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Using Kubo’s linear response theory, we derive expressions for the frequency-dependent electrical conductivity
(Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system.
These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport
coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe
significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate
systems, and give an estimate for its valid scope of application toward lower densities.
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I. INTRODUCTION

An accurate description of dense hydrogen is of funda-
mental interest and has wide applications in astrophysics.
Prominent examples are models of planetary interiors which
consist predominantly of hydrogen and helium as in the case
of Jupiter-like planets.1–3 Special attention has been paid on
the high-pressure phase diagram of hydrogen and its isotopes.
Major problems in this context are the slope of the melting
line4–7 and the transition pressure to solid metallic hydrogen,8,9

which is expected near 4 Mbar10 at T = 0 K. Such extreme
conditions are experimentally still not feasible yet.

Interestingly, metallic hydrogen has first been verified in
the liquid at about 1.4 Mbar and few thousand kelvin.11,12

The problem of whether this transition is of first order has
been discussed for decades. While numerous models within
the chemical picture predict almost invariably a pronounced
first-order phase transition with a critical point at about
10 000 K–15 000 K and 0.5 Mbar,13–18 only few ab initio simu-
lations indicate such a behavior.19–23 A first-order liquid-liquid
phase transition with a critical point near 2000 K and 120 GPa
has been predicted from both quantum Monte Carlo (QMC)
and finite-temperature density functional theory molecular
dynamics (FT-DFT-MD) simulations.22 These results were
confirmed almost simultaneously by extensive FT-DFT-MD
simulations,23 which predict a critical point at about 1400 K
and 132 GPa, that is, at a somewhat lower temperature. A
detailed analysis of the changes in the structural and electronic
properties with density and temperature clearly shows that the
nonmetal-to-metal transition in dense liquid hydrogen drives
this first-order phase transition.

The transport coefficients yield valuable information on
the state of the strongly correlated liquid. For instance,
the conductivity changes drastically along the nonmetal-to-
metal transition over many orders of magnitude which could
already be verified experimentally.11,12 These measures have
the potential to accurately characterize subtle changes of
the electronic structure with density and temperature and,
especially, alongside the liquid-liquid phase transition in
hydrogen. We therefore calculate the complete set of thermo-
electric transport coefficients (electrical and thermal conduc-
tivity, thermopower) via FT-DFT-MD simulations for a wide
range of densities [ρ = (0.05–20) g/cm3] and temperatures

[T = (1–50) × 103 K] and pay special attention to the
nonmetal-to-metal transition region. The focus of our work
is below 20 g/cm3 since higher densities are of primary
importance for the physics of inertial confinement fusion and
were studied previously.24

The transport coefficients as well as their changes with
density and temperature are again important for applications
in astrophysics. For instance, a boundary between a noncon-
ducting outer and a metallic inner envelope is usually assumed
in interior models of gas giants such as Jupiter; its location
should, in principle, be determined from the nonmetal-to-metal
transition in hydrogen but is usually a free parameter.25

Furthermore, it has been shown that demixing of helium
from hydrogen occurs in H-He mixtures at megabar pressures
due to the nonmetal-to-metal transition in the hydrogen
subsystem.26,27 The treatment of this effect is essential in
order to explain the excess luminosity of Saturn and its
age.28 Knowledge on the transport coefficients of dense liquid
hydrogen is furthermore required for dynamo simulations
of planetary magnetic fields.29 The dynamo is driven by
convection of conducting material deep in the interior so that
the electrical and thermal conductivity are important input
quantities. Another interesting problem is the formation of
giant planets out of a protoplanetary disk. The conductivities
change by many orders of magnitude during the accretion
process as a consequence of the density and temperature
increase, which could affect the radiation hydrodynamics of
the collapsing disk and the luminosity of the young protoplanet
strongly.

There are a number of theoretical models that predict the
electrical and thermal conductivity with different assumptions
about the electronic and ionic structure and their mutual
interaction.16,30–38 Especially in a strongly coupled system it is
difficult to calculate the transport properties accurately because
the ionization degree and the effective two-particle scattering
cross sections are not well defined. Strong ion-ion correlations,
the dynamic nature of screening and exchange effects in the
electron system as well as quantum effects such as Pauli
blocking require a consistent quantum-statistical approach.
Therefore, we calculate the transport coefficients within
FT-DFT-MD simulations. This method has demonstrated its
capacity to provide accurate data for the strongly correlated
quantum regime.39–42
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For simple metals the relation between electrical and
thermal conductivity is described by the famous Wiedemann-
Franz law43 using a fixed value, the Lorenz number L0, as
proportionality constant. The benefit from this relation is the
ability to obtain the thermal conductivity from the electrical
conductivity very easily. For this procedure the Lorenz number
L(T ,ρ) has to be known for a given density ρ and temperature
T of the system. By calculating the Lorenz number ab initio
the region where the original Wiedemann-Franz law is valid
can be identified.

