-known
Newton-Raphson approach. Provided we have access to an
initial approximate solution that is good enough to be in its
basin of attraction, convergence of the method to a specific
solution will be quadratic. Finding eigenstates therefore
requires a sufficiently good guess which we obtain by slightly
deforming known solutions. In the cases treated here, we
exclusively know the exact eigenstates of the system at g = 0.
We therefore approach the problem by slowly deforming these
g = 0 solutions. Provided g is raised in small enough steps,
this guarantees that the previously found solutions can be used
to generate a good approximation at the next point.

Remarkably, it is numerically simple to compute the n first
derivatives of the variables �j = g�(εj ) with respect to g.
Indeed, one can show that every order needs only the solution
of the same linear system with an updated right-hand side that
is straightforwardly computed from the previously computed
information. Defining �

(n)
j = dn�j

dgn , we obtain in matrix form
the following linear system:

K 	�(n) = 	Rn (19)

for some right-hand side that depends only on the lower
derivatives of �(εj ) and a constant matrix

Kij =
{

g

εi−εj
, i �= j,∑

k �=j
−g

εk−εj
+ Bεj + C − 2�j, i = j.

(20)

The components of the right-hand side Rn,j can be computed
iteratively as

R0,j = −�2
j ,

Rn,j = n

g

( − Rn−1,j + �
(n−1)
j [(Bεj + C) − 2�j ]

)

+
n−1∑
k=1

(
n

k

)
�

(k)
j �

(n−k)
j . (21)

Since this requires a single matrix inversion (LU or QR
decomposition to be exact) which can be reused at every
order, it is a numerically fast process to compute the n first
derivatives. Using the resulting derivatives, a Taylor expansion
gives an excellent initial approximation to �(εj ) at g + �g

even for fairly large �g:

�̃(εj )
∣∣
g+�g

= �(εj )
∣∣
g
+

n∑
k=1

1

k!

∂k�(εj )

(∂g)k

∣∣∣∣
g

(�g)k. (22)

In principle, the radius of convergence of the Taylor
expansion around the current solution would set an upper
limit on the �g step we can take. Nonetheless, one should
keep in mind that adding terms to the Taylor series offers
only linear convergence while Newton’s method converges
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quadratically. While computing fewer derivatives and relying
on more Newton steps could speed up the calculation, it
also comes with the risk that the initial guess falls outside
the basin of attraction of the desired solution. Optimization
of the computation speed without compromising stability is
then a question of balance between the number of computed
derivatives and the size of the steps one takes in g.

IV. INVERTING �(z)

Our capacity to compute physically relevant quantities
relies on the use of Slavnov’s determinant formula24 which
gives expressions for the expectation values and correlation
functions in terms of simple determinants25 built out using the
set of rapidities {λi}. It is therefore necessary to be able to
extract the rapidities from a given solution obtained in terms
of the variables {�(εi)}.

Going back to the definition of �(z) [Eq. (7)], Newton’s
identities allow us to write it explicitly in terms of elementary
symmetric polynomials. We have

�(εj ) = P ′(εj )

P (εj )
=

∑M
m=0 mεm−1

j PM−m∑M
m=0 εm

j PM−m

, (23)

with

Pk = (−1)k
∑

1�j1<j2<···<jk�M

λj1λj2 , . . . ,λjk
,

P0 = 1. (24)

Having the N values �(εj ) at hand, it is then a trivial
matter to write a linear problem for the elementary symmetric
polynomials:

M−1∑
m=0

[
mεm−1

j − �(εj )εm
j

]
PM−m = �(εj )εM

j − MεM−1
j .

(25)

A. Case M < N

When the number of excitations M is smaller than N , one
simply needs to pick M values of (εj ) to extract the polyno-
mials PM−m. The complete set of M elementary symmetric
polynomials give the real coefficients of the single-variable
polynomial P (z) at every order. The corresponding ensemble
of parameters {λi} which defines the eigenstate is then obtained
by finding every root of P (z).

This is a well-studied problem for which many methods ex-
ists. Here we choose to use Laguerre’s method with polynomial
deflation. Laguerre’s method is an almost “sure-fire” method
for finding one root r1. We then proceed by finding a root r2

of the deflated polynomial P (z)
z−r1

at the next step, then a root

of P (z)
(z−r1)(z−r2) , etc. Repetition M times allows the extraction of

every root of our initial polynomial, i.e., every rapidity λi .
This procedure for inverting the �(z) function is purely

local in g in the sense that it only needs �(εj ) at a given g.
Therefore it is not necessary to perform the inversion at values
of g we are not interested in. Solving for �(εj ) still requires
this scan in g but if we are, for example, only interested in

the large-g regime, not having to perform the inversion at
intermediate steps can markedly reduce computation time.

