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Based on the SO(2)-invariant slave-boson scheme, the static charge, orbital, and excitonic susceptibilities
in the extended Falicov–Kimball model are calculated. Analyzing the phase without long-range order, we find
instabilities toward charge order, orbital order, and the excitonic insulator (EI) phase. The instability toward the
EI is in agreement with the saddle-point phase diagram. We also evaluate the dynamic excitonic susceptibility,
which allows the investigation of uncondensed excitons. We find qualitatively different features of the exciton
dispersion at the semimetal-EI and at the semiconductor-EI transition supporting a crossover scenario between a
BCS-type electron-hole condensation and a Bose–Einstein condensation of preformed bound electron-hole pairs.
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I. INTRODUCTION

At low temperatures, electronic correlations can
cause anomalies at the semimetal-semiconductor (SM-SC)
transition.1 Half a century ago, Mott2 argued that in a SM with
a very low carrier density the Coulomb attraction between
electrons and holes should lead to the spontaneous formation
of electron-hole bound states (excitons), and the system would
become insulating. Shortly afterward, Knox3 noticed that a SC
is unstable against the spontaneous formation of excitons if the
exciton binding energy overcomes the gap energy separating
the valence band and the conduction band. Both arguments
suggest a new distorted phase, an exciton condensate known
as the excitonic insulator (EI), to be the crystal ground state.
The SM-EI transition is mathematically similar to the BCS
theory of superconductivity, while the SC-EI transition can be
treated as a Bose–Einstein condensation (BEC) of preformed
excitons. Hence, the EI is discussed in view of a BCS-BEC
crossover scenario in a solid.4–7

Although theoretically predicted a long time ago8 (for
recent reviews see Ref. 9), no conclusive experimental proof of
the existence of the EI has been achieved yet. However, there
are a few promising candidates. In the mixed valence com-
pound TmSe0.45Te0.55 detailed studies of the pressure-induced
SC-SM transition suggest that excitons are created in a large
number and condense below 20 K.10 More recently, several
transition-metal dichalcogenides were reported to exhibit an
EI phase. Angle-resolved photoemission spectra (ARPES)
measurements of Ta2NiSe5 traced the extreme valence band
top flattening at low temperatures back to an EI ground state.11

ARPES data of 1T -TiSe2 indicate that the EI is the driving
force for the charge-density-wave (CDW) transition in this
material.12

From a theoretical point of view, the description of the
EI with a Falicov–Kimball-type model seems promising. The
original Falicov–Kimball model13 (FKM) contains itinerant
c-electrons (with band center Ec and hopping amplitude
tc) that interact via a local Coulomb repulsion U with
localized f -electrons (with energy level Ef ), where the spin
is neglected. Since the local f -electron number is strictly

conserved in the FKM, f -c coherence cannot be established.14

One way to overcome this shortcoming is to include an f -c
hybridization.15 As shown in Refs. 16 and 17, the extension by
a finite f -bandwidth also induces f -c coherence. The model
with a direct f -f hopping (with hopping amplitude tf ) is
called the extended FKM (EFKM) and has previously been
used to describe different properties of the EI phase.6,7,18,19

The ground-state phase diagram of the EFKM was determined
with a constraint path Monte Carlo (CPMC) technique for one
and two dimensions (1D and 2D) in the strong16 and in the
intermediate coupling regime17 as well as in the Hartree–Fock
(HF) approximation for 2D,20 3D,20 and infinite dimensions.21

All approaches yield a qualitatively similar phase diagram.
Figure 1 displays the HF ground-state phase diagram for
U = 2 in 2D, depicting the generic situation. It was shown
previously that Fig. 1 agrees with the CPMC data even
quantitatively.20 Besides full c- and full f -band insulator
(BI) regions, the EFKM ground-state phase diagram exhibits
three symmetry broken phases: the EI, a CDW, and a
staggered orbital order (SOO). The EI is characterized by
a nonvanishing average 〈c†f 〉. The CDW is described by a
periodic modulation in the total electron density comprising
both f - and c-electrons. The SOO is characterized by a
periodic modulation in the difference between the f -electron
and the c-electron density, which may be accompanied by a
CDW. The SOO (CDW) establishes the ground state for the
symmetric case (Ef = Ec) for all ratios of −tf /tc (for the
CDW the point |tf | = |tc| has to be excluded; see below).
These phases are rapidly suppressed in favor of the EI if
Ef �= Ec. Between the uniform EI phase and the CDW or
SOO phase there is a first-order phase transition. The EI-BI
transition is of second order. For tf = 0 the FKM is recovered,
and the EI phase cannot be realized.

