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We report on the fully vectorial numerical investigation of Brillouin gain in large-mode-area random
acoustically microstructured photonic crystal fibers. We treated the fiber core as a linear isotropic elastic
medium, resulting in an energy functional that we minimized to obtain the heterogeneous, anisotropic, and
Stokes-frequency-dependent vector acoustic displacement field used to calculate the Brillouin gain spectra with
a finite element method. We found that the peak Brillouin gain is dependent on the size of the acoustic domains
and that a 4% spread in acoustic velocities results in peak Brillouin gain values suppressed by 8 dB relative to
that of homogeneous fused silica fibers.
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I. INTRODUCTION

In the single-frequency, high-power operating regime,
stimulated Brillouin scattering (SBS) is often the nonlinearity
with the lowest threshold in optical fibers.1,2 SBS is a nonlinear
optical process in which an electromagnetic field generates
copropogating acoustic phonons through electrostriction. The
copropagating phonons act as a moving Bragg grating,
backscattering a portion of the optical field. The interference
of the two counterpropagating optical fields reinforces the
scattering phonon, leading to a positive feedback loop after
a certain threshold power is crossed.3–6 SBS limits the amount
of optical output power in a fiber laser or amplifier and can
lead to catastrophic optical damage. SBS has been studied
extensively for single-mode, multimode, and photonic crystal
fibers.7

In recent years, significant efforts have been undertaken to
mitigate SBS in large-mode-area optical fibers to further power
scaling efforts in very-high-power fiber lasers and amplifiers.
SBS mitigation techniques include, but are not limited to,
applying a longitudinal strain8 or temperature gradient along
the length of the fiber,9 creating an acoustic guiding layer10

or a linearly ramped acoustic index,11 varying the structural
properties of a photonic crystal longitudinally to vary the
Brillouin shift,12 and using a nanostructured core to create
a phononic band gap.13 In small-core photonic crystal fibers,
experimental results have demonstrated an SBS threshold that
is three to five times larger than similar step-index fibers.14–16

Small-core fibers are unsuitable for high-power propagation
though, due to their reduced nonlinear effective area.17 In
each case, the increase in SBS threshold was attributed to
acoustic guiding/antiguiding provided by the microstructure
of the fiber. In a recent publication, we demonstrated that
SBS suppression in a large-mode-area microstructured fiber is
possible by a random structuring of different acoustic domains
in the core of a photonic crystal fiber.18

Due to the high cost in manufacturing microstructured
fibers, determination of the optimal microstructure arrange-
ment for maximum SBS suppression prior to manufacture
is critical. Simulation of SBS in optical fibers often relies
on solving a scalar form of the acoustic wave equation for

the longitudinal acoustic displacement, which is primarily
responsible for the onset and evolution of SBS.19 Such an
approximation is well suited for fibers that have a homoge-
neous acoustic index and azimuthal symmetry. SBS in fibers
with arbitrary radial index profiles has been considered in a
two-dimensional model,20 which demonstrated that neglect of
radial motion had a significant effect on the Brillouin gain
spectrum. Asymmetry in photonic crystal fibers together with
discontinuous optical profiles caused by glass/air interfaces
naturally suggests a finite element approach. Simulation
of the Brillouin gain spectrum of photonic crystal fibers
with arbitrary acoustic designs suitable for SBS suppression
demands a fully vectorial model of the acoustic displacement.

A fully vectorial method has been reported previously in
the literature,13 but this previous model did not include the
effects of electrostriction. The model presented here includes
electrostriction, enabling a study of the phonon decay rate, the
finite width of the Brillouin gain spectrum, and photon-phonon
coupling mechanisms. In this paper, we analyze the Brillouin
gain of photonic crystal fibers that have regions of constant
acoustic index randomly assigned across the core, using a
fully vectorial finite element model. We will demonstrate that
the size and shape of these acoustic domains can be varied
to tailor the SBS spectrum, leading to an 8 dB increase in
the SBS threshold for optimally sized acoustic domains in a
large-mode-area photonic crystal fiber.

