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Magnetic field driven instability of a charged center in graphene
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It is shown that a magnetic field dramatically affects the problem of supercritical charge in graphene, making
any charge in gapless theory supercritical. The cases of a radially symmetric potential well and a Coulomb center
in a homogeneous magnetic field are considered. The local density of states and polarization charge density are
calculated in the first order of perturbation theory. It is argued that the magnetically induced instability of the
supercritical Coulomb center can be considered as a quantum-mechanical counterpart of the magnetic catalysis
phenomenon in graphene.
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I. INTRODUCTION

Recently, it was shown1–4 that atomic collapse in a strong
Coulomb field,5,6 a fundamental quantum relativistic phe-
nomenon still inaccessible in high-energy experiments, can be
readily investigated in graphene. In quantum electrodynamics
(QED), taking into account the finite size of a nucleus,7

theoretical works on the Dirac-Kepler problem showed that for
atoms with nuclear charge in excess of Z > 170, the electron
states dive into the lower continuum leading to positron
emission.5,6

In graphene, the effective Coulomb coupling constant is
given by β = Zα/κ , where α = e2/h̄vF � 2.19 is the “fine-
structure” coupling constant, vF ≈ 106 m/s is the velocity
of Dirac quasiparticles, and κ is a dielectric constant. The
Hamiltonian of the system is not self-adjoint when the coupling
β exceeds the critical value βc = 1/2.1–4 Similar to the Dirac
equation in QED, one should replace the singular 1/r potential
by a regularized potential that takes into account the finite
size of the charged impurity, R: V (r) = −Ze2

κr
θ (r − R) −

Ze2

κR
θ (R − r). For gapped quasiparticles in such a regularized

potential, the critical coupling is determined by βc = 1/2 +
π2/ log2(c�R/h̄vF ),8 where � is a quasiparticle gap and the
constant c ≈ 0.21, and βc tends to 1/2 for � → 0 or R → 0.

Since the electrons and holes strongly interact by means
of the Coulomb interaction, one may expect8–10 an excitonic
instability in graphene with subsequent phase transition to a
phase with gapped quasiparticles that may turn graphene into
an insulator. This semimetal-insulator transition in graphene is
actively studied in the literature, where numerical simulations
give the critical coupling constant αc ≈ 1.19.11,12

In a many-body system or quantum field theory, the
supercritical coupling leads to more dramatic consequences
compared to the case of the Dirac equation for the electron
in the Coulomb potential. Unlike the case of the Coulomb
center, the many-body supercritical coupling instability cannot
be resolved through a spontaneous creation of a finite number
of electron-positron pairs. Like the Cooper instability in the
theory of superconductivity, the QED supercritical coupling
instability is resolved only through the formation of a conden-
sate of electron-positron pairs generating a mass gap in the
spectrum.13

The presence of a magnetic field makes the situation even
more interesting. It was shown in Ref. 14 that a magnetic

field catalyzes the gap generation for gapless fermions in
relativistic-like systems, and even the weakest attraction
leads to the formation of a symmetry-breaking condensate.
Therefore, the system is always in the supercritical regime
once there is an attractive interaction. The magnetic catalysis
plays an important role in quantum Hall effect studies in
graphene,15–20 where it is responsible for lifting the degeneracy
of the Landau levels.

The magnetic catalysis phenomenon suggests that the
Coulomb impurity in a magnetic field in graphene should be
supercritical for any Z. The Dirac equation for quasiparticles
in graphene in the Coulomb potential in a magnetic field was
considered in Ref. 21, where exact solutions were found for
certain values of the magnetic field; however, no instability or
resonance was found.

In QED in (3 + 1) dimensions, the Coulomb center problem
in a magnetic field was studied in Ref. 22. There it was found
that magnetic field B confines the transverse electronic motion,
and the electron in the magnetic field is closer to the nucleus
than in the free atom. Thus, it is situated in a stronger Coulomb
field. Therefore, Zcα decreases with B. This result is consistent
with the magnetic catalysis phenomenon,14 according to which
the magnetic field catalyzes gap generation and leads to a
zero critical coupling constant in both (3 + 1)- and (2 + 1)-
dimensional theories.

We would like to stress that the presence of a homogeneous
magnetic field changes qualitatively the supercritical Coulomb
center problem. Indeed, if a magnetic field is absent, then the
supercritical Coulomb center instability leads to a resonance
that describes an outgoing positron propagating freely to
infinity. However, since charged particles confined to a plane
do not propagate freely to infinity in a magnetic field, such
a behavior is impossible for the in-plane Coulomb center
problem in a magnetic field. Therefore, a priori it is not
clear how the instability suggested by the magnetic catalysis
manifests itself in the Coulomb center problem in a magnetic
field. The main goal of this paper is to answer this question.

In Secs. II and III, we consider the Dirac equation for the
electron in the potential well and Coulomb center in a magnetic
field. We study the local density of states (LDOS) and induced
charge density for both cases in Sec. IV, where similarities
and differences between the cases of gapped and gapless
quasiparticles as well as the potential well and Coulomb
interactions are discussed. In Sec. V, we give a brief summary
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of our results. Finally, we provide the details of our calculations
of the LDOS and polarization charge density in Appendix A.