For the investigation of electron correlation effects the
Gutzwiller approximation22 is an established technique.
Kotliar and Ruckenstein introduced a scalar slave-boson (SB)
scheme which reproduces the Gutzwiller solution of the
Hubbard model as a saddle point.23 A manifestly spin-rotation-
invariant form of the SB representation has been worked out
for the Hubbard model24 and for multiband Hubbard models.25
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FIG. 1. (Color online) Hartree–Fock ground-state phase diagram
of the EFKM in two dimensions for Coulomb strength U = 2. The
difference between CDW and SOO is explained in the text. The black
solid line represents the second-order transition from an EI to a BI,
the dashed line represents the first-order CDW/SOO-EI transition.
The label 0+ emphasizes that the EI phase is present only for finite
f -bandwidths.

We have developed an SO(2)-invariant SB approach for the
EFKM (Ref. 19) that reproduces the HF result for the EI
phase boundary at T = 0, but leads to a substantial reduction
of the critical temperature. It is the aim of this paper to
include Gaussian fluctuations around the saddle point26–28 in
the SO(2)-invariant SB scheme at zero and finite temperatures.
This offers an opportunity to calculate susceptibilities for
investigating instabilities against long-range ordered phases
and the formation of excitons.

The paper is organized as follows. In Sec. II the model
Hamiltonian and the SB scheme are introduced. Moreover,
the saddle-point approximation is given and the calculation
of response functions within the SB scheme is explained. In
Sec. III we present numerical results for the instabilities toward
the CDW, the SOO, and the EI phase. Finally we investigate the
formation of excitons in the phase without long-range order.
Section IV summarizes our results.

II. THEORY

A. Model Hamiltonian

Expressing the orbital flavor by a pseudospin variable
σ =↑ , ↓, where c

(†)
i↑ ≡ f

(†)
i and c

(†)
i↓ ≡ c

(†)
i , the EFKM can

be written as an asymmetric Hubbard model,

H =
∑
i,σ

(Eσ − μ)c†iσ ciσ −
∑

〈i,j〉,σ
tσ c

†
iσ cjσ + U

∑
i

ni↑ni↓,

(1)

where c
(†)
iσ annihilates (creates) a σ -band electron at the

Wannier site i and niσ = c
†
iσ ciσ is the corresponding number

operator. Eσ denotes the band center of the σ -electron band,
μ gives the chemical potential, tσ is the hopping amplitude,
and U measures the Coulomb interaction strength. In what
follows we consider E↓ = 0, E↑ < 0, t↓ = 1, and t↑ < 0. All
energies are measured in units of t↓. We restrict ourselves

to t↓t↑ < 0, i.e., the valence band top and the conduction
band minimum are located at the Brillouin zone center.
Moreover we exclusively investigate the half-filled band case,
i.e., 1

N

∑
i,σ 〈niσ 〉 = 1, where N is the number of lattice sites.

B. Slave-boson functional integral representation

Following Refs. 19 and 24, the Hilbert space is enlarged
by introducing auxiliary bosons: e

(†)
i , related to an empty site,

d
(†)
i , related to a doubly occupied site, and p(†)

i
, related to a

singly occupied site,

|0i〉 → e
†
i |vac〉, (2)

|2i〉 → c̃
†
i↑c̃

†
i↓d

†
i |vac〉, (3)

|σi〉 →
∑

ρ

c̃
†
iρp

†
iρσ |vac〉, (4)

where |vac〉 means the vacuum state. The matrix operator p(†)
i

is given as

p(†)
i

= 1

2

∑
μ

τμp
(†)
iμ = 1

2

(
p

(†)
i0 + p

(†)
iz p

(†)
ix − ip

(†)
iy

p
(†)
ix + ip

(†)
iy p

(†)
i0 − p

(†)
iz

)
, (5)

where μ = 0,x,y,z. τ 0 denotes the unit matrix and 	τ =
(τ x,τ y,τ z)

T is the vector of the Pauli matrices. The fermionic

degrees of freedom are captured by the pseudofermions c̃†i =
(c̃†i↑,c̃

†
i↓) and c̃i = (c̃i↑,c̃i↓)T.