II. THEORY

The analysis of the SBS process begins with the nonhomo-
geneous optical wave equation

∇ × ∇ × �E − n2ω2

c2
�E = �PNL, (1)

where �E is the electric field, n is the index of refraction, ω is
the optical frequency, c is the speed of light, and �PNL is the
nonlinear polarization driving term. The nonlinear polarization
is caused by electrostriction, and can be expressed as

PNLi = −n4ε0pijrsεrsEj

= −γ12(∇ · �u)Ei − 2γ44(∇s �u)ijEj (2)
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where p is the strain optic tensor and ε is the strain,21,22

(∇s �u)ij ≡ 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(3)

is the symmetric part of the displacement gradient, and the
electrostrictive constants take the value γij = n4ε0pij , where
ε0 is the vacuum permittivity and pij are the strain optic
tensor components. Given a known electric field inside the
fiber, one can find �u by solving the nonhomogeneous acoustic
wave equation22

ρ
∂2 �u
∂t2

= ∇ ·
[

↔
c : (∇s �u)+ ↔

η :
∂(∇s �u)

∂t

]
+ 1

2

↔
γ : ( �E ⊗ �E),

(4)

where ρ is the mass density,
↔
c is the elastic stiffness tensor,

↔
η is the viscosity tensor, and

↔
γ is the electrostrictive tensor, :

represents tensor contraction in two indices, and ⊗ denotes
the outer product. Fused silica is an isotropic material so
each of these rank-4 tensors may be expressed in terms of
two constants, allowing considerable simplification of (4) and
yielding22[

ρv2
	 + η11

∂

∂t

]
∇(∇ · �u) −

[
ρv2

t + η44
∂

∂t

]
∇ × ∇ × �u

− ρ
∂2 �u
∂t2

= −γ12

2
∇ | E |2 −γ44∇ · ( �E ⊗ �E), (5)

where v	,t are the longitudinal and transverse acoustic veloc-
ities given by v2

	 = c11/ρ and v2
t = c44/ρ, respectively, η11

and η44 are the viscoelastic constants for longitudinal and
transverse acoustic waves, respectively, and γ12 and γ44 are
defined as before. Although each of these physical properties
can vary throughout the fiber due to glass composition
variations, we restrict our treatment to the case where only the
acoustic velocities are heterogeneous and do not distinguish
between the effects of the mass density and the elastic constants
on these velocity variations. Hence, we take ρ, η11, η44, γ12,
and γ44 to be constant throughout the fiber.

Using the identity ∇(∇ · �u) = ∇ × ∇ × �u + ∇2 �u to elimi-
nate the term containing the divergence and assuming harmon-
ically varying fields so that ∂ �u/∂t = i
�u, we obtain[

ρ
(
v2

	 − v2
t

) + i
 (η11 − η44)
]∇ × ∇ × �u

+ [
ρv2

	 + i
η11
] ∇2 �u + ρ
2 �u

= −γ12

2
∇ | E |2 −γ44∇ · ( �E ⊗ �E). (6)

According to the principle of least action, the acoustic wave
equation (6) may be obtained by minimizing a suitable
variational form. The electromagnetic wave equation23 and
Poisson’s equation24 together contain terms of the same forms
as those in (6). Invoking the derivations contained in these last
two references leads to the form

S {�u} =
∫ ∫

s
[�u(�r,t)] dA, (7a)

s[�u(�r,t)] = −1

2

[
v2

	 (�r) + i

η11

ρ

]
|∇ �u(�r)|2

− 1

2

[
v2

	 (�r) − v2
t (�r) + i


(η11 − η44)

ρ

]

·|∇ × �u(�r)|2 + 1

2

2|�u(�r)|2 + �F (�r) · �u(�r), (7b)

�F (�r) = γ12

2ρ
[∇|E(�r)|2] + γ44

ρ
[∇ · ( �E(�r) ⊗ �E(�r))]. (7c)

Note that the signs of the first two terms of (7b) change
when we take the functional derivative of this expression
with respect to �u to obtain (6). Furthermore, division of both
sides of (6) by a uniform value of ρ is justified because
the spatial variation of the driving term is dominated by the
electromagnetic contribution, which approaches zero at the
boundary of the core region. The domain of integration in
(7a) is the fiber cross section. In order for Brillouin gain to
occur, the optical and acoustic waves described by (1) and
(5) must be phase matched. In the slowly varying envelope
approximation, in the absence of pump depletion, with the
pump wave traveling in the positive z direction, we have

�Ep = 1

2
[ap

�f (x,y) exp[−i(kpz − ωpt)] + c.c.], (8a)