II. POTENTIAL WELL

The electron quasiparticle states in the vicinity of the K±
points of graphene in the field of Coulomb impurity and in
a homogeneous magnetic field perpendicular to the plane of
graphene are described by the Dirac Hamiltonian in (2 + 1)
dimensions,

H = h̄vF τ p + ξ�τ3 + V (r), (2.1)

where the canonical momentum p = −i∇ + eA/c includes
the vector potential A corresponding to the external magnetic
field B, τi are the Pauli matrices, and � is a quasiparticle gap.
The two-component spinor 
ξs carries the valley (ξ = ±) and
spin (s = ±) indices. We will use the standard convention

T

+s = (ψA,ψB )K+s , whereas 
T
−s = (ψB,ψA)K−s , and A,B

refer to two sublattices of a hexagonal graphene lattice. Since
the interaction V (r) does not depend on spin, in what follows
we will omit the spin index s.

It is instructive to consider first the Dirac equation for the
electron in a potential well V (r) = −V0θ (r0 − r) with V0 > 0
in a magnetic field perpendicular to the plane of graphene. We
have (

ξ� h̄vF (−iDx − Dy)

h̄vF (−iDx + Dy) −ξ�

)

(r)

= [E − V (r)] 
(r), (2.2)

where Di = ∂i + (ie/h̄c)Ai with i = x,y is the covariant
derivative, and the symmetric gauge (Ax,Ay) = (B/2)(−y,x)
is used for the magnetic field. It is clear that the solution at
the K− point is obtained from the solution at the K+ point
changing � → −� and exchanging the spinor components
ψA ↔ ψB .

In polar coordinates,

iDx + Dy = e−iφ

(
i

∂

∂r
+ 1

r

∂

∂φ
+ ieBr

2h̄c

)
,

(2.3)

iDx − Dy = eiφ

(
i

∂

∂r
− 1

r

∂

∂φ
− ieBr

2h̄c

)
.

We can represent 
(r) in terms of the eigenfunctions of the
conserved angular momentum Jz = Lz + σz/2 = −i∂/∂φ +
σz/2 as follows:


(r) = 1

r

(
ei(j− 1

2 )φf (r)

iei(j+ 1
2 )φg(r)

)
, (2.4)

with j = ±1/2, ± 3/2, . . . . For functions f (r), g(r), we get
the following equations:

f ′ − j + 1/2

r
f − r

2l2
f + E + ξ� − V (r)

h̄vF

g = 0, (2.5)

g′ + j − 1/2

r
g + r

2l2
g − E − ξ� − V (r)

h̄vF

f = 0, (2.6)

where l = √
h̄c/|eB| is the magnetic length. These equations

are easily solved for the potential well in two regions r < r0

and r > r0 in terms of confluent hypergeometric functions. In

the region r < r0, eliminating the function g(r), we obtain the
second-order differential equation for the function f (r):

f ′′ − 1

ρ
f ′ +

[
2p2

V − j − 1

2
− j 2 − j − 3/4

ρ2
− ρ2

4

]
f = 0,

(2.7)

and in the region r > r0 we have the same equation but
with V0 = 0. Here we introduced the following dimensionless
quantities:

p2
V = l2[(E + V0)2 − �2]

2(h̄vF )2
, p2 = l2(E2 − �2)

2(h̄vF )2
, (2.8)

and ρ = r/ l. We get the following solutions, which are regular
at r = 0:

f1(ρ) = ρj+ 1
2 e−ρ2/4 C1

�(j + 1/2)

×�

(
j + 1

2
− p2

V ,j + 1

2
;
ρ2

2

)
, (2.9)

g1(ρ) = l(E + V0 − ξ�)√
2h̄vF

ρj+ 3
2 e−ρ2/4 C1

�(j + 3/2)

×�

(
j + 1

2
− p2

V ,j + 3

2
;
ρ2

2

)
, (2.10)

and decrease at infinity,

f2(ρ) = C2ρ
j+ 1

2 e−ρ2/4

×


(
j + 1

2
− p2,j + 1

2
;
ρ2

2

)
, (2.11)

g2(ρ) =
√

2h̄vF C2

l(E + ξ�)
ρj+ 3

2 e−ρ2/4

×


(
j + 1

2
− p2,j + 3

2
;
ρ2

2

)
, (2.12)

respectively (note that these expressions are valid at all j =
±1/2, ± 3/2, . . . ).

Then sewing solutions at r = r0,

f1(ρ)

f2(ρ)

∣∣∣∣
ρ=ρ0

= g1(ρ)

g2(ρ)

∣∣∣∣
ρ=ρ0

, ρ0 = r0

l
, (2.13)

we obtain the following transcendental equation for energies
of solutions with the total angular momentum j :

2(h̄vF )2
(
j + 1

2

)
�

(
j + 1

2 − p2
V ,j + 1

2 ; ρ2
0

2

)
l2(E + V0 − ξ�)�

(
j + 1

2 − p2
V ,j + 3

2 ; ρ2
0

2

)

= (E + ξ�)



(
j + 1

2 − p2,j + 1
2 ; ρ2

0
2

)



(
j + 1

2 − p2,j + 3
2 ; ρ2

0
2

) . (2.14)

Below we analyze this equation analytically and numerically.