Unphysical states of the extended fermion-boson Fock
space are excluded by two sets of local constraints,

C
(1)
i = e

†
i ei + 2 Tr p†

i
p

i
+ d

†
i di − 1 = 0 , (6)

C
(2)
i = c̃i c̃

†
i + 2 p†

i
p

i
+ d

†
i di τ 0 − τ 0 = 0 . (7)

Since the bosonic occupation number of one site is coupled
to the fermionic occupation, the bosons have to change
simultaneously when an electron is created or annihilated.
This is achieved by introducing the bosonic hopping operator
z
i
,

ciσ =
∑

ρ

ziσρ c̃iρ . (8)

The choice of z
i

is not unique. We choose19,24

z
i
= Lie

†
i Mip

i
Ni + Lip̃

†
i
MidiNi (9)

with

Li = [(1 − d
†
i di)τ 0 − 2p†

i
p

i
]−1/2 , (10)

Ni = [(1 − e
†
i ei)τ 0 − 2p̃†

i
p̃

i
]−1/2 , (11)

Mi = [1 + e
†
i ei + d

†
i di + 2 Tr p†

i
p

i
]1/2 , (12)

and p̃
(†)
iρρ ′ = ρρ ′p(†)

i−ρ ′−ρ , which guarantees the correct free-
fermion result on the mean-field level. The Hubbard interaction
term is bosonized via ni↑ni↓ → d

†
i di .

The resulting coupled fermion-boson system is evaluated
within a functional integral representation. Then, the bosons
become complex fields and the fermions are given by complex
Grassmann fields. The Lagrange multipliers λ

(1)
i , λ

(2)
i0 , λ

(2)
ix ,
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λ
(2)
iy , and λ

(2)
iz are introduced to enforce constraints (6) and (7).

Exploiting the gauge symmetry of the action and transforming
the Lagrange multipliers into real time-dependent Bose fields,
we can remove the phases of pi0, piz, and ei . Using the
Grassmann integration formula, we obtain the grand canonical
partition function given by a functional integral over Bose
fields only,

Z =
∫

D[e]D[p0]D[p∗
x,px]D[p∗

y,py]D[pz]D[d∗,d]

× D[λ(1)]D
[
λ

(2)
0

]
D[	λ(2)] e−S, (13)

with the effective bosonic action

S =
∫ β

0
dτ

{ ∑
i

[
− λ

(1)
i + λ

(1)
i e2

i +
∑

μ

(
λ

(1)
i − λ

(2)
i0

)|piμ|2

− pi0( 	p ∗
i + 	pi)	λ(2)

i − i	λ(2)
i ( 	p ∗

i × 	pi)

+ (
λ

(1)
i + U − 2λ

(2)
i0

)|di |2 + p∗
ix∂τpix

+p∗
iy∂τpiy + d∗

i ∂τ di

]}
− Tr ln

{ − G−1
〈ij〉,ρρ ′ (τ,τ ′)

}
,

(14)

where 	pi = (pix,piy,piz) and 	λ(2)
i = (λ(2)

ix ,λ
(2)
iy ,λ

(2)
iz ). The in-

verse Green propagator is given by

G−1
〈ij〉,ρρ ′ (τ,τ ′) =

[( − ∂τ + μ − λ
(2)
i0

)
δρρ ′ − E↑

2
(τ 0 + τ z)ρρ ′

− 	λ(2)
i 	τρρ ′

]
δij δ(τ − τ ′)

+ (z∗
i
t z

j
)ρρ ′,ττ ′(1 − δij ) , (15)

where t = ( t↑ 0
0 t↓ ). The trace in Eq. (14) extends over time,

space, and spin variables. For the half-filled band case,
Eqs. (14) and (15) are an exact representation of the partition
function of the EFKM. One obtains z

i
= ziτ 0.

C. Saddle-point approximation

To proceed we approximate all bosonic fields by their time-
averaged values (static approximation), i.e., the bosonic fields
are taken to be real. Moreover, we look for uniform solutions,
that is, the Bose fields are taken to be independent of the lattice
site.

We restrict ourselves to the phase without long-range order,
which we denote as paraphase. The saddle-point equations for
the paraphase (px = py = λ(2)

x = λ(2)
y = 0) are

p0pz = 1
2 (n↑ − n↓), (16)

p2
0 = 1

2 + √
n↑n↓(1 − z2), (17)

d2 = 1

2z2

[
z2

(
2 − p2

0 − p2
z

) + 2p2
0

− 2p0

√
z2

(
2 − p2

0 − p2
z

) + z4p2
z + p2

0

]
, (18)

λ(2)
z = −pz

p0

(
z2

2d2
− 1

p2
0 − p2

z

)
z2ε(0), (19)

U = −2d2 − p2
0 + z2p2

z

p2
0d

2
z2ε(0) − 2λ(2)

z

pz

p0
, (20)

nσ = 1

N

∑
k

nkσ , (21)