�Es = 1

2
[as(z) �f (x,y) exp[i(ksz + ωst)] + c.c.], (8b)

�u = 1

2
[ �φ(x,y) exp[−i(βz − 
t )] + c.c.], (8c)

where c.c. denotes the complex conjugate. The phase-
matching conditions are then β = kp + ks and 
 = ωp − ωs .
To make use of (8) we enumerate the derivative terms in (7b):

|∇ �u(�r)|2 = ∂u∗
i

∂xj

∂ui

∂xj

, (9a)

|∇ × �u(�r)|2 = εijkεilm

∂u∗
j

∂xk

∂ul

∂xm

, (9b)

where εijk is the Levi-Cività symbol, and then substitute

∂ui

∂x
= 1

2

[
∂φi(x,y)

∂x
exp [−i(βz − 
t)] + c.c.

]
, (10a)

∂ui

∂y
= 1

2

[
∂φi(x,y)

∂y
exp [−i(βz − 
t)] + c.c.

]
, (10b)

∂ui

∂z
= 1

2

[−iβφi(x,y) exp [−i(βz − 
t)] + c.c.
]
. (10c)

We also carry out the same procedure for the terms containing
the derivatives of �E. Removing the non-phase-matched terms,
canceling out the oscillatory dependence of the remaining
phase-matched terms, and inserting the field distribution �f
characterizing the fundamental mode of the optical waveguide,
we obtain a time-independent variational form that is a
functional of �φ(x,y):

S̃{ �φ} =
∫ ∫

s̃[ �φ(x,y)]dA. (11)

We find no suitable analytic method for minimizing this
functional for arbitrary spatially dependent material v	 and vt

so we resort to a finite element scheme which treats discontinu-
ities in material properties naturally. We thus introduce vectors
U and F that define the values of �φ and the electrostrictive
driving function �F (�r) on the nodes of the finite element mesh.
For a mesh with N nodes, U and F each have 3N entries
to specify each component of �φ and �F (�r) on each node.

235110-2



FULL VECTORIAL ANALYSIS OF BRILLOUIN GAIN IN . . . PHYSICAL REVIEW B 83, 235110 (2011)

These vectors are subdivided into vectors corresponding to
each component as

U = [ Ux Uy Uz ], F = [ Fx Fy Fz ]. (12)

We approximate the integral in (7a) by interpolating the values
of the fields and their derivatives at integration points within
the interior of the elements from their values at the nodes given
by U and F, performing a weighted sum over the integration
points, and summing over all of the elements in the mesh. We
approximate the acoustic velocities of the fiber vt and v	 to be
uniform within each element.

Shape function matrices Nk , Nxk , and Nyk accomplish the
interpolation of the values Ui at the nodes to values and deriva-
tives at integration points k for all elements simultaneously:19

Ũik = Nk · UT
i , (13a)

∂Ũik

∂xj

= Njk · UT
i , (13b)

where the shape function matrices have dimension M × N , M
being the number of elements, and T denotes the transpose
of the matrix. Additionally, we construct diagonal M × M

matrices V2
L and V2

T containing the squared longitudinal and
transverse acoustic velocities within each element on the
diagonal and Jk containing the Jacobian matrix for the local
to global coordinate transformation at integration points k for
each element also on the diagonal. These matrices facilitate
integration of the terms in the variational form (11).

For example, the term proportional to 
2 is

S̃{ �φ}
2 = 1

2

2

∫ ∫
�φ∗(x,y) · �φ(x,y)dA

≈ 1

2

2

7∑
k=1

WkŨT
xk · Jk · Ũxk

+ 1

2

2

7∑
k=1

WkŨT
yk · Jk · Ũyk

+ 1

2

2

7∑
k=1

WkŨT
zk · Jk · Ũzk, (14)

where Wk are the integration point weights. Use of (12) and
(13) allows us to write this as

S̃{ �φ}
2 ≈ S(U)
2 ≡ −1

2

2U · C · UT , (15)

where

C =
⎛
⎝ Cxx 0 0

0 Cyy 0
0 0 Czz

⎞
⎠ (16)

is then a 3N × 3N matrix and

Cxx ≡ Cyy ≡ Czz ≡ −
7∑

k=1

Wk

[
NT

k · Jk · Nk

]
(17)

are each N × N matrices. Carrying out this procedure for each
of the remaining terms and grouping them by powers of 
, we
obtain