A. Instability in the absence of a magnetic field

In this subsection, we consider the problem of the potential
well instability in the absence of a magnetic field (B = 0). This
will serve us as a useful reference point in the next section,
where we study instability in a magnetic field. For B = 0, the
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energy spectrum may be obtained either by solving the Dirac
equation from the very beginning, or by taking the limit of
zero field (l → ∞) in Eq. (2.14). In the latter case, one needs
to use the following formulas:23

�(a,c; z) = ez�(c − a,c; −z), (2.15)

lim
a→∞ �(a,c; −z/a) = �(c)z

1−c
2 Jc−1(2

√
z), (2.16)

lim
a→∞[�(1 + a − c)
(a,c; −z/a)]

= −iπeiπcz
1−c

2 H
(1)
c−1(2

√
z), Imz > 0, (2.17)

and |arg a| < π for the last two equations.
Assuming |E| < �, we obtain√

(E + V0)2 − �2

E + V0 − ξ�

Jj−1/2(βr0)

Jj+1/2(βr0)

=
√

E2 − �2

E − ξ�

H
(1)
j−1/2(β ′r0)

H
(1)
j+1/2(β ′r0)

, (2.18)

where Jν(z), H (1)
ν (z) are the Bessel and Hankel

functions, respectively, β =
√

(E + V0)2 − �2/h̄vF , β ′ =√
E2 − �2/h̄vF , and the square roots are defined as

Imβ,Imβ ′ > 0. In the regions with Imβ,Imβ ′ 	= 0, one
can use the relations H (1)

ν (iz) = (2/πi)e−iπν/2Kν(z),Jν(iz) =
eiπν/2Iν(z). Equation (2.18) is invariant under the change
j → −j,ξ → −ξ .24

Taking for the definiteness the K− point (ξ = −), one can
see from Eq. (2.18) that the energy spectrum is continuous
for |E| > � and a discrete one for |E| < �. The first bound
state E � � appears at an arbitrary small interaction V0.
Indeed, taking j = −1/2, which corresponds to the smallest
centrifugal barrier, we find

E � �

[
1 − 2

(
h̄vF

�r0

)2

exp

(
−2(h̄vF )2

V0�r0
− 2γ

)]
, (2.19)

where γ is the Euler constant. Note that there is no solution
with the energy E � � at the K− point with angular mo-
mentum j = 1/2, but such a solution exists at the K+ point
similarly to the case of the Coulomb potential.8

As V0 grows, at the critical strength of interaction,

V0 cr = �

⎡
⎣1 +

√
1 +

(
h̄vF

�r0

)2

j 2
0,1

⎤
⎦ (2.20)

[j0,1 ≈ 2.41 is the first zero of the Bessel function J0(x)],
the lowest-energy bound state dives into the lower continuum
(E = −�). We note that for the zero-gap case (� = 0) there
are no bound states at all. In the supercritical regime for V0 >

V0cr = h̄vF j0,1/r0 [which follows from Eq. (2.20) at � = 0],
resonances with complex energies appear, leading to instability
of the system similar to the case of the supercritical Coulomb
center.1,8 The occurrence of resonant states synchronously
with diving into the lower continuum of the lowest-energy
bound state is the standard characteristic of QED systems.1,5,6

We will see in the next subsection that the presence of a
homogeneous magnetic field changes this conclusion.

Near the critical value of coupling, the energy of the
resonant state is given by

E = −V0 − V0cr

ln(1/δ)
exp

(
iπ

2 ln(1/δ)

)
,

(2.21)

δ = (V0 − V0cr)r0e
γ−1

2h̄vF

, 0 < δ 
 1.

The dependence of energy on the V0 − V0cr (deviation from the
critical value) for the potential well interaction is nonanalytic
but differs from the essential singularity that takes place in
the Coulomb center problem. This, of course, is related to the
absence of scale invariance for the potential well V (r).

B. Magnetically driven instability

Before we consider the instability of the potential well
problem in a homogeneous magnetic field, it is useful to recall
the Landau energy levels for the electron states in graphene in
a magnetic field. If the interaction vanishes (V0 = 0,r0 → 0),
Eq. (2.14) gives the well-known spectrum of Landau levels:

E = −ξ�, j � − 1
2 , (2.22)

E = ±
√

�2 + 2n

(
h̄vF

l

)2

, n = 1,2, . . . , j + 1

2
� n.

(2.23)

Note that the level E = � (E = −�) is present only at the
K− (K+) point.