ε(0) = 1

N

∑
k

(t↑γknk↑ + t↓γknk↓), (22)

where

nkσ = [exp(βEkσ ) + 1]−1, (23)

Ekσ = Eσ + σλ(2)
z − μ̃ − z2tσ γk, (24)

μ̃ = μ − λ
(2)
0 . (25)

On a D-dimensional hypercubic lattice, γk = 2
∑D

l=1 cos kl .
The chemical potential is determined by the condition

1

N

∑
k,σ

nkσ = 1. (26)

The quasiparticle gap Eg indicates the splitting of the ↑- and
↓-band (in the paraphase), which is caused by the correlation-
induced quasiparticle bandshift λ(2)

z . For a D-dimensional
hypercubic lattice, Eg is given by

Eg = |E↑| + ∣∣2λ(2)
z

∣∣ − 2Dz2(|t↑| + |t↓|). (27)

For a SM, Eg � 0, and for a SC, Eg > 0.
We obtain the EI phase boundary by solving the SB gap

equation,

1 = 1

p0pz

λ(2)
z

1

N

∑
k

nk↑ − nk↓
Ek↑ − Ek↓

, (28)

resulting from Eqs. (63) and (65) of Ref. 19.
The gap equation (28) captures both the BCS and the BEC

situation, but it cannot discriminate between them. To this end,
we follow an idea from Ihle et al. (Ref. 6) and investigate the
excitonic susceptibility in the paraphase.

D. Gaussian fluctuations

To study response functions, we take into ac-
count Gaussian fluctuations around the saddle point for
the paraphase, that is, �ia = �̄a + δ�ia , where �ia =
{ei,pi0,pix,piy,piz,di,λ

(1)
i ,λ

(2)
i0 ,λ

(2)
ix ,λ

(2)
iy ,λ

(2)
iz }. Then, the action

is given by

S = S̄ +
∑
q,a,b

δ�a(−q)Sab(q)δ�b(q) , (29)

where the overbar denotes the saddle-point value.
To achieve comparability with the saddle-point results,

we start the fluctuation calculation from the same level of
approximation as for the saddle-point calculation, i.e., we
first perform the static approximation and consider only the
fluctuations of the 11 real-valued fields �ia .

235123-3



B. ZENKER, D. IHLE, F. X. BRONOLD, AND H. FEHSKE PHYSICAL REVIEW B 83, 235123 (2011)

The fluctuation matrix can be calculated according to

Sab(q,q ′)

= 1

2Nβ

∑
Ri,Rj

e−iqRi
∂2S

∂�ia∂�jb

∣∣∣∣ �i = �j = �̄

τ = τ ′

e−iq ′Rj

= Sab(q)δq,−q ′ . (30)

Here, we use the shorthand notation Ri = (Ri ,τ ) and q =
(q,ωm), where τ is the imaginary time, ωm = 2πm/β denote
the bosonic Matsubara frequencies, Ri is the position vector,
and q is the wave vector.

The response functions can be expressed in terms of the
SB field fluctuations using local constraints (6) and (7). The
charge susceptibility reads

χc(q) = 〈δ[n↑(−q) + n↓(−q)]δ[n↑(q) + n↓(q)]〉
= 4(e2〈δe(−q)δe(q)〉 − 2ed〈δe(−q)δd(q)〉

+ d2〈δd(−q)δd(q)〉). (31)

The orbital susceptibility is given by

χo(q) = 〈δ[n↑(−q) − n↓(−q)]δ[n↑(q) − n↓(q)]〉
= 4

(
p2

z 〈δp0(−q)δp0(q)〉 + 2pzp0〈δp0(−q)δpz(q)〉
+p2

0〈δpz(−q)δpz(q)〉) . (32)

Considering the creation operator of an on-site electron-hole
pair6

b
†
i = c

†
i↓ci↑, b†q = 1√

N

∑
k

c
†
k+q↓ck↑, (33)

the electron-hole pair susceptibility, hereafter denoted as
excitonic susceptibility, is given by

χX(q) = 〈δbq δb†q〉
= p2

0[〈δpx(−q) δpx(q)〉 + 〈δpy(−q) δpy(q)〉
− i〈δpy(−q) δpx(q)〉 + i〈δpx(−q) δpy(q)〉]. (34)

The correlation functions may be expressed as functional
integrals over Bose fields:

〈δ�a(−q)δ�b(q)〉 = 1

Z

∫
D[�] δ�a(−q)δ�b(q) e−S(q).