S(U) = 1
2 U∗ · [A + 
B + 
2C] · UT + U∗ · FT , (18)

where

A =

⎛
⎜⎝

Axx Axy Axz

Axy Ayy Ayz

Axz Ayz Azz

⎞
⎟⎠, (19a)

B =

⎛
⎜⎝

Bxx Bxy Bxz

Bxy Byy Byz

Bxz Byz Bzz

⎞
⎟⎠. (19b)

Each submatrix in Aij , Bij , and Cij is an N × N matrix.
Expressions for these as well as F are given in the Appendix.
The vector F is derived from the electric field vector which
is expressed in terms of hybrid edge nodal elements; hence
hybrid shape functions25 are employed to interpolate the field
values and their derivatives onto the integration points. Note
that matrices A and B are symmetric but B has complex
values and is not Hermitian. The complex entries in B causes
the destruction of phonons, while the source term F creates
phonons. Further details regarding the finite element method
are described in a prior publication.19

Use of (18) to minimize S̃ with respect to U yields

[A + 
B + 
2C]UT + FT = 0, (20)

a linear matrix equation which may be solved to find U
for a given Brillouin frequency shift 
. We note that this
procedure is the discrete counterpart to employment of a
Green’s function to obtain the vector acoustic displacement
profile in the continuous case.19 We further note that (20)
is similar to the equation governing a driven and damped
ensemble of coupled oscillators.26

Once U has been found, it may be incorporated into (1) and
(2) to obtain the equations describing Brillouin amplification.
To do this we note that the index of refraction is uniform within
the core of the fiber and the net charge density is zero so that
∇ · �D = n2∇ · �E = 0, where �D is the electric displacement.
The optical wave equation then becomes

∇2 �E + n2ω2

c2
�E = − �PNL. (21)

Substituting (10) into (21), neglecting the small terms contain-
ing ∂2as(z)/∂z2, and keeping only the phase-matched terms of
the nonlinear polarization17,27 results in a differential equation
for the evolution of the Stokes field along the negative z axis:

iks
�f ∂as

∂z
= ↔

δε · �f , (22)
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where

↔
δε = γ12

2

[
∂φx

∂x
+ ∂φy

∂y
+ iβφz

]
δij + γ44

⎛
⎜⎜⎜⎜⎝

∂φx

∂x
1
2

[
∂φx

∂y
+ ∂φy

∂x

]
1
2

[
iβφx + ∂φz

∂x

]
1
2

[
∂φx

∂y
+ ∂φy

∂x

]
∂φy

∂y
1
2

[
iβφy + ∂φz

∂y

]
1
2

[
iβφx + ∂φz

∂x

]
1
2

[
iβφy + ∂φz

∂y

]
iβφz

⎞
⎟⎟⎟⎟⎠ . (23)

Multiplication of both sides by �f and integration over the fiber
cross section, noting that the normalization of the electric field
distribution characterizing the guided fiber modes, results in
an equation for the evolution of the Stokes amplitude:

∂as

∂z
= 1

iks

∫ ∫
�f · ↔

δε · �f dA. (24)

Application of the expression for optical power

Ps,p = 1

2
cnε0|as,p|2

∫ ∫
| �f (x,y)|2 dA (25)

yields the equations for the evolution of the Stokes power:

−dPs(z)

dz
= gB

Aeff
PsPp, (26a)

gB

Aeff
=

(
πn2p12

2ρcε0λ

) ∫∫ �f · ↔
δε · �f dA

(
∫∫ | �f |2 dA)2

, (26b)

where Pp,s are the forward and counterpropagating pump and
Stokes powers, respectively. We note that the coefficients γ44,
η11, and η44 influence the Brillouin gain coefficient gB through
↔
δε. The integrals in (26b) are approximated using the same
finite element mesh used to solve the acoustic wave equation.
The electric field distribution �f is determined by a hybrid
linear tangential quadratic normal finite element solution to
the vector optical wave equation in the absence of a nonlinear
polarization.25 We note that in the plane wave approximation
for the acoustic displacement fields, the integral factor in (26b)
becomes ργ12/(η11
) so that the usual expression for the peak
Brillouin coefficient,17

gB = 2π2n7p2
12

cλ2ρv	�
, (27)

is recovered, where � is the thermal Brillouin linewidth and
we have used the relations γ12 = n4ε0p12, � = β2η11/ρ, v	 ≈

/β, and β ≈ 4πn/λ.