B. Case M > N

For a Hamiltonian realized in terms of only spin-1/2
degrees of freedom the number of excitations is always M �
N . However, in more general cases there exists a subspace
where the excitation number is larger than the number of
degrees of freedom (M > N ). In such a case, one cannot
simply use the set of N parameters �(εj ) to find the M > N

elementary symmetric polynomials.
However, for any solutions with M �

∑N
i=1 2Ai , one can

still extract them by solving only linear problems, since the
supplementary information has been obtained from the ne-
cessity to solve for certain derivatives �′(εi). The unbounded
number of excitations in models containing bosonic degrees of
freedom, such as the Dicke models presented here, would give
a subset of states with M >

∑N
i=1 2Ai . These would not allow

such a simple inversion. However, since any degree of freedom
with Ai can only accommodate up to 2Ai excitations, for
any model based exclusively on spins (of any magnitude and
degeneracy) the total number of excitations is always bounded
and every solution has M �

∑N
i=1 2Ai .

In solving the quadratic equations (13), (14), etc. we are
provided with �(εi) as well as its 2Ai − 1 first derivatives.
Having these values at hand, to write a linear problem for
the elementary symmetric polynomials is simply a matter of
defining rational functions which are linear in Pn in both the
numerator and denominator. Naturally, we already have from
the definition

�(z) = P ′(z)

P (z)
=

∑N
m=0 mzm−1PN−m∑N

m=0 zmPN−m

, (26)

but we can also write

V1(z) ≡ �′(z) + �(z)2 = P ′′(z)

P (z)
,

V2(z) ≡ �′′(z) + 3�(z)�′(z) + �(z)3 = P ′′′(z)

P (z)
, (27)

....

By evaluating the M necessary functions
[�(z),V1(z),V2(z), . . .] at z = εj , we can write M equations
linear in the polynomials Pn. Solving them and using a
root-finding algorithm for P (z) would, once again, give us the
set of rapidities {λi}.

V. APPLICATIONS

We now turn to three specific models derived from a
generalized Gaudin algebra in order to demonstrate the
efficiency of this approach. First we treat the discrete reduced
BCS model26 (Richardson model). One of the authors has
already been involved in solving the Bethe equations in this
context.15–18 However, in this series of papers, the solution was
performed without the currently discussed method. This led to
serious stability and computation time issues, which are now
extremely well controlled in the current approach.
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A. Richardson model

The Richardson model,5 while having a rich history in
nuclear physics, has also recently found renewed interest in
condensed matter physics in light of tunneling experiments
performed on superconducting nanograins.6 It is nothing but
a discrete version of the reduced BCS model which limits
the interaction to a uniform s-wave pairing term between
time-reversed states. Using the Anderson pseudospin- 1

2 rep-
resentation in terms of fermionic operators,

Sz
i = c

†
i↑c

†
i↓ci↓ci↑ − 1

2 ,

S+
i = c

†
i↑c

†
i↓, (28)

S−
i = ci↓ci↑,

the Hamiltonian is given by

H =
N∑

i=1

εiS
z
i − g

N∑
i,j=1

S+
i S−

j . (29)

Here εj corresponds to the discrete set of unblocked single-
fermion energies which can accommodate a Cooper pair, while
g is the pairing strength between time-reversed fermionic
states. While its integrability in a strict sense was proven much
later,27 the exact solution of the model was first proposed by
Richardson himself.5 The eigenstates of the system are of
the form given in Eq. (5) with a pseudovacuum |0〉 = |↓ ,

↓ , . . . , ↓〉 that has fully down-polarized pseudospins (Fock
vacuum of Cooper pairs) and the Gaudin creation operators
given by

S+(λα) =
N∑

i=1

S+
i

λα − εi

. (30)

The Bethe equations for this particular realization are given
by28,29

N∑
α=1

1/2

λj − εα

+ 1

2g
=

M∑
k �=j

1

λj − λk

, j = 1, . . . ,M . (31)

This obviously corresponds to an F function of the type given
in Eq. (12) with Ai = 1

2 , B = 0, and C = 1. Solution of the
model is straightforwardly carried out using the procedure
outlined in this paper. For any set of rapidities which is a
solution of the Bethe equations, the eigenenergy of the state is
then given by