(35)

Hence, the correlation functions are related to the inverse
fluctuation matrix by

〈δ�a(−q)δ�b(q)〉 = 1
2S

−1
ab (q). (36)

It turns out that for the paraphase the 11 × 11 fluctuation
matrix decomposes into a 7 × 7 matrix containing the charge
fluctuations (δe, δp0, δd, δλ(1), δλ

(2)
0 ) and the orbital fluc-

tuations (δpz, δλ(2)
z ) and into a 4 × 4 matrix containing the

electron-hole pair fluctuations (δpx , δλ(2)
x , δpy , δλ(2)

y ). The SB
fields are obtained by solving saddle-point equations (16)–(22)
self-consistently.

The description of the CDW and SOO requires the inclusion
of inhomogeneous solutions with a periodic modulation in the
densities, 〈niσ 〉 = nσ + δσ cos(QRi), where the order vector
in 3D is given by Q = (π,π,π ). The CDW and SOO order

parameters are δCDW = 1
2 (δ↑ + δ↓) and δSOO = 1

2 (δ↑ − δ↓),
respectively.29 If |δ↑| �= |δ↓|, the CDW and SOO describe the
same symmetry broken state. We can investigate the formation
of both phases without generalizing the SB formalism to a
bipartite lattice by calculating the static (ω = 0) charge and
orbital susceptibility with order vector q = Q, given by

χc = χc(Q,0)

= 2[e2(S−1)ee + d2(S−1)dd − 2ed(S−1)ed ], (37)

χo = χo(Q,0)

= 2
[
p2

z (S−1)p0p0 + p2
0(S−1)pzpz

− 2p0pz(S−1)p0pz

]
. (38)

The inversion of the 7 × 7 matrix is performed numerically.
After analytic continuation (iωm → ω + i0+) the excitonic

susceptibility of Eq. (34) yields

χX(q,ω) = χ
(0)
X (q,ω)

−Spxpx

p2
0

χ
(0)
X (q,ω) + 1

, (39)

with

χ
(0)
X (q,ω) = 1

N

∑
k

nk↑ − nk+q↓
ω + Ek↑ − Ek+q↓

, (40)

Spxpx
=

(
1

p2
0

− 1

2

p2
0 − p2

z

p2
0d

2
z2

)
z2 ε(0) + pz

p0
λ(2)

z . (41)

For the BI at T = 0 the random-phase approximation result6

is recovered, − Spxpx

p2
0

= U .

To determine the EI phase we compute the static excitonic
susceptibility χX(q,0). The direct bandgap situation gives the
order vector of the EI phase as q = 0. Using Eq. (19) the
fluctuation matrix element Spxpx

[Eq. (41)] reduces to

Spxpx
= p0

pz

λ(2)
z . (42)

It is easy to see that the condition for the divergence of χX(0,0)
equates to gap equation (28).

The poles of Re χ
(0)
X (q,ω) [Eq. (40)] give the continuum

of electron-hole excitations, i.e., ωk(q) = Ek+q↓ − Ek↑. Exci-
tonic pairing of electrons and holes is described by the pole of
Re χX(q,ω) [Eq. (39)] outside the electron-hole continuum,6

i.e., by

Re χ
(0)
X (q,ωX) = p2

0

Spxpx

, (43)

with

0 < ωX(q) < ωC(q), (44)

where ωC(q) = ωk(q)|min. The exciton binding energy is given
by

EB
X(q) = ωC(q) − ωX(q). (45)

We want to emphasize that ωX, ωC and EB
X are explicitly q

dependent in contrast to Ref. 6, where only excitons with q = 0
are considered, and Ref. 5, where the exciton binding energy
is assumed to be independent of q.
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-1

0

1

χ c

-0.5 -0.4 -0.3 -0.2
E↑

-50

0

50

χ o

t↑ = -0.4
t↑ = -0.8
t↑ = -1.0

FIG. 2. (Color online) Static charge and orbital susceptibility of
the three-dimensional EFKM for T = 0 and U = 4 as a function of
E↑.

III. NUMERICAL RESULTS

A. Instabilities against CDW and SOO

To obtain results for the three-dimensional EFKM we
transform the k-summation into an energy integral using
the tight-binding density of states (DOS) for a simple cubic
lattice.