The direct solution of the nonhomogeneous acoustic wave
equation (5) eliminates the need to calculate the acoustic
modes. Many previous models19 used the scalar form of
(5), taking the divergence of both sides and solving for just
the longitudinal acoustic displacement. This approximation is
valid for cores with an acoustic index that is homogeneous
or slowly varying, but it breaks down for the acoustically
microstructured cores considered here. Calculations of the
Brillouin gain in axially symmetric fibers including radial
but not azimuthal displacements have been accomplished
previously.20 Accurate prediction of the behavior of fibers
with arbitrary acoustic designs requires a fully vectorial model

that tracks all three components of the acoustic displace-
ment. While a fully vectorial method has been described
previously,13 this work ignored the effect of electrostriction.
The present work includes the effect of electrostriction,
essential to accurate modeling of the phonon decay rate and
the finite width of the Brillouin gain spectrum. Our model
has been checked in the limiting case described in Ref. 20
and found to agree with the results presented in that work
for the Brillouin gain spectrum of a nonzero-dispersion fiber.
Additionally, our model has been checked in the case of a
highly doped germanosilicate fiber and found to agree with
experimental results obtained for this fiber.28 Furthermore,
(26) reduces to the well-known expression for Brillouin gain
in the optically and acoustically homogeneous case.3–6 In
summary, the fully vectorial model described here includes all
three components of the acoustic displacement and includes
the effects of electrostriction, which allows it to capture the
behavior of fibers with arbitrary acoustic designs, including
the randomly microstructured cores analyzed below.

III. Fiber Properties

We investigate large-mode-area photonic crystal fiber de-
signs that are optically similar to those previously reported.29

The core is formed by incorporating seven solid rods within
a close-packed triangular lattice of capillary rods within the
fiber preform. The lattice pitch is 12 μm and the air hole
size is 2.16 μm, corresponding to a diameter to pitch ratio
(d/�) of 0.18. This optical profile produces a near-Gaussian
linearly polarized fundamental mode field profile with a
nonlinear effective area of 800 μm2. The fiber structure and
mode field intensity profile are shown in Fig. 1. Although
the fiber designs considered have a large mode area, each
is designed to operate in a single transverse optical mode
regardless of their acoustic properties. Such designs have
exhibited single-transverse-mode output at wavelengths near
1.1 μm.29

The acoustic velocities within the cladding, comprised of
the air-hole lattice, are taken to be those of isotropic bulk silica
characterized by a mass density of 2200 kg/m3, a Young’s
modulus of 73 GPa, and a Poisson ratio of 0.17, yielding a
longitudinal acoustic velocity of 5972 m/s and a shear acoustic
velocity of 3766 m/s. The acoustic velocities within the core
are defined to be uniform within defined acoustic domains,
but different among the domains. We study fibers with four
different acoustic velocities that are 0.98, 0.99, 1.00, and 1.01
times those of bulk silica. Different velocity domains may be
created by incorporating varying concentrations of different
dopants within the rods comprising the core in the preform.11
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FIG. 1. An illustration of the structural profile and calculated
fundamental mode optical intensity profile of the photonic crystal
fibers investigated here. The mode profile is plotted with arbitrary
units.

The acoustic domain size will depend on details of the glass
processing procedure applied to the core material. The Poisson
ratio is assumed to be constant among the domains.

We model the acoustic domains as uniform contiguous
subsets of elements within the finite element mesh used to
solve the acoustic and optical wave equations governing the
Brillouin gain process. By varying the scaling factor s ≡ �/�c

between the photonic crystal lattice pitch � and the finite
element mesh cell pitch �c, we are able to create various
different domain shapes with nearly the same sizes. For
example, Fig. 2(c), depicting a scaling factor of 2 with one
-element domains, and Fig. 2(d), depicting a scaling factor of
3 with three-element domains, have nearly the same domain
sizes.

We employed three different scaling factors with five
different domain shapes to obtain 15 different variations.
For each variation we investigated five different random
realizations for a total of 75 configurations.