For nonzero V0, the Landau energy levels are no longer de-
generate. Using the sewing equation (2.14), we can determine
the evolution of degenerate solutions with V0. For solutions
of the Landau level E = � with different j , their energies as
a function of V0/� (at fixed magnetic field B) are plotted in
Fig. 1 for l�/(

√
2h̄vF ) = 0.1 and ρ0 = r0/l = 0.02. We see

that as V0 increases, more and more solutions with different j

cross the energy level E = −�. As usual,5,6 this means that
vacuum of the second quantized theory is unstable with respect
to the creation of electron-hole pairs. However, as we discussed
in the Introduction, there are no resonance solutions in the

FIG. 1. (Color online) The evolution of degenerate solutions
of the lowest Landau level at the K− point as a function of the
dimensionless ratio V0/�.
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presence of a constant magnetic field. The reason for that is the
presence of the positive r2/4l2 term due to the magnetic field
in the effective Schrödinger-like equation for one component
of the spinor function [see Eq. (3.4) and Fig. 3 in the next
section], which qualitatively changes the asymptotics of the
effective potential: in nonzero field it grows at infinity instead
of decreasing, as in the case B = 0. Therefore, quasiparticles
are confined in such a potential and cannot escape to infinity
forming only discrete levels.

We would like to note that the situation under consideration
is analogous to that for a deep level vacancy in a many-electron
atom. There electron states as solutions of the Dirac equation
in the Coulomb potential of the nucleus are stable. However,
taking into account the interaction with the second quantized
electromagnetic field, the electrons on higher energy levels are
unstable with respect to the transition to the vacant state with
emission of photons.

The critical potential V0cr is defined as the potential for
which the first crossing occurs. According to Fig. 1, such
a crossing is first realized for the state with j = −1/2 (the
potential well interaction lifts the degeneracy of the Landau
levels in quantum number j ). Let us analyze in detail how this
state evolves with V0. For the state with j = −1/2, Eq. (2.14)
becomes

(E + V0 − �)
ρ2

0

2

�
(

1 − p2
V ,2; ρ2

0
2

)
�

(
−p2

V ,1; ρ2
0

2

)

= −(E − �)



(
−p2,0; ρ2

0
2

)



(
−p2,1; ρ2

0
2

) , (2.24)

where we used the relation

lim
c→−m

�(a,c; x)

�(c)

= �(a + m + 1)

�(a)(m + 1)!
xm+1�(a + m + 1,m + 2; x),

m = 0,1, . . . . (2.25)

For V0 → 0, Eq. (2.24) implies the following bound state at
the K− point:

E = � − V0(1 − e−r2
0 /2l2

), (2.26)

which is in contrast with nonanalytic behavior in the coupling
V0 in the absence of magnetic field described by Eq. (2.19).
(At the K+ point, a similar bound state exists but with angular
momentum j = +1/2.)

As the coupling V0 grows, the energy of this bound state
decreases and finally crosses the level E = −� at some
critical value V0cr. For E = −�, p2 = 0, and p2

V = l2(V 2
0 −

2�V0)/2(h̄vF )2, using 
(0,0; z) = 
(0,1; z) = 1 we find that
Eq. (2.24) defines the following equation for V0cr:

V0cr = 2�

⎡
⎣1 +

2�
(
a,1,

ρ2
0

2

)
ρ2

0�
(

1 + a,2,
ρ2

0
2

)
⎤
⎦ , (2.27)

where a = −l2V0cr(V0cr − 2�)/2(h̄vF )2. [Note that at zero
magnetic field (l = ∞), Eq. (2.27) reduces to Eq. (2.20) for
V0cr, which tends to a finite value in the gapless limit.] The

critical potential strength V0cr as a function of � is plotted in
Fig. 2 for different values of the parameter ρ0, which defines
the ratio of the potential well width to the magnetic length.

Analytically, it is not difficult to find that for ρ0 
 1,
Eq. (2.27) implies

V0cr = 2�
(
1 + 2l2/r2

0

)
. (2.28)

It is clearly seen from Fig. 2 and from Eq. (2.28) that the
critical potential strength V0cr decreases with the growth of a
magnetic field (or with the decrease of l) at fixed r0 and �.
The physical reason for that is that the magnetic field forces
electron orbits to become closer to the charge center, making
attraction stronger and, thus, effectively lowering the critical
coupling.

What is surprising here is that V0cr tends to zero as � → 0.
Thus, the presence of a homogeneous magnetic field leads to
the instability of gapless quasiparticles in the second quantized
theory for any value of the potential strength V0. This result
suggests that the Coulomb center in gapless graphene in a
magnetic field may also be unstable for any value Ze, which
is the problem we study in the next section.

Finally, we will analyze states with energies near ±� and
large by modulus negative momenta j . We find that there
exists an infinite series of levels approaching the energies ±�

asymptotically at large |j + 1/2| (i.e., for sufficiently large j ,
the effect of the potential interaction V0 can be neglected and
the Landau levels are recovered). For V0 → 0, they behave as

E � −ξ� − V0e
−ρ2

0 /2

�(k + 1)

(
ρ2

0

2

)k+1

, k = −
(

j + 1

2

)
� 1.