E =
N∑

j=1

λj . (32)

At zero coupling, the M-pair eigenstates are simply
obtained by occupying any M energy levels with a Cooper
pair (pseudospin up) while the remaining N − M are empty.
This can be represented by the set of rapidities λα = εiα

which according to Eq. (30) lead to an up-pseudospin at every
energy εiα present in the set of rapidities. This state obviously
leads to diverging �(εiα ) = ∑

α
1

εiα −λα
for the occupied levels,

but linearizing the Bethe equations (31) tells us that every
rapidity can be written as λi = εαi

− g at weak coupling. We

FIG. 1. g�(εj ) (left) and the real part of the corresponding
rapidities (right) for the ground state (top) and two excited states of
the equally spaced Richardson model (N = 50,M = 25). The circles
are the only points needed when the six first derivatives are used for
the regression.

consequently solve Eqs. (16) using �j = g�(εj ), which are
given at zero coupling by

�j =
{

1, occupied εj ,

0, empty εj .

(33)

While in other applications, such as nuclear physics,30,31 a
different distribution of the levels could be more suitable, we
present results for equally spaced single-particle energy levels
within a bandwidth D, i.e., εj = −D

2 + D
N

j . This Richardson
model is the one typically used in condensed matter systems.7

Both �j = g�(εj ) and the corresponding rapidities for the
ground state and two excited states are plotted in Fig. 1.

The black circles show the points at which we actually solve
the equations, the step size in g between two points being
�g/d = 1

7 . These results were computed using the six first
derivatives for the regression (see Sec. III). For reference we
present in gray the numerical solution as a continuous function
of g/d. The figure therefore shows how this approach allows
steps in the coupling constant which are very large compared
to the actual scale on which the rapidities themselves vary.

The middle panel shows a state specifically chosen to
generate a region of rapid variation of the rapidities that one can
see around g/d = 1.3. When solving directly for the rapidities
themselves using Eqs. (31), one would need an extremely
small step size in this region in order to maintain stability. In
the current approach, however, this complex structure causes
no problem since the variables �j remain smoothly varying
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functions. This constitutes a prime example of the remarkable
capacities of this approach, which allows the scan in g to
be performed orders of magnitude faster than by use of the
standard Bethe equations (31).

B. Generalized Dicke model

We now turn to a second related model, the generalized
Dicke model. It describes a collection of N multilevel systems
coupled uniformly to a single bosonic mode and has been
shown to be Bethe ansatz solvable.21,32 Here, we again consider
the case of two-level systems (represented by a spin 1/2),
which is evidently the relevant case for cavity-based quantum
computing proposals.33 The Hamiltonian takes the form

H = ωb†b +
N∑

j=1

εjS
z
j + V

N∑
j=1

(b†S−
j + S+

j b), (34)

where {Sz
j ,S

+
j ,S−

j } are the usual generators of spin-1/2
representations of SU(2) at each site j . The boson frequency
is ω, εj sets the splitting between the two levels of every
subsystem, while V controls the strength of the interaction.
This Hamiltonian conserves the total number of excitations
b†b + ∑

j (Sz
j + 1

2 ). The construction of M-excitation eigen-
states is achieved using the Gaudin creation operators

S+(λα) = b† +
∑

j

V

λα − εj

S+
j (35)

acting repeatedly on the pseudovacuum state |0〉 = |0; ↓ , ↓
, . . . , ↓〉 which contains no boson and is fully down-polarized.
The appropriate sets of rapidities {λα}Mα=1 must fulfill the Bethe
equations34

ω

2V 2
− λα

2V 2
−

N∑
i=1

1/2

εi − λα

=
M∑

β �=α

1

λα − λβ

. (36)

Here, we can identify the general form [Eq. (12)] with g =
V 2, Ai ≡ 1/2, B = −1, and C = ω. The energy eigenvalues
corresponding to each set of rapidities are

E({λα}) =
∑

α

λα −
∑

j

εj . (37)

Now we turn to the solution of (36) using the method proposed
in the previous section. The equivalent equations for �j =
V 2�(εj ) read

V 2
∑
i �=j

�i − �j

εi − εj

= �j [(εj − ω) + �j ] − V 2M. (38)

By linearizing the Bethe equations (36), one can show that
λα = εj − V 2

ω−εj
give correct solutions in the limit V 2 → 0.

These values lead to �j = ω − εj at V = 0. As in the
Richardson model, λα = εjα

leads to an up-spin at level εjα
.