From the charge and orbital susceptibility we derive
information about the CDW and SOO formation, respectively.
For asymmetric bands (|t↑| �= |t↓|) the charge and orbital
susceptibility diverge at the same critical E↑, as shown in
Fig. 2, implying |δ↑| �= |δ↓|. The analogy between CDW and
SOO vanishes if the bandwidths are equal, as can be seen
for t↑ = −1.0 in Fig. 2. In this case, the orbital susceptibility
diverges contrary to the charge susceptibility; thus, a CDW

-1

0

1

χ c

-2 -1.5 -1 -0.5 0
E↑

-100

0

100

χ o

U = 2
U = 4
U = 6

FIG. 3. (Color online) Static charge and orbital susceptibility of
the three-dimensional EFKM for T = 0 and t↑ = −0.8 as a function
of E↑.

will not develop and δ↑ = −δ↓. We conclude that the density
inhomogeneity δσ is largely affected by the bandwidth.

Figure 3 shows χo and χc for t↑ = −0.8. The suscep-
tibilities diverge at the same critical E↑. With increasing
strength of the Coulomb interaction the critical |E↑| for CDW
(SOO) formation increases, because for a larger interaction
the charge (orbital) order becomes more favorable. Figure 3
clearly shows that the CDW and SOO region is confined close
to the symmetric case E↑ = 0.

For small band splitting, either the CDW (SOO) or the EI,
separated by a first-order phase transition, can be realized, and
one has to compare the free energies to identify the true ground
state. Hence, to determine the SB ground-state phase diagram
(analogous to the HF case shown in Fig. 1) the generalization
of the saddle-point equations to a bipartite lattice is inevitable,
which is beyond the scope of this work. To investigate the EI in
the following, we choose the band-structure parameters E↑ =
−2.4 and t↑ = −0.8, where a CDW (SOO) is not realized (see
Fig 3).

B. Instability against EI

Figure 4 shows that the EI phase boundary in the weak-
coupling as well as in the strong-coupling regime is reproduced
by poles of the uniform static excitonic susceptibility, as
demonstrated analytically in Sec. II D. To determine the region
where free excitons can exist, we evaluate the condition for
exciton formation, Eq. (43), subjected to constraint (44). The
exciton binding energy has to be positive. For numerical
reasons we set the threshold to min(EB

X) = 10−6. For the
three-dimensional case we restrict ourselves to excitons with
a center-of-mass momentum q = 0. In Fig. 4 the critical
Coulomb interaction strength for the exciton formation UX(T )
is shown by blue circles, where zero-momentum excitonic

0 2 4 6 8 10 12
U

0

0.1

0.2

0.3

T EI

SM SC

BCS

B
E
C

FIG. 4. (Color online) EI phase boundary (black solid line) of
the three-dimensional EFKM in the U -T plane. The red diamonds
give the poles of the uniform static excitonic susceptibility for some
fixed values of U . The blue circles give the critical UX for exciton
formation with center-of-mass momentum q = 0. The black dashed
line separates the SM and the SC phase. Inside the EI phase we
suggest that the black dashed line gives a crude estimate for the
BCS-BEC crossover region (see text). The band-structure parameters
are E↑ = −2.4 and t↑ = −0.8.
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0

0.1

0.2

0.3

0.4

T

EI
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e

b

c

d

af

FIG. 5. Phase diagram of the two-dimensional EFKM for the
band-structure parameters E↑ = −2.4 and t↑ = −0.8. The solid line
shows the EI phase boundary, and the dashed line separates the SM
and the SC phase. The exciton dispersion at the marked points a,b,c,d
is shown in Fig. 8, and the exciton dispersion for e and f is shown in
Fig. 9.

states exist for U � UX. For low temperatures UX(T ) co-
incides with the EI phase boundary in the strong-coupling
regime. This suggests that in this regime the EI is developed
by a BEC of preformed excitons. Within our analysis, for
high temperatures UX(T ) deviates slightly from the critical
Ug(T ), determined from Eq. (27), which separates the SM
(U � Ug) and the SC (U > Ug), except for the point where
Ug(T ) coincides with the EI phase boundary. This deviation
turns out to be a result of the required finite binding energy
of the excitons. In a SM excitons with q = 0 cannot exist.
Here, the EI develops due to a BCS-type pairing of electrons
and holes. We suggest that the BCS-BEC crossover region is
estimated by extrapolating Ug(T ) into the EI phase.

To consider excitons with an arbitrary center-of-mass mo-
mentum, the q-resolved excitonic susceptibility is calculated
for the two-dimensional EFKM in order to keep the numerical
effort manageable. Again we choose the band-structure pa-
rameters E↑ = −2.4 and t↑ = −0.8 for which the EI phase is

(0,0) (0,π) (π,π) (0,0)
q

1

10

100

1000

-χ
X
(q

,0
)

U = 5.71
U = 6.00
U = 7.00
U = 8.00

FIG. 6. (Color online) Static excitonic susceptibility for T = 0 as
a function of q (in 2D). For all U we obtain n↑ = 1 and n↓ = 0.

stable in 2D;17,20 see Fig. 1. To evaluate the SB parameters, the
k-summation is transformed into an energy integral using the
tight-binding DOS for a square lattice. For the computation
of the excitonic susceptibility the k-summation is explicitly
performed.