(2.29)

This can be found directly by solving Eq. (2.14), first taking
there the limit j + 1/2 → −k by means of Eq. (2.25) and
then analyzing the equation at weak coupling and large

FIG. 2. (Color online) The critical potential V0cr as a function
of a gap for different values of ρ0. The case of zero magnetic field
corresponds to ρ0 = 0.
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k. Alternatively, Eq. (2.29) is obtained as the first-order
correction in the interaction to the levels ±� at K± points
in a magnetic field. Note that the levels (2.29) lie below � for
the K− point and below −� for the K+ point, respectively.

III. THE COULOMB CENTER

The equations for the functions f (r) and g(r)
for the Coulomb center problem follow directly from
Eqs. (2.5) and (2.6) by setting V (r) = −Ze2/r θ (r − R) −
Ze2/R θ (R − r) there (we take the dielectric constant κ = 1).
Eliminating, for example, the function f (r), one can get
a second-order differential equation for the function g(r).
Further, introducing the function χ (r) by means of the relation

[E − ξ� − V (r)]1/2χ (r) = g(r)√
r

, (3.1)

we get the Schrödinger-like equation

−χ ′′(r) + U (r)χ (r) = Eχ (r), (3.2)

where

E = E2 − �2, (3.3)

and the effective potential, U = U1 + U2,

U1 = V (2E − V )

(h̄vF )2
+ j (j + 1)

r2
+ r2

4l4
+ j − 1/2

l2
, (3.4)

U2 = 1

2

[
V ′′

E − ξ� − V
+ 3

2

(
V ′

E − ξ� − V

)2

−
(

j

r
+ r

2l2

)
2V ′

E − ξ� − V

]
. (3.5)

We plot the effective potential U (r) near the K− point for
E = −� and j = −1/2 in Fig. 3. There the energy barrier in
the absence of magnetic field is clearly seen, which leads to
the appearance of resonances for sufficiently large charge. The
presence of nonzero magnetic field changes the asymptotics
of the effective potential at infinity and, thus, forbids the
occurrence of resonance states. This feature distinguishes
qualitatively the Coulomb center problem (as well as the
potential well problem) in a magnetic form from that at B = 0.

FIG. 3. (Color online) The potential U (r) as a function of the
distance from the Coulomb center at zero and nonzero magnetic field
for the state with E = −� and j = −1/2.

Unfortunately, Eq. (3.2) belongs to the class of equations
with two regular and one irregular singular (at r = ∞) points,
and exact solutions of this equation cannot be expressed in
closed form in terms of known special functions.

Since we are interested in solving Eqs. (2.5) and (2.6) with
the Coulomb potential in the regime Zα → 0 (α = e2/h̄vF ),
we can find solutions using perturbation theory. For Zα = 0,
solutions of Eqs. (2.5) and (2.6) are the well known Landau
states degenerate in the total angular momentum j . For the
level E(0) = �, their normalized wave functions (2.4) have
the form (at the K− point)


k(r,φ) = (−1)k

l
√

2πk!
e−r2/4l2

(
0(

r2

2l2

)k/2
e−ikφ

)
, (3.6)

where k = −(j + 1/2) = 0,1,2, . . . . The Coulomb potential
removes degeneracy in j . Energy corrections of perturbed
states of the Landau level E(0) = � are found from the secular
equation

|E(1) − Vk1k2 | = 0 .

Since Vk1k2 is a diagonal matrix, we easily obtain

E
(1)
k = Vkk = − Ze2

k!2kl

∫ ∞

0
dρ ρ2k e−ρ2/2

= −Ze2�
(
k + 1

2

)
l
√

2�(k + 1)
. (3.7)

Thus at large k, the energy levels accumulate near E = �:

Ek � � − Ze2

l
√

2k
. (3.8)

As in the case of the potential well interaction considered in
the previous section, the largest correction by modulus E

(1)
0 =

−Zαh̄vF

√
π/l

√
2 occurs for the state with j = −1/2 (k = 0).

The critical charge is determined by the condition E = E(0) +
E

(1)
0 = −� when the level E crosses the level of the filled

states. This gives

Zcα = 2
√

2�l√
πh̄vF

. (3.9)

As in the case of the potential well in a magnetic field, the
critical charge (3.9) tends to zero as � → 0. This means that a
magnetic field indeed dramatically affects the Coulomb center
problem in graphene, making any charge in gapless theory
supercritical.

Equation (3.9) gives the critical Coulomb coupling in the
regime Zα → 0 in the first order of perturbation theory. For
arbitrary values of Zα, we calculated the dependence of the
critical coupling on the gap numerically. The corresponding
results are presented in Fig. 4, where, for the parameter
regularizing the Coulomb potential, we took R = 10−3l.
The dashed red line in Fig. 4 gives the critical Coulomb
coupling Zcα = 1/2 + π2/ log2(c�R/h̄vF ) in the absence of
a magnetic field (see Fig. 1 in Ref. 8). Thus, at weak magnetic
field (l → ∞), the critical coupling tends to 1/2 while
Zcα → 0 for l� → 0 in the gapless or strong magnetic-field
regime.
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FIG. 4. (Color online) The critical Coulomb coupling Zcα as a
function of gap at zero (dashed red line) and nonzero magnetic field
(dotted black line) for the state with j = −1/2. The straight black
line corresponds to the critical Coulomb coupling in the first order of
perturbation theory given by Eq. (3.9).