Another possible solution is obtained for λα = ω, which leads
to �j = 0. In this case, every λα = ω corresponds to an
additional bosonic excitation at V 2 = 0, since eigenstates are
constructed using the operator (35). Any of the d = ∑M

i=1

(
N

i

)
combinations of M excited spins and bosons gives us a possible
eigenstate of H at V 2 = 0, which we deform numerically to
find eigenstates and eigenvalues at nonzero coupling V 2 > 0.

FIG. 2. V 2�(εj ) (left) and the real part of the corresponding
rapidities (right) for the equally spaced generalized Dicke model
(N = 60,M = 20). The circles are the only points needed when the
five first derivatives are used for the regression.

Figure 2 shows the rapidities and �j for two different
states as a function of V 2. We made a specific choice for the
inhomogeneity by using equally spaced splittings εj = −D

2 +
D
N

j . This would ultimately correspond to a coarse-graining of a
flat distribution of splittings within a bandwidth D. Moreover,
we choose the bosonic frequency to be at the midpoint of the
band, i.e., ω = 0.

C. Central spin model

Finally, we apply the method to the central spin (CS) model,
which in its most frequently encountered form describes a
single spin coupled to an external magnetic field and, via
hyperfine interaction, to a spin bath. It is straightforwardly
obtained from the commuting conserved quantities of the
SU(2) XXX Gaudin models given by

Ri = Sz
i +

∑
j �=i

g

εi − εj

	Si · 	Sj (39)

by defining the exactly solvable model as H = R0
g

, with the

choice ε0 = 0, h0 = 1
g

, and Aj = − 1
εj

, i.e.,

H = h0S
z
0 +

∑
j �=0

Aj
	S0 · 	Sj . (40)

While the external magnetic field is coupled only to the central
spin i = 0, the conservation of the total excitation number
Sz

0 + ∑
j �=0 Sz

j makes the model equivalent to

H = hgeS
z
0 + hgN

∑
j �=0

Sz
j +

∑
j �=0

Aj
	S0 · 	Sj , (41)

which would also include coupling of the bath spins to the
external magnetic field.

In principle, any linear combination of the integrals of
motion also leads to an integrable model which commutes with
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Hamiltonian (40) and therefore shares the same eigenbasis.
Consequently, any Hamiltonian

H =
∑

i

ηiRi =
∑

i

hηiS
z
i +

∑
i,j>i

ηi − ηj

εi − εj

	Si · 	Sj

≡ h0S
z
0 +

∑
i �=0

hiS
z
i +

∑
i �=0

Ai
	S0 · 	Si +

∑
i �=0,j>i

Bi,j
	Si · 	Sj

(42)

is also Bethe ansatz solvable. While this allows the treatment
of models which include hyperfine interactions between the
bath spins i > 0, integrability restricts the allowed values
of the couplings. For example, if we suppose that bath
spins are homogeneously coupled to the external field, i.e.,
ηj = η ∀ j > 0, integrability imposes the absence of coupling
between bath spins. On the other hand, models with nonzero
interaction in the bath can be built from any choice of ηj ,
but this in turn will force the presence of an inhomogeneous
magnetic field acting differently on every bath spin.

In the limit h = 0, one could study models with bath
interactions provided the couplings respect the constraints

Bjk

ηj − ηk

[Aj (η0 − ηk) − Ak(η0 − ηj )] = AjAk, (43)

which has important consequences. For example, when any
two nuclear spins are equally coupled (Aj = Ak = A) to the
central one, the coupling between those two spins also needs
to be given by Bjk = A. For a given set of distinct Aj , it
would, however, still be possible and interesting to study
central spin systems with uniform bath couplings Bi,j = B

or any integrable case that emerges from a given choice of
distinct ηj .

We still choose to focus on Hamiltonians of the form
(40). Is is straightforward to show that it commutes with
the Richardson Hamiltonian [Eq. (29)] defined by parameters
g = − 1

h
,ε0 = 0,εj = − 1

Aj
. They therefore share common

eigenstates so that, in principle, solving Eq. (31) for negative
values of g would give us the eigenstates of the central
spin Hamiltonian. However, we follow the alternative road
of inverting the spin quantization axis (ẑ → −ẑ) and solving
Eq. (31) for positive g. Eigenstates are then obtained by using
the operators

S+(λ) =
Nb∑
j=0

S−
j

λ − εj

(44)

acting on the fully up-polarized pseudovacuum |0〉 = | ↑↑
. . . ↑〉, and the eigenenergy of a given eigenstate is given by