Our paper is organized as follows. We outline the FT-
DFT-MD method in Sec. II. A generalization of the Kubo-
Greenwood formula to calculate the Onsager coefficients
Lik is given in Sec. III. The results for the electrical and
thermal conductivity, the thermopower, and the Lorenz number
in dense liquid hydrogen are presented in Sec. IV for a
wide range of densities and temperatures. In particular, the
behavior predicted for the nonmetal-to-metal transition region
is discussed. Conclusions are given in Sec. V.

II. THEORETICAL METHOD

We use the FT-DFT-MD framework, which combines
classical molecular dynamics simulations for the ions with
a quantum treatment of the electrons based on FT-DFT44–46

which is implemented in the VASP 5.2 program package.47–49

In the FT-DFT the Coulomb interactions between the electrons
and the ions are treated using the projector-augmented wave
method50,51 at densities below 9 g/cm3 with a converged
energy cutoff of 800 eV. At higher densities it was necessary
to perform all calculations with the Coulomb potential which
required a substantial higher cutoff of 3000 eV.

The FT-DFT algorithm is used to derive the forces that
act on the ions via the Hellmann-Feynman theorem at each
MD step. This procedure is repeatedly performed in a cubic
simulation box with periodic boundary conditions for several
thousand MD time steps of 0.1 to 1 fs duration so that the total
simulation time amounts up to 10 ps. The ion temperature is
controlled with a Nosé thermostat.52

Convergence was checked with respect to the particle
numbers, which vary between 64 and 512 atoms depending
on the density, the k-point sets used for the evaluation of
the Brillouin zone, and the energy cutoff for the plane wave
basis set. For the simulations we chose the Baldereschi mean
value point,53 which proved to yield well converged simulation
runs.23,41 Several test calculations showed that higher efforts
are necessary only in the vicinity of the phase transition.23

The electronic transport coefficients are subsequently cal-
culated by evaluating the respective transport formulas (see
section below).54 This is done for 10 to 20 ion configurations
from the equilibrated MD simulation using Monkhorst-Pack
k-point meshes55 of 3 × 3 × 3 to 6 × 6 × 6 to reach the
convergence.

The exchange-correlation functional is the most critical
input in FT-DFT calculations. Here we use the approximation
of Perdew, Burke, and Ernzerhof,56 which is numerically effi-
cient. This functional has been chosen in similar studies24,57,58

and reasonable results are, in general, expected in the metallic
and high-temperature plasma regime.59,60 In the semiconduct-
ing region the obtained conductivities may be overestimated by

using this functional but will yet be useful for many practical
applications.

Note that the ionic contribution to the transport coefficients
is out of the scope of this work and is therefore consistently
neglected.

III. TRANSPORT PROPERTIES AND ONSAGER
COEFFICIENTS

In linear response theory (LRT) the response of an isotropic
single component system of charge carriers (electrons with
charge q = −e in our case) to an electric field E and a
temperature gradient ∇T is expressed by the electric current
Je and the heat current Jq through

〈Je〉 = 1

q

(
qL11E + L12∇T

T

)
, (1)

〈Jq〉 = 1

q

(
qL21E + L22∇T

T

)
. (2)

The electrical conductivity σ , thermal conductivity λ, and
thermopower α are then given by the Onsager coefficients
Lmn in the following way:

σ = L11, λ = 1

T

(
L22 − L2

12

L11

)
, α = L12

T L11
. (3)

The Lorenz number is the ratio between electrical and thermal
conductivity divided by the temperature,

L = e2

k2
BT

λ

σ
, (4)

and is, according to the Wiedemann-Franz law,43 constant in
the limit of high density, where it can be calculated as L0 =
π2/3 by means of the Sommerfeld expansion.61

Within the framework of Kubo’s quantum-statistical LRT,
which is described, for instance, in Refs. 62 and 63, the fol-
lowing expressions are obtained for the frequency-dependent
Onsager coefficients Lmn(ω):