IV. THE LOCAL DENSITY OF STATES

It is interesting to see how a magnetic field and the
Coulomb center affect the LDOS of quasiparticles that can be
directly measured in scanning tunneling microscope (STM)
experiments. The crucial difference in the case of gapless
quasiparticles from that of gapped ones in a magnetic field
is that the critical charge is zero for gapless quasiparticles,
therefore energies of all previously degenerate states of the
lowest Landau level become negative.

The LDOS at the distance r from impurity is given by

ρ(E; r) = − 1

π
tr ImG(r,r; E + iη), η → 0, (4.1)

where the trace includes the summation over the valley,
sublattice, and spin degrees of freedom. The retarded Green’s
function G(r,r′; E + iη) in a constant magnetic field can be
written in the form

G(r,r′; E) = ei�(r,r′)G̃(r,r′; E), (4.2)

�(r,r′) = e

h̄c

∫ r

r′
Aext

i (z)dzi, (4.3)

where we separated the gauge-dependent (Schwinger) phase
�(r,r′) from a gauge invariant part of the Green’s function
G̃(r,r′; E). The last one satisfies the following Lippmann-
Schwinger equation:

G̃(r,r′; E) = G̃0(r − r′; E) +
∫

dr′′G̃0(r − r′′; E)

×V (r′′)G̃(r′′,r′; E)ei[�(r,r′′)+�(r′′,r′)+�(r′,r)].

(4.4)

[Note that the Green function G̃(r,r′; E) is not translation-
invariant in the presence of an impurity, unlike the noninter-
acting function G̃0(r − r′; E).] For weak interaction, we can
calculate the LDOS in the first order in the perturbation theory,

ρ(E; r) = ρ0(E; r) + δρ(E; r), (4.5)

where ρ0(E; r) is the LDOS for free quasiparticles in a
magnetic field, and

δρ(E; r) = − 1

π
Im

∫
dr′tr [G̃0(r − r′)V (r′)G̃0(r′ − r)].

(4.6)

First we consider the case of gapless quasiparticles. In
this case, ρ0(E; r) and δρ(E; r) are calculated for gapless
quasiparticles in the Appendix. We obtained there that the
LDOS decreases at large distances (r � r0,l) as

δρ(r,E) � V0r
2
0

2π (h̄vF )2
Im[λ�2(−λ)]e−r2/2l2

(
r2

2l2

)2λ

(4.7)

for the potential well, while for the Coulomb center we
obtained

δρ(r,r,E) = Ze2

κ

1

2π (h̄vF )2

[
B0(λ)

r
+ l2B1(λ)

2r3

]
(4.8)

with the functions Bi(λ) given by Eqs. (A14) and (A15), and
λ is defined after Eq. (A4). For the induced charge density,

nind(r) = −e

∫ 0

−∞
dEδρ(r,E), (4.9)

using Eqs. (4.7) and (4.8), we find that it is positive at large
distances and decreases exponentially for the potential well
and, due to

∫ 0
−∞ dEB0(λ) = 0, as 1/r3 for the Coulomb

interaction,

nind(r) � a
Ze3l

κh̄vF

1

r3
, a = −3ζ (−1/2)

2π
√

2
≈ 0.07. (4.10)

We remind the reader that in the absence of a magnetic field, the
polarization charge diminishes as 1/r2 both in the supercritical
Zα/κ > 1/2 Coulomb center1 and the potential well V0 >

V0cr = h̄vF j0,1/r0 (Ref. 25) interactions.
The situation is quite different in the case of gapped

quasiparticles. Here we will consider the polarization charge
density for the most interesting case of the Coulomb center
in a homogeneous magnetic field. The polarization charge
density (4.9) can be rewritten in the more familiar form

nind(r) = −e
∑

E�−�

[|
E(r)|2 − |ψE(r)|2] , (4.11)

where ψE and 
E are the Landau wave functions and the
wave functions of the Coulomb center problem in a magnetic
field, respectively. Since we consider the case in which Zα is
small, the corrections to the wave functions of negative energy
states of the deep Landau levels defined by Eq. (2.23) can be
ignored. We will consider only the corrections to the lowest
Landau level states given by Eq. (2.22).

In the first order of perturbation theory, wave functions
of the Landau level E = −� are sought as a superposition
of all degenerate states with unknown coefficients 
E =∑

j�1/2 cjψ
j

−�, where ψ
j

−� are wave functions of the Landau
level with E = −� and total momentum j . The unknown cj

are determined by the equation∑
j2�−1/2

(Vj1j2 − E(1)δj1j2 ) cj2 = 0 . (4.12)
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Since Vj1j2 = Vj1j1δj1j2 is a diagonal matrix, the secular
equation |Vj1j2 − E(1)| = 0 is trivially solved and E

(1)
j = Vjj .