We have shown in a prior work that, in the scalar acoustic
approximation, incorporating a nonuniform acoustic velocity
population distribution within the core can enhance Brillouin
gain suppression.18 In particular, more domains with the
higher acoustic velocities must be present. To accomplish
this, we have defined a probability exponent α such that the
probability Pi of a given domain having acoustic velocity i

with i ∈ {1, . . . ,4} arranged from slowest to fastest is given
by

Pi = 1 −
∫ i/4

(i−1)/4

1

α
x(1−α)/α dx. (28)

We have found that the value of α = 2 yields the most Brillouin
gain suppression; therefore this value is used to obtain all of
the results reported here.

FIG. 2. Samples of random acoustic fibers with different domain
sizes and shapes. The darker and ligher regions have higher and
lower local acoustic velocities, respectively. There are four different
shades within the core region. From darkest to lightest the longitudinal
velocities are 1.01v	0, 1.00v	0, 0.99v	0, and 0.98v	0, where v	0 =
5972 m/s is the longitudinal acoustic velocity of pure fused silica.

IV. RESULTS

We are primarily concerned with the mean value and
standard deviation of the peak Brillouin gain coefficient as a
function of domain size for different random fiber realizations.
Figure 3 shows these values as a function of domain size and
comprises the main result of this work. For plotting purposes,
we have defined the acoustic domain size as the square root of
the acoustic domain area. For comparison, the peak Brillouin
gain coefficient for an acoustically homogeneous realization of
the fiber is 1.9 × 10−11 m/W. Thus the fibers with an acoustic
domain size between approximately 1 and 2 μm exhibit a
peak Brillouin gain suppression of approximately 8 dB. This
length scale is approximately one to two times the optical
wavelength of 1.064 μm and correspondingly two to four
times the longitudinal acoustic wavelength. Figure 4 shows
the Brillouin gain coefficient values calculated using a scalar
approximation19 for comparison.

The use of different scaling factors s provides assurance
that the results are independent of the resolution of the finite
element mesh. For example, the two lowest mean gB values
were obtained with element areas of 0.58 and 0.14 μm2 as
were the third- and fourth-highest values on the large-domain
side as shown in Fig. 3. Since the domain sizes are comparable
in each of these cases, they should have similar mean gB

values. If they did not, this would indicate that the mesh
resolution was affecting the gB values. The fact that all results
exhibit the same relationship between domain size and peak gB

value independent of the meshing resolution further confirms
its suitability. As an additional check, we doubled the mesh
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FIG. 3. Peak Brillouin gain coefficient calculated with the fully
vectorial model as a function of acoustic domain size. The error
bars represent the standard deviations of the values obtained for five
different random realizations.

resolution for the realizations of the fiber exhibiting high
acoustic transverse spatial frequencies in Fig. 6 and found
less than 1% change in the peak gB values.

The Brillouin gain coefficient for each fiber realization was
evaluated at 200 equally spaced Stokes frequencies between
15.8 and 16.8 GHz. The resulting Brillouin gain spectra for a
sample random realization of the largest, smallest, and opti-
mum domain sizes are shown in Fig. 5. For the largest domain
size, each acoustic domain is able to respond individually at
its local Brillouin frequency, resulting in an identifiable peak
corresponding to each of the four acoustic velocities. For the
smallest domain size, the acoustic wavelength is too large
to fully resolve the individual domains and so the acoustic
displacements respond to the electrostrictive driving force with
an average effective acoustic velocity resulting in a single
peak at an intermediate frequency. Neither of these conditions
applies to the optimal case which exhibits a broad, flat Brillouin
gain spectrum with a correspondingly lower peak value. The
domains are small enough that strong resonance in one domain
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FIG. 4. Peak Brillouin gain coefficient calculated with the scalar
model as a function of acoustic domain size. The error bars represent
the standard deviations of the values obtained for five different
random realizations.
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FIG. 5. Brillouin gain spectra of a fiber with the largest domains,
a fiber with the smallest domains, a fiber with the optimal domain
size, and a fiber with a core of pure silica. Shifts of 15, 30, and
45 dB have been added to the largest domain, smallest domain, and
pure silica spectra for readability.

can propagate through neighboring domains and at the same
time are large enough to respond electrostrictively at their local
resonant frequencies to prevent the spectrum from becoming
too narrow.