Lmn (ω) = 1

3V
〈Ĵm(t − ih̄τ ); Ĵn〉ω+iε. (5)

The current-current correlation functions are given as

〈Ĵm(t − ih̄τ ); Ĵn〉ω+iε

= lim
ε→0

∫ ∞

0
dt ei(ω+iε)t

∫ β

0
dτ Tr{�̂0Ĵm (t − ih̄τ ) · Ĵn},

(6)

where β = (kBT )−1 is the inverse thermal energy. The limit
ε → 0 has to be taken after the calculation of the ther-
modynamic limit, which is done by evaluating the trace.
The statistical operator of the equilibrium �̂0 contains the
Kohn-Sham Hamilton operator ĤKS.

The time-dependent current operators within the Heisen-
berg picture are defined as

Ĵm (t − ih̄τ ) = e
i
h̄

(t−ih̄τ )ĤKS Ĵme− i
h̄

(t−ih̄τ )ĤKS . (7)
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The electric current operator Ĵe = Ĵ1 and the heat current op-
erator Ĵq = Ĵ2 read in second quantization of spin degenerate
Bloch states:

Ĵm =
∑

kk′νν ′
〈kν|ĵm|k′ν ′〉â†

kν âk′ν ′ . (8)

Here k is the wave number and ν the band index. The electric
and heat current operators are given as

ĵ1 = q

me

p̂, (9)

ĵ2 = 1

me

Ĥ p̂ + p̂Ĥ

2
− hep̂, (10)

where he is the enthalpy per electron (see Ref. 64 for further
information on the definition of the currents).

The eigenvalues of the Hamiltonian can be evaluated so that
Eq. (8) can be simplified,

Ĵm = q2−m

me

∑
kk′νν ′

〈kν|p̂|k′ν ′〉εm−1
kνk′ν ′ â

†
kν âk′ν ′ , (11)

where

εkνk′ν ′ =
(

Ekν + Ek′ν ′

2
− he

)
(12)

is used. After inserting Eq. (11) into Eq. (6) and some operator
algebra the trace can be evaluated according to Wick’s theorem
as

Tr{�̂eq â
†
kν âk′ν ′ â

†
pμâp′μ′ } = fkνδk,k′ δν,ν ′fpμδp,p′ δμ,μ′

+ fkνδk,p′ δν,μ′(1 − fpμ)δp,k′ δμ,ν ′ .

(13)

The first term vanishes and the Fermi functions are defined as
fkν = (eβ(Ekν−μe) + 1)−1. Altogether the trace reads

Tr{�̂0Ĵm(t − ih̄τ ) · Ĵn}

= q4−m−n

m2
e

∑
kpνμ

e
i
h̄

(t−ih̄τ )�Efkν(1 − fpμ)〈kν|p̂|pμ〉

× 〈pμ|p̂|kν〉εm−1
kνpμεn−1

pμkν, (14)

with �E = Ekν − Epμ. Now the τ integration can be
performed:

∫ β

0
dτ eτ�E = eβ�E − 1

�E
. (15)

In the same way the second integral can be solved:

lim
ε→0

∫ ∞

0
dte(−ε+iω+ i

h̄
�E)t = h̄πδ (�E + h̄ω)

+ ih̄P
(

1

�E + h̄ω

)
. (16)

Only the real part of this equation is considered here, since
the imaginary part can be calculated more easily with a
Kramers-Kronig relation. The Onsager coefficients now

read

Lmn = h̄πq4−m−n

3V m2
e

∑
kpνμ

eβ�E − 1

�E
fkν(1 − fpμ)

×〈kν|p̂|pμ〉 · 〈pμ|p̂|kν〉δ(�E + h̄ω) εm−1
kνpμεn−1

pμkν.

(17)

In position representation the matrix elements have the
following form:

〈kν|p̂|pμ〉 = δp,k

(
h̄k δν,μ + 1

V

∫
V

d3r u∗
kν(r)p̂ ukμ(r)

)
. (18)

Here V is the volume of the simulation box and the functions
u∗

k,ν (r) and uk,μ (r) are the Bloch factors. Because of the
first Kronecker symbol the matrix elements are diagonal
concerning the wave number, which eliminates the p sum.
The spin summation leads to an additional factor of two. After
using a relation between Fermi functions we finally arrive at
the following expression for the Onsager coefficients:

Lmn (ω) = 2πq4−m−n

3V m2
eω

∑
kνμ

〈kν|p̂|kμ〉 · 〈kμ|p̂|kν〉

×εm+n−2
kνkμ (fkν − fkμ)δ(Ekμ − Ekν − h̄ω). (19)

The Onsager coefficients (19) obey the symmetry relations
Lmn(ω) = Lmn(−ω) and Lmn(ω) = Lnm(ω). The coefficient
L11 is known as the frequency-dependent Kubo-Greenwood
formula65,66 and has been widely applied in FT-DFT-MD
simulations.39,67,68

Similar but not identical frequency-dependent formulas
for L12 and L22 were given by Recoules et al.40 but not
formally derived in their work. The different formulations lead
to deviations in the results for the thermopower α and in the
thermal conductivity λ at nonzero frequencies. Furthermore,
the heat current from Ref. 40 contains the chemical potential
μe instead of the enthalpy he [see Eq. (10)]. However, it
can be shown that the term proportional to the enthalpy per
particle he has no influence on the thermal conductivity λ

in one-component systems. As a consequence the numerical
results of Refs. 24 and 40 could be reproduced by Eq. (19)
in the limit of ω → 0 and are therefore not questioned by the
current work. Differences, however, occur in the static results
for the thermopower α.

The derivation in this chapter can be easily generalized to
the spin-dependent form as well as to anisotropic systems.

IV. RESULTS

A. Electrical conductivity

Figure 1 shows isotherms of the electrical conductivity over
a wide range of densities and temperatures. In previous work41

it could already be shown that these theoretical results agree
well with data for the reflectivity and conductivity derived
from shock-wave experiments. Here we concentrate on the
general behavior of the theoretical curves on a large density
and temperature scale and give results especially in the vicinity
of the nonmetal-to-metal transition.
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FIG. 1. (Color online) Electrical conductivity in dense hydrogen
for different temperatures from the region of the liquid-liquid phase
transition up to the dense plasma. At low densities the values increase
with temperature and decrease with temperature at high densities.

In general, the conductivity rises in the whole range studied
here with increasing density. On the one hand, this is the
result of pressure ionization which increases the amount of
conducting electrons, and on the other hand, even in the case
of a fully ionized system, a rising density of electrons results
in a further increase of the conductivity.

At T = 1000 K the liquid-liquid phase transition which
was previously reported for dense hydrogen22,23 can be
identified by the steep increase of the conductivity over several
orders of magnitude in a small density interval, (0.7 − 0.9)
g/cm3. At temperatures higher than 1500 K the transition
is continuous and the increase spreads to a larger range
in density. At densities below this transition the electrical
conductivity increases with temperature which is caused by
thermal ionization of neutral particles. The additional free
charges contribute to the conductivity.

At densities above this transition the dependence on
temperature is inverted: The electrical conductivity decreases
with temperature, which is typical for metals. Increasing
temperature broadens the Fermi function and therefore allows
additional electron scattering processes which reduce their
mobility. As a result, the conductivity is lower with increasing
temperature.

This behavior is also illustrated in Fig. 2, which shows
the electrical conductivity along isochores for different tem-
peratures. The conductivity decreases for temperatures above
2000 K along the isochores for densities higher than 0.9 g/cm3,
which are characteristic of the metallic phase. This indicates
that most of the system is ionized and thus acts metal-like.
Looking at lower densities the conductivity rises along the
whole temperature range, which is due to thermal ionization.
The isochores clearly show the general behavior of a rising
conductivity with increasing density.

Experiments in copper plasmas69 have indicated that the
electrical conductivity becomes a function of only the coupling
parameter � for values of � � 10. The plasma parameter � is
defined by

� = e2

4πε0kBT

(
4πne

3

) 1
3

, (20)

FIG. 2. (Color online) Electrical conductivity for different densi-
ties versus temperature.

where ne is the number density of free electrons. Although
such a behavior could not be confirmed later,70 a simple
functional form of the electrical conductivity at high values
of � is still under discussion. To investigate whether such a
simple scaling is valid in dense liquid hydrogen, the results
for the electrical conductivity shown in Figs. 1 and 2 are
plotted against � in Fig. 3. Only for temperatures higher than
10 000 K is the system strongly ionized. At lower temperatures
the occurrence of partial ionization prevents a proper calcula-
tion of � within FT-DFT-MD, because the method does not
distinguish between bound and free electrons. Therefore, we
do not plot results for lower temperatures in Fig. 3.