Then Eq. (4.12) implies that the corresponding unknown
coefficients cj1 are equal to cj1 = 1 for j1 = j and zero for
all other j1. Notice that cj = 1 because the wave functions
ψ

j

−� are normalized. This means that the wave functions of
perturbed states of the Landau level E = −� do not change in
the first order of perturbation theory. Consequently, according
to Eq. (4.11), they do not contribute to the polarization charge
density. Clearly, the polarization charge appears only when the
first perturbed state of the Landau level E = � with j = −1/2
crosses the threshold of filled states of the lowest Landau
level E = −�. Using Eqs. (3.6) and (4.11), and the fact that
perturbed wave functions of the E = � Landau level states do
not change in the first order in the Coulomb potential, similarly
to the case of perturbed wave functions of the E = −� Landau
level considered above, we conclude that for the critical charge
Zcα given by Eq. (3.9), the polarization charge density equals

nind(r) = − e

2π l2
e−r2/2l2

. (4.13)

Thus, the polarization charge density is concentrated near the
impurity where it is negative and quickly decreases at large
distances.

V. CONCLUSION

In this paper, we showed that in an external magnetic field,
the value of the critical coupling for the onset of instability of a
system of planar Dirac gapless quasiparticles interacting with
a charged center (charged impurity) reduces to zero. This result
serves as a quantum-mechanical single-particle counterpart of
the magnetic catalysis phenomenon in graphene. The cases
of a radially symmetric potential well and a Coulomb center
were analytically considered. The local density of states and
induced charge density were calculated in the first order of
perturbation theory for gapless quasiparticles.

The crucial ingredient for instability is the existence of a
zero-energy level for gapless Dirac fermions in a magnetic field
that is infinitely degenerate. In this case, any weak attraction
leads to the appearance of empty states in the Dirac sea of
negative energy states and to the instability of a system.

The qualitative difference in the phenomenon of instability
between gapped and gapless quasiparticles should be stressed.
In the case of gapped quasiparticles, there is a finite critical
value for the strength of interaction when the lowest unfilled
level crosses the first filled one forming a hole in the sea of
filled states. As the coupling grows, more and more levels cross
that level. Clearly, the system tries to rearrange itself, filling
in empty states whose presence is a signal of instability. The
important difference in the case of gapless quasiparticles from
that of gapped ones, besides the critical coupling being zero, is
that an infinite number of states of the previously degenerate
lowest Landau level become vacant.

Thus, the presence of an external magnetic field changes
dramatically the problem of atomic collapse in graphene in a
strong Coulomb field.1 Clearly the problem becomes a many-
body one and requires field-theoretical methods to find a true
ground state. One should expect that the gap generation for

initially gapless quasiparticles will take place already in the
weak-coupling regime in the presence of a magnetic field.16
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APPENDIX

The Green’s function of free quasiparticles in a magnetic
field is well known (see, for example, Refs. 14 and 16), and
in the configuration space it has the form of a series over the
Landau levels (we consider the zero gap case),

G̃0(r; E) = 1

2πl2
e
− r2

4l2

∞∑
n=0

1

(E + iη)2 − M2
n

×
{
E

[
P−Ln

(
r2

2l2

)
+ P+Ln−1

(
r2

2l2

)]

+ ih̄vF

τr
l2

L1
n−1

(
r2

2l2

)}
, (A1)

where Mn = (h̄vF / l)
√

2n are the energies of the Landau
levels, P± = (1 ± τ3)/2 being the projectors, Lα

n(z) the gener-
alized Laguerre polynomials [by definition Ln(z) ≡ L0

n(z) and
Lα

−1(z) ≡ 0], and the Pauli matrices τ1,2 act in the sublattice
space. The sum over the Landau levels can be explicitly
performed by means of the formula

∞∑
n=0

Lα
n(x)

n + b
= �(b)
(b; 1 + α; x) (A2)

[see Eq. (6.12.3) in the Ref. 23], leading to a closed expression
for the free Green’s function (see Refs. 26 and 27),

G̃0(r; E) = − e
− r2

4l2

4πh̄2v2
F

{
E

[
P−�(−λ)


(
−λ; 1;

r2

2l2

)

+ P+�(1 − λ)


(
1 − λ; 1;

r2

2l2

)]

+ ih̄vF

τr
l2

�(1 − λ)


(
1 − λ; 2;

r2

2l2

)}
. (A3)

Here 
(a; c; x) is the confluent hypergeometric function,
which is related to the Whittaker function,


(a; c; x) = e
x
2 x− 1

2 −μWκ,μ(x), κ = c

2
− a, μ = c − 1

2
,

(A4)

�(x) is the Euler gamma function, and λ = (E +
iη)2l2/(2h̄2v2

F ).
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The LDOS of free quasiparticles in a magnetic field does
not depend on r and is given by

ρ0(E) = − 1

π
lim
r→0

Im tr[G̃0(r; E + iη)] = 1

π2h̄2v2
F

× lim
r→0

Im

{
(E + iη)

[
�(−λ)


(
−λ; 1;

r2

2l2

)

