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We study the Kondo lattice model using a class of canonical transformations that allow us to faithfully represent
the model entirely in terms of fermions without constraints. The transformations generate interacting theories that
we study using mean field theory. Of particular interest is a manifestly O(3)-symmetric representation in terms
of Majorana fermions at half-filling on bipartite lattices. This representation suggests a natural O(3)-symmetric
trial state that is investigated and characterized as a gapped spin liquid.
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I. INTRODUCTION

One of the standard models in strongly correlated con-
densed matter physics is the Kondo lattice model, for reviews,
see, e.g., Refs. 1–4. The basic physics that this model aims
to describe is the simultaneous existence of and interaction
between conduction c-electrons and localized f -spins. It is
challenging to describe both subsystems on equal footing be-
cause the algebras of the creation and annihilation operators of
the c-electrons and the f -spin operators are quite different. The
aim of this work is to introduce and study faithful fermionic
representations of this model. There exist many different ap-
proximation schemes that have been used to study this model,
for example, Gutzwiller projection,5,6 slave particle methods,7

large-N approximations,8,9 canonical transformations,10 mean
field theories,11,12 and dynamical mean field theory.13 For
discussions of these methods and more references, we refer
to the reviews just cited. Numerous numerical studies have
also been performed. These are particularly successful in
one dimension (1D),2 but the two-dimensional (2D) Kondo
lattices have also been studied using quantum Monte Carlo at
half-filling where the sign problem is absent.14

All approximate treatments have their shortcomings. The
validity of large-N approximations are questionable when one
considers the physical case of N = 2, for example. Slave-
particle representations are popular because they keep the spin
and charge symmetries clearly visible. One drawback of this
approach is that the exact constraint that should be imposed is
typically only imposed on average and not exactly. This can
be improved at the expense of introducing gauge fields.15 In
this work, we use exact canonical transformations and hence
this drawback will not affect us.

Another physically appealing approximation scheme in-
volves a simple mean field decoupling, see, e.g., Ref. 16. This
is found to be in qualitative agreement when compared to
more involved numerical methods.17 One problem with this
approximation is that it does not reproduce the correct size
of the Hilbert space of the Kondo lattice. Because the mean
field Hamiltonian has two bands for each spin component, the
size of the Hilbert space is 24 per unit cell. This is appropriate
for the periodic Anderson model when the on-site interaction
strength U is small. In the Kondo lattice, there are 23 states
per unit cell, however. This problem will not affect us in this
work since we will construct faithful representations using
three fermions per unit cell.

As we will see there is considerable freedom in the allowed
canonical transformations. Of particular interest is a new
manifestly O(3)-symmetric representation on bipartite lattices
at half-filling. This representation is most easily described in
terms of Majorana fermions. One way to motivate it is to start
from the known representation of a spin- 1

2 in terms of three
species of Majorana fermions: Si

f = −iεijkμjμk/2. This rep-
resentation has a long history that goes back to the fifties, see,
e.g., Ref. 18. Similar representations have become increasingly
popular in recent years after the introduction of the Kitaev
model.19 This representation was also heavily used in earlier
works focusing on non-Fermi liquid behavior in modified
Kondo impurity problems,20,21 as well as lattice systems,20

and odd-frequency pairing in Kondo lattice models.22 The
fact that this representation can be used to study Heisenberg
models and generate spin liquid states has also been known
for some time.18,23,24 A variant of such a spin liquid state on
the triangular lattice was suggested very recently.25

It is also well appreciated that the representation of a spin- 1
2

in terms of three Majorana fermions is redundant. In fact,
the operator γ0 = 2iμ1μ2μ3 commutes with the spin operator
and can be viewed as an independent Majorana fermion. The
O(3) representation can be obtained by writing the c-electron
creation and annihilation operators in terms of three other
independent Majorana fermions and this composite Majorana
fermion γ0. The Heisenberg exchange interaction between
the f -spin and the spin of the c-electrons then takes on a
simple form with manifest O(3) symmetry. To the best of our
knowledge, this procedure has not been used previously to
describe the standard Kondo lattice model.

This construction can be straightforwardly generalized
to the Kondo lattice. But the local O(3) symmetry is a
result of the underlying SO(4) symmetry of the Hubbard
model at half-filling on bipartite lattices,26 and its generators
are combinations of spin and pseudospin generators (see
Sec. III). It is therefore only possible to generalize the local
O(3) symmetry to a globally O(3)-symmetric Hamiltonian on
bipartite lattices. On bipartite lattices, it is then easy to write
down a simple translationally invariant O(3)-symmetric mean
field state. This state is found to be favorable when the kinetic
term is small or moderately large compared to the exchange
interaction. The resulting state is a gapped spin liquid with
nonzero triplet pairing amplitude.