The isotherms appear to be almost parallel in this loga-
rithmic plot and are clearly separated. Even at the highest
available values for � � 60 the isotherms do not tend to
merge. We conclude that it is not possible to derive a simple
temperature-independent relation for the conductivity that
depends solely on the parameter � as it was proposed earlier
for other metallic liquids.

FIG. 3. (Color online) Electrical conductivity as function of the
coupling parameter � for different temperatures. The plotted data
cover a density range of (0.05–20) g/cm3.
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FIG. 4. (Color online) Thermal conductivity versus density for
different temperatures. The values increase with temperature.

B. Thermal conductivity

The isotherms of the thermal conductivity are plotted
in Fig. 4. They show a similar behavior as the electrical
conductivity and indicate a sharp nonmetal-to-metal transition
at a temperature below 1500 K. At this transition the thermal
conductivity increases over several orders of magnitude in a
narrow density range at about 0.9 g/cm3. The increase in the
thermal conductivity is due to the growing number of delocal-
ized electrons which are produced along the phase transition.
Above the critical temperature this transition becomes broader
and is caused by a combination of pressure and temperature
ionization.

In contrast to the behavior of the electrical conductivity,
the thermal conductivity does not decrease with temperature
in the metallic phase. The isotherms increase systematically
with temperature for all densities.

This is also shown along the isochores of the thermal
conductivity that are plotted in Fig. 5. These curves depict
likewise that the thermal conductivity rises invariably with
increasing density and temperature.

FIG. 5. (Color online) Thermal conductivity versus temperature
for different densities.

C. Thermopower

The thermopower α characterizes the generation of an
electric field as a response to a temperature gradient. For
most systems this electric field has a direction opposite to the
temperature gradient, which results in a negative thermopower.
The thermopower is most sensitive to changes in the electronic
structure since it can be expressed as the derivative of the
logarithm of the electronic conductivity with respect to the
energy at the Fermi surface.71 Such a relation, which is also
known as Mott formula, follows from the Kubo-Greenwood
equation (19) in the degenerate domain under strong scattering
conditions.

Interestingly, large positive values for the thermopower
were measured in fluid mercury72,73 near the liquid-vapor criti-
cal point, which is located at Tc = 1751 K and �c = 5.8 g/cm3.
In this region, isotherms of the electrical conductivity near Tc

show a strong increase with the density, which is steepest just at
the critical density �c. This behavior was assumed to be related
to fluctuations in the electron density, which are pronounced
near the critical point due to critical fluctuations. In particular,
a zero of the thermopower was observed exactly at the critical
density. The interesting question arises as to whether a zero of
the thermopower is a precursor of a first-order phase transition
in dense liquids which undergo a nonmetal-to-metal transition.
Wide regions with a positive thermopower have been predicted
for dense hydrogen by a simple chemical model34 but were not
confirmed in an advanced chemical approach16 by ab initio
simulations or by experiments yet.

In Fig. 6 isotherms of the thermopower α are plotted as
function of the density. The symbols represent the results
from the simulations and the error bars show the statistical
uncertainties. As guide to the eye, polynomial functions were
fitted to the numerical results. The thermopower is mostly
negative and reaches a value of about zero at high densities. At
lower densities the thermopower decreases. The low density
limit of α = −60.60 μV/K is known from the Spitzer theory
(see, e.g., Ref. 16). With higher temperatures the negative
values become systematically larger. We expect that these
values become smaller again at low densities to reach the
Spitzer limit. The thermopower shows positive mean values
below 20 000 K and between 0.2 g/cm3 and 0.5 g/cm3. These

FIG. 6. (Color online) Thermopower versus density for different
temperatures.
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FIG. 7. (Color online) Thermopower versus temperature for
different densities.

values are very small and, in fact, are about the size of the
uncertainties of the respective mean values. We therefore
cannot conclude definitely that significantly positive values
occur within the accuracy of our ab initio calculations. To
answer the question as to whether the zero of the thermopower
occurs at the critical point of the liquid-liquid phase transition
in dense hydrogen, which is predicted22,23 at about 0.8 g/cm3,
the thermopower has to be evaluated for temperatures below
2000 K since Tc = (1400–2000) K. For this region, reasonable
results can be given for the electrical and thermal conductivity
but not for the thermopower. This is because the values of the
Onsager coefficients each decrease over orders of magnitude in
systems with a majority of localized electrons, while especially
the decrease of L12 is two orders of magnitude weaker than
that of L11. This behavior, on the one hand, causes the second
contribution to the thermal conductivity in Eq. (3) to vanish,
because L12 is squared in the numerator. As a result the
thermal conductivity becomes proportional to L22, which can
be evaluated successfully in this case, as well as L11. On the
other hand, this leads to an enormous increase in the statistical
fluctuations of the thermopower, which causes uncertainties
that reach hundreds of μV/K.