+ �(1 − λ)


(
1 − λ; 1;

r2

2l2

)]}
. (A5)

The hypergeometric function 
(a; c; x) at small x behaves as


(a; 1; x) � − 1

�(a)
[ln x + ψ(a) + 2γ ] + O(x ln x),


(a; 2; x) � 1

�(a)x
+ 1

�(a − 1)
[ln x + ψ(a)

+ 2γ − 1] + O(x ln x), (A6)

where ψ(z) is the digamma function. Therefore,

ρ0(E) = − 1

(πh̄vF )2
Im{(E + iδ) [ψ(−λ) + ψ(1 − λ)]},

(A7)

and the LDOS of free quasiparticles in a magnetic field finally
is found to be

ρ0(E) = 2

πl2

[
δ(E) +

∞∑
n=1

[δ(E − Mn) + δ(E + Mn)]

]

(A8)

[compare with Eq. (4.2) in Ref. 28].
The first order correction to the LDOS due to the interaction

is given by Eq. (4.6). For the radial well to find the asymptotic
at distances r � r0, where r0 is a range of the potential, we
can set r ′ = 0 in the arguments of the free Green’s functions
in Eq. (4.6) and get the following behavior:

δρ(r,r; E) = V0r
2
0 Im tr[G̃0(r; E)G̃0(−r; E)]

� 2V0r
2
0

(πh̄vF l)2
Im[λψ (−λ)] ln

r2

2l2
, (A9)

V0r
2
0

2(πh̄vF l)2
Im[λ�2(−λ)]e−r2/2l2

(
r2

2l2

)2|λ|
, (A10)

in the regions l � r � r0 and r � max(l,r0), respectively. As
is seen, the correction to the free LDOS is an odd function of
energy.

To find the first-order correction due to the Coulomb
potential, we first calculate the correction to the Green’s
function, which is given by

δG(r,r; E) = −Ze2

κ

∫
dr′G̃0(r − r′; E)

1

|r′|G̃0(r′ − r; E)

= −Ze2

κ

∫
dr′G̃0(r′; E)

1

|r′ − r|G̃0(−r′; E).

(A11)

Taking trace over spin and Dirac indices, performing integra-
tion over the angle by means of the formula∫ 2π

0

dθ√
r2 + r ′2 − 2rr ′ cos θ

= 4

r + r ′ K

(√
4rr ′

(r + r ′)2

)
,

(A12)

where K(k) is the elliptic integral of the first kind [K(0) =
π/2], and calculating the imaginary part, we obtain

δρ(r,r,E) = 2Ze2

κ

sgn(E)

(πh̄vF l)2

∫ ∞

0

dr ′r ′

r + r ′ e
−xK

(√
4rr ′

(r + r ′)2

)

×
{ ∞∑

n=0

{
[λ([Ln(x)]2 + [Ln−1(x)]2)

+ 2x[L1
n−1(x)]2

}
δ′(λ − n)

−
∞∑

n,m=0,n	=m

{
λ [Ln(x)Lm(x) + Ln−1(x)Lm−1(x)]

+ 2xL1
n−1(x)L1

m−1(x)
}δ(λ − n) − δ(λ − m)

n − m

}
,

(A13)

where x = r ′2/2l2. The correction to the LDOS at large
distances r � l is given by Eq. (4.8), where the energy
dependence is given by the functions

B0(λ) = sgn(E)

[
λδ′(λ) + 2

∞∑
n=1

(λ + n)δ′(λ − n)

]
, (A14)

B1(λ) = sgn(E)

[
λδ′(λ) + 4

∞∑
n=1

n(λ + n)δ′(λ − n)

+ 2δ(λ − 1) + 2
∞∑

n=1

[λ(2n + 1) + 2n(n + 1)]

× [δ(λ − n − 1) − δ(λ − n)]

]
. (A15)

To calculate the integrals of the Laguerre polynomials, we
used the following generating function (see Appendix A in
Ref. 26):

Iα
nm(y) =

∫ ∞

0
dt e−t tαJ0(2

√
yt)Lα

n(t)Lα
m(t)

= (−1)n+m (m + α)!

m!
e−yLm−n

n (y)Ln−m
m+α(y). (A16)

Expanding the left and right sides in y, we find the standard
orthogonality relation,∫ ∞

0
dt e−t tαLα

n(t)Lα
m(t) = �(α + n + 1)

n!
δnm (A17)

and the integrals∫ ∞

0
dt e−t tLn(t)Lm(t)

= (−1)n+m[(2n + 1)δnm + (m + 1)δn,m+1

+(n + 1)δm,n+1], (A18)
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∫ ∞

0
dt e−t t2L1

n(t)L1
m(t)

= (−1)n+m(m + 1)(n + 1)[2δnm + δn,m+1 + δm,n+1].

(A19)

For the integrals of the functions Bi(λ), we get∫ 0
−∞ dEB0(λ) = 0, while∫ 0

−∞
dEB1(λ) = h̄vF

l
6
√

2ζ (−1/2), (A20)

where ζ (z) is the Riemann zeta function.30
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