Examination of the vector acoustic displacement fields for
these three cases at the peak Brillouin gain frequency, shown
in Fig. 6, reinforces this interpretation. In the case of the
large acoustic domains, the peak Brillouin gain frequency
corresponds to the local Brillouin frequency of the domains
with the highest acoustic velocity. We see that these domains
provide a fairly uniform response while the domains with
a slower acoustic velocities are driven to respond with a
higher spatial frequency, indicating resonance with higher-
order acoustic modes. This indicates that if the frequency
of a higher-order mode in a slow acoustic domain coincides
with a lower-order mode in a fast acoustic domain, they may
both contribute to the Brillouin gain at a given frequency,
resulting in a higher peak value. We also note that the domains
with relatively uniform longitudinal response (corresponding
to the z component of the acoustic displacement field) have
almost zero transverse response. This provides evidence
that the scalar approximation for the acoustic displacement
field may be valid for fibers with large acoustic domain
sizes.

Comparing the acoustic field profiles of the optimal- and
small-domain-size cases, we note that in the optimal case, the
longitudinal displacement assumes both positive and negative
values while for the small domain size, the longitudinal
displacement assumes only positive values. This can be seen by
observing that the acoustic field profiles approach zero at the
boundary of the plotting domain. The uniform direction of the
response in the small-domain case is characteristically similar
to the homogeneous acoustic velocity case in which the entire
core responds uniformly. This supports the interpretation that
as the domain size decreases, the core begins to behave like
a homogeneous one with an average intermediate Brillouin
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FIG. 6. x (first column), y (second column), and z (third column) components of the acoustic displacement field for the largest (top row),
optimal (middle row), and smallest domain size (bottom row) at Brillouin shift frequencies of 16.44, 16.37, and 16.25 GHz respectively. The
displacement fields are represented by an arbitrary gray scale level and the units of all axes are micrometers.

peak frequency. Even for the smallest size investigated here,
the Brillouin gain spectrum is still considerably broadened
at a full width at half maximum of 100 MHz relative to
the linewidth of bulk fused silica at this wavelength, which
is 36 MHz.30

Comparison of the results of the fully vectorial model to
the results obtained with a scalar model18,19 reveals that the
scalar model predicts a smaller optimal domain size and fails
to predict the rapid onset of larger Brillouin gain values as
the domain size is lowered, as the vector model does. This is
consistent with the assertion that the fully vectorial treatment is
required for fibers with rapid spatial variations in the acoustic
velocity. The best agreement between the scalar and vector
models is obtained for the largest domain size, consistent
with the assertion that the scalar model is suitable with slower
spatial variations in the acoustic velocity. Finally, both models
predict approximately the same minimum Brillouin gain
value.

V. CONCLUSION

Random acoustically microstructured photonic crystal
fibers may constitute a method to propagate or amplify
high-power single-frequency signals because their reduced
Brillouin gain makes their realization a significant potential
technical advance. The mathematical description of the Bril-
louin gain process in such fibers requires retaining the full
three-dimensional electromagnetic and acoustic fields in the
acoustic and optical wave equations. We have presented a fully
vectorial finite element method for calculating the Brillouin
gain spectrum in these fibers as well as any other optically and
acoustically heterogeneous fiber lacking azimuthal symmetry.
This method has been verified against published results for
several limiting cases. We have found that for technically
feasible material parameters and waveguide geometry, random
acoustically microstructured optical fibers may enable an 8 dB
suppression in the peak Brillouin gain coefficient compared to
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acoustically homogeneous fibers. The large-mode-field area of
the photonic crystal fiber can be combined with the acoustic
suppression to yield an 18 dB combined suppression relative
to standard telecommunications optical fibers, potentially
enabling the amplification of kilowatt-level signals over a few
meters of fiber or the transmission of watt-level signals over
much longer distances.
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APPENDIX: DEFINITION OF THE FINITE ELEMENT
VECTORS AND MATRICES

The definitions of the matrices A, B, C, and the vector
F in (18) are included here for completeness. The shape
function matrices Nk ,Nxk ,Nyk , the Jacobian matrix Jk , and
the integration point weights Wk are defined as in Ref. 19
where k indexes the integration points. The square diagonal
matrices V2

L and V2
T contain the longitudinal and shear

acoustic velocities squared of each element in the diagonal
entries. The vectors Ẽik consist of the ith component of the
electric field describing the fundamental optical mode of the
fiber interpolated to integration point k within each element
of the mesh using the hybrid element scheme.25 We have
used the symbol × to represent elementwise multiplication
of vectors.