The phase diagram is shown in Fig 5. Qualitatively there
is no difference between the phase diagram of the two- and
three-dimensional EFKM. Hence, the following results for 2D
should hold qualitatively for 3D, too.

Figure 6 shows the static excitonic susceptibility for zero
temperature. The formation of the EI phase is indicated by the
divergence of χX(q,0) at q = 0 for the critical value UEI =
5.71. For U > UEI the static excitonic susceptibility remains
finite for all q.

C. Excitonic bound states

Next we want to characterize the paraphase in the vicinity
of the EI phase with a view to the formation of uncondensed
excitons. Figure 7 shows the real part of the dynamic excitonic
susceptibility outside the continuum for several values of ω.
The divergences of Re χX(q,ω) point out that the system is
unstable against the formation of free excitons. With increasing

(0,0) (0,π) (π,π) (0,0)
q

-50

0

50

-R
e

χ X
(q

,ω
)

ω = 0.20
ω = 0.64
ω = 1.34

(0,0) (0,π) (π,π) (0,0)
q

0.2

0.3

0.4

-R
e

χ X
(0

)  (
q,

ω
)

ω = 0.20
ω = 0.64
ω = 1.34

FIG. 7. (Color online) Real part of the dynamic excitonic sus-
ceptibility as a function of q (in 2D) for U = 5.5 and T = 0.256
(upper panel) and the corresponding Re χ

(0)
X (q,ω) (lower panel). The

densities are n↑ = 0.994 and n↓ = 0.006. The vertical solid lines
show the lower boundary of the electron-hole excitation continuum.
The black dotted line gives the critical value of Re χ

(0)
X for the exciton

formation.
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excitation energy ω, the exciton momentum q for the exciton
formation increases due to the direct bandgap situation. The
divergence of Re χ

(0)
X (q,ω) means ω = ωC(q), shown as the

vertical solid lines in Fig. 7. For the q values where Re χX(q,ω)
(upper panel) and Re χ

(0)
X (q,ω) (lower panel) is not plotted in

Fig. 7, the given ω is larger than ωC(q). Hence, these q values
are irrelevant for the exciton formation for the considered
excitation energy ω.

Having confirmed the existence of excitonic states, we now
turn to the properties of these states. We denote the energy-
momentum relation derived from Eq. (43) as the dispersion
of the exciton band. The smallest pole of Re χ

(0)
X (q,ω) defines

the q-resolved lower boundary of the electron-hole excitation
continuum, which we denote in the following as the continuum
band. In Fig. 8 the exciton band ωX(q) and the continuum band
ωC(q) are shown for characteristic points in the phase diagram
(see Fig. 5). In general, the continuum band is more sensitive to
the temperature and Coulomb strength than the exciton band.
Hence the binding energy of the excitons is mainly affected by
the continuum band when T or U is varied. Figure 8 suggests
that the exciton dispersion has a cosine-like form, determined
by the underlying lattice.

In Fig. 8(a), for any momentum a finite energy is needed to
transfer one electron from the valence band to the conduction
band, ωC(q) > 0, which is characteristic for the underlying SC
band structure. Likewise the creation of an exciton requires
energy, ωX(q) > 0 for all q. The comparison of Fig. 8(b) with
Fig. 8(a) unveils the influence of the Coulomb interaction
strength. In Fig. 8(b), the exciton band is shifted to lower
energies because point (b) in the phase diagram (see Fig. 5)
is closer to the EI phase than (a). For the continuum bands
ω