E0({λk}k=1,...,M ) =
Nb∑
j=1

1

ε0 − εj

+ 2
M∑

k=1

1

λk − ε0
+ h

2
. (45)

In some of the physically relevant systems that can be
described with the central spin model [such as quantum
dots or nitrogen vacancies (NVs) in diamond35], the proper
interactions between the CS and the nuclei do not give rise
to equally spaced values of εj = − 1

Aj
. In fact, some of the

parameters εj can be very close to one another while others
are strongly separated. While the Bethe equations are exactly
the same as for the Richardson model, this distribution of εj

FIG. 3. g�(εj ) (left) and the rapidities (right) for the dipole
couplings of an NV center (Ref. 36). εj = −4/Aj and Aj =
5.6(ajj /Rj )3[1 − 3 cos (θj )2] (MHz), where ajj = 1.54 Å is the
nearest neighbor distance for diamond and Rj is the distance between
the jth carbon atom and the defect (center). θj is the angle between
the magnetic field and 	Rj . The vectors 	Rj are corrected by a small
amount of randomness to avoid degeneracies. Top panel shows the
ground state; bottom one shows an excited state. Insets show the full
range of rapidities while the main figures focus on the region with
nontrivial structure in the given range of magnetic field.

has a direct consequence on the application of the current
method. Since for equally spaced levels with separation d

the Bethe equations can be written only in terms of g/d, the
size of the steps in g that one can use is simply controlled
by the d parameter. However, when a number of levels are
very close together while others are far from one another,
these variable spacings lead to variations of �(εj ) controlled
by different scales. Naturally, use of a step in g that is a
given fraction of the smallest distance εj − εj+1 would ensure
stability, but it would ultimately necessitate a large number of
points to reach the strong g = 1

h
limit (weak magnetic field).

It is therefore beneficial to use a variable step size. Starting
from small steps at low g, we turn to larger ones when g has
increased sufficiently and the behavior of the solutions varies
on a much slower scale. Variables steps could also be used in
the previously studied models, but in the current case it is more
or less necessary to do so in order to achieve fast computation.

Figure 3 shows the behavior of the rapidities for an NV
center (N = 50 and M = 25); in the interval g going from
0 to 0.1 the Newton steps were taken for gS(εj ) with a step
size �g = 1/50; for g > 0.1 the step size was increased to
�g = 1/15 (�g = 1/20 for the excited state). The first six
derivatives were used.

Due to the structure of the levels εj we choose to restrict
the yaxis in the plots of the rapidities to make the intricate
structure of the solutions visible. The insets present them in
the complete range.

Once again, the black dots represent the points at which
the equations are solved. One can see the increase in the step
size at large g ≡ 1

h
. In spite of the necessity of using smaller

steps, these plots show without a doubt that this approach still
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FARIBAULT, EL ARABY, STRÄTER, AND GRITSEV PHYSICAL REVIEW B 83, 235124 (2011)

allows us to realize the scan in g using large steps on the scale
on which rapidities themselves vary.

A variable step size could naturally be defined by making
use of the fact that we compute the truncated Taylor expansion
up to a given order. One could fix the appropriate steps
simply by defining a desired level of precision for the limited
expansion. This would allow one to control stability, while
adapting the steps to the behavior of the �(εj ) variables at the
current g point.

VI. CONCLUSIONS

In this work we have shown how, for rational Gaudin
models, the set of nonlinear coupled Bethe equations can
be transformed to a different set of equations which is
significantly simpler to solve numerically. We presented the
complete algorithm and applied it to a variety of models
derived from the generalized Gaudin algebra.

This work exclusively presents and demonstrates the
capacities of this approach for solution of Bethe equations.
In light of previous work,15–18 it should however be clear
that by allowing rapid and systematic solution of a decent

fraction of the full Hilbert space this can directly be used
for relevant physical calculations. For example, studies of
the nonequilibrium dynamics of the discussed models are
currently being pursued by the authors. The outcome of
these calculations should prove invaluable, considering that
this technique gives direct access to regimes which have
been hard to describe before. To name only this one, the
weak-magnetic-field limit of the central spin models is a prime
example.

While we focused on rational Gaudin models, algorithms
tailored to the trigonometric or hyperbolic XXZ (Ref. 20) or
general XYZ (Ref. 37) models could possibly be built along
similar lines. This is a more fundamental question that is left
open for the time being.
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