Axx ≡
7∑

k=1

Wk

[
NT

xk · Jk · V2
L · Nxk + NT

yk · Jk · V2
T · Nyk

+β2NT
k · Jk · V2

T · Nk

]
, (A1)

Axy ≡
7∑

k=1

Wk

[
NT

yk · Jk · (
V2

L − V2
T

) · Nxk

]
, (A2)

Axz ≡
7∑

k=1

Wk

[
iβNT

k · Jk · (
V2

L − V2
T

) · Nxk

]
, (A3)

Ayy ≡
7∑

k=1

Wk

[
NT

xk · Jk · V2
T · Nxk + NT

yk · Jk · V2
L · Nyk

+β2NT
k · Jk · V2

T · Nk

]
, (A4)

Ayz ≡
7∑

k=1

Wk

[
iβNT

k · Jk · (
V2

L − V2
T

) · Nyk

]
, (A5)

Azz ≡
7∑

k=1

Wk

[
NT

xk · Jk · V2
T · Nxk + NT

yk · Jk · V2
T · Nyk

+β2NT
k · Jk · V2

L · Nk

]
, (A6)

Bxx ≡ −
7∑

k=1

Wk

[
iη11NT

xk · Jk · Nxk + iη44NT
yk · Jk · Nyk

+ iη44β
2NT

k · Jk · Nk

]
, (A7)

Bxy ≡ −
7∑

k=1

Wk

[
i (η11 − η44) NT

yk · Jk · Nxk

]
, (A8)

Bxz ≡
7∑

k=1

Wk

[
β (η11 − η44) NT

k · Jk · Nxk

]
, (A9)

Byy ≡ −
7∑

k=1

Wk

[
iη44NT

xk · Jk · Nxk + iη11NT
yk · Jk · Nyk

+ iη44β
2NT

k · Jk · Nk

]
, (A10)

Byz ≡
7∑

k=1

Wk

[
β (η11 − η44) NT

k · Jk · Nyk

]
, (A11)

Bzz ≡ −
7∑

k=1

Wk

[
iη44NT

xk · Jk · Nxk + iη44NT
yk · Jk · Nyk

+ iη11β
2NT

k · Jk · Nk

]
, (A12)

Cxx ≡ Cyy ≡ Czz ≡ −
7∑

k=1

Wk

[
NT

k · Jk · Nk

]
, (A13)

Cij = 0 (i 
= j ) , (A14)

Fx ≡
7∑

k=1

Wk

{
2γ12Re

[
Ẽ∗

xk × ∂Ẽxk

∂x
+ Ẽ∗

yk × ∂Ẽyk

∂x

+ Ẽ∗
zk × ∂Ẽzk

∂x

]
+ 2γ44

(
2Re

[
Ẽ∗

xk × ∂Ẽxk

∂x

]

+ ∂Ẽ∗
xk

∂y
× Ẽyk + Ẽ∗

xk × ∂Ẽyk

∂y

)}
· Jk · Nk,

(A15)

Fy ≡
7∑

k=1

Wk

{
2γ12Re

[
Ẽ∗

xk × ∂Ẽxk

∂y
+ Ẽ∗

yk × ∂Ẽyk

∂y

+ Ẽ∗
zk × ∂Ẽzk

∂y

]
+ 2γ44

(
2Re

[
Ẽ∗

yk × ∂Ẽyk

∂y

]

+ ∂Ẽ∗
xk

∂x
× Ẽyk + Ẽ∗

xk × ∂Ẽyk

∂x

)}
· Jk · Nk, (A16)

Fz ≡
7∑

k=1

Wk

[
iβγ12

∣∣Ek

∣∣2 + 2γ44

(
iβ

∣∣Ezk

∣∣2

+ ∂Ẽ∗
xk

∂x
× Ẽzk + Ẽ∗

xk × ∂Ẽzk

∂x

+ ∂Ẽ∗
yk

∂y
× Ẽzk + Ẽ∗

yk × ∂Ẽzk

∂y

)]
· Jk · Nk. (A17)
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