(b)
C (q) < ω

(a)
C (q) and the binding energy of the excitons in

Fig. 8(b) is smaller than in Fig. 8(a), since U(b) < U(a), i.e., the

0 0.2 0.4 0.6 0.8 1
qx/π

0
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4

ω

(a) T = 0.26 
U = 6.00

0 0.2 0.4 0.6 0.8 1
qx/π

0

1

2

3

4

ω

(b) T = 0.26
U = 5.50

0 0.2 0.4 0.6 0.8 1
qx/π

0

1

2

3

4

ω

(c) T = 0.34
U = 5.50

0 0.2 0.4 0.6 0.8 1
qx/π

0

1

2

3

4

ω

(d) T = 0.40
U = 5.50

FIG. 8. Exciton band (solid line) in comparison with the contin-
uum band (dashed line) at the points marked in Fig. 5: (a) in the
SC phase (n↑ = 0.996, n↓ = 0.004, μ̃ = 0.527), (b) in the SC phase
with a smaller bandgap (n↑ = 0.988, n↓ = 0.012, μ̃ = 0.188), (c) at
the SC-SM transition (n↑ = 0.973, n↓ = 0.027, μ̃ = 0.056), (d) in
the SM phase (n↑ = 0.960, n↓ = 0.040, μ̃ = −0.013). The chemical
potentials are measured relative to the valence band top. In all figures
qy = 0 (in 2D).

0 1
qx/π

0

1

2

3

4

ω

(a) T = 0.20
U = 5.50

qx/π

(b) T = 0.26 
U = 4.80

0.80.2 0.60.4
0

1
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3

4

0 10.80.2 0.60.4

FIG. 9. Exciton band (solid line) and continuum band (dashed
line) (a) at point ©e in Fig. 5: the SC-EI transition (n↑ = 0.995,
n↓ = 0.005, μ̃ = 0.280), and (b) at point ©f marked in Fig. 5: the SM-
EI transition (n↑ = 0.949, n↓ = 0.051, μ̃ = −0.375). The chemical
potentials are measured relative to the valence band top. In all figures
qy = 0 (in 2D).

Coulomb attraction between electrons and holes in Fig. 8(b) is
smaller than in Fig. 8(a) as well, and the electrons and holes
are more loosely bound.

The exciton and continuum dispersions at the SC-SM
transition are shown in Fig. 8(c). The continuum band reaches
ω = 0 for q = 0 due to the direct bandgap situation. The
excitonic band disappears for small, finite center-of-mass
momenta, not only for q = 0. The reason is the required finite
binding energy of the excitons, i.e., ωX(q) should be separated
from ωC(q).

In Fig. 8(d) the SM band structure is characterized by
the vanishing of positive ωC(q) at some finite value of q.
In a SM band structure excitonic states exist only with
finite center-of-mass momenta, in contrast to Figs. 8(a)
and 8(b). The existence of excitonic bound states in a
SM is confirmed by a very recent EFKM study with the
projector-based renormalization method.30 The comparison
of Figs. 8(b), 8(c), and 8(d) demonstrates that the energetic
position of the continuum band decreases with increasing
temperature and, as a result, the exciton binding energy is
lowered.

The qualitatively different feature of the exciton and the
continuum band in the SC and in the SM phase suggests that
the condensation process at the SC-EI transition differs from
the one at the SM-EI transition.

Figure 9(a) shows the exciton and the continuum dispersion
at the SC-EI transition. As already stated, ωC(q) > 0 ∀q
reflects the underlying SC band structure. The minimum of the
exciton band (at q = 0) reaches ω = 0, so that the creation of
a zero-momentum exciton does not require energy. Physically,
comparing only the energies, the exciton band touches the
valence band top. In our analysis, this is the point where the
BEC of excitons sets in.

On the contrary, the exciton dispersion at the SM-EI
transition, shown in Fig. 9(b), gives no hint for a condensation
process. In fact, it is a characteristic plot for a SM band
structure: There are excitonic bound states, but only with a
finite center-of-mass momentum, cf. Fig. 8(d). In the SM
regime there is a large and well-defined Fermi surface and
the electron-hole condensation at the SM-EI transition can be
imagined as a BCS-type process.
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IV. SUMMARY

In this paper we studied the extended Falicov-Kimball
model within a SO(2)-invariant SB treatment taking Gaussian
fluctuations into account. We computed the static charge and
orbital susceptibility in order to investigate the formation of a
CDW and SOO. Analyzing the static excitonic susceptibility,
the instability toward an EI phase agrees with the saddle-point
phase diagram. By calculating the dynamic excitonic suscep-
tibility, we analyzed the formation of excitons in the phase
without long-range order. We found that finite-momentum
excitons form in the vicinity of the EI phase, not only at the
SC side but also at the SM side. At the transition to the EI
phase we observed qualitatively different features at the SC and
the SM side. At the SC-EI transition the excitation energy of the

excitonic state with zero center-of-mass momentum vanishes,
leading to a BEC of these preformed excitons. At the SM side
there are no excitonic bound states with q = 0. Here, the EI
forms due to a BCS-type pairing of electrons and holes, and
the occurring excitonic states of finite momentum are not of
importance for the phase transition.
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