In Fig. 7 isochores of the thermopower α are plotted.
The thermopower decreases with higher temperature, which
is more pronounced the lower the density is. Positive values
appear at low temperatures, but the statistical error is too large
to prove this result unambiguously.

D. Lorenz number

The Lorenz number Eq. (4) describes mainly the relation
between thermal and electrical conductivity. For simple metals
this relation is described via a constant and is known as
the Wiedemann-Franz law. For high degeneracy this constant
is L0 = π2/3.61 This relation can be used to easily obtain
the thermal conductivity for metals if the electrical conduc-
tivity is known. Here we calculate the Lorenz number for
dense hydrogen in order to identify the region where the
Wiedemann-Franz law is valid. High degeneracy occurs only
at sufficiently high densities so that we expect deviations
from the Wiedemann-Franz law at lower densities and higher
temperatures.

FIG. 8. (Color online) Lorenz number versus density for different
temperatures. The dashed black line displays the limiting value of
L0 = π 2/3.

The Lorenz number is shown in Fig. 8 for several tem-
peratures. At densities above 1 g/cm3 the Lorenz number
is almost constant and shows no temperature dependence,
which indicates that the Wiedemann-Franz law is valid there.
The value of L0 = π2/3, which is shown by a dashed black
line, could be reproduced for each temperature at densities
higher than (1–2) g/cm3 within the statistical uncertainties.
This behavior is consistent with the metalliclike properties
observed already for the conductivity at high densities.

At densities below (1–2) g/cm3 the Lorenz number shows
strong deviations from the Wiedemann-Franz law with a
pronounced temperature dependence. In particular, the Lorenz
number rises strongly with decreasing density. This behavior
becomes more pronounced at lower temperatures. On the other
hand, at the lower temperatures the validity of the Wiedemann-
Franz law extends to smaller densities, for example, down to
0.2 g/cm3 at 10 000 K and 15 000 K.

Along the isotherms of 30 000 K and 50 000 K a maximum
can be identified. Thus, at lower densities the Lorenz number
decreases again. At 30 000 K this maximum is found at a
smaller density than at 50 000 K and shows a larger value.
This indicates that with decreasing temperature the maximum
shifts systematically to smaller densities and increases. For
temperatures below 30 000 K the maximum is not displayed.
It appears to be situated at densities below 0.05 g/cm3, which
is the minimal density calculated here and which displays the
current limit of our computational capabilities. However, we
expect a maximum to appear for all temperatures because the
Lorenz number is also known exactly at low densities from the
Spitzer theory for fully ionized plasmas.30 The latter predicts
a constant low-density value of 1.5966 (see, e.g., Ref. 16).

Our results indicate that the deviations from the
Wiedemann-Franz law might reach a full order of magnitude
in certain regions of density and temperature. Further research
will be necessary to investigate this important aspect in
more detail. We also expect that certain deviations from the
Wiedemann-Franz law occur in warm dense matter of arbitrary
composition. In hydrogen, we predict that the Wiedemann-
Franz is valid at densities above 2 g/cm3 for temperatures
below 50 000 K (see Fig. 8).
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V. CONCLUSIONS

We derived formulas for the Onsager transport coefficients
Lmn within the Kubo theory for application in ab initio simula-
tions. Using these expressions we calculated the electrical and
thermal conductivity as well as the thermopower of liquid
hydrogen for a wide range of temperatures and densities
in the megabar range. In particular, we characterize the
nonmetal-to-metal transition in hydrogen by observing a rapid
increase in both the electrical and the thermal conductivity. The
thermopower shows a trend toward positive values in a region
where the critical point of the liquid-liquid phase transition
is expected, similar to the behavior of liquid mercury. At low
temperatures more accurate calculations will be necessary for
this transport coefficient which are beyond the scope of the

currently available computer capacity. The ab initio calculation
of the Lorenz number shows, in addition, that the validity of the
original Wiedemann-Franz law is limited to the metalliclike
regime of hydrogen. The theoretical framework given here can
be applied to bulk material calculations for arbitrary materials
within FT-DFT-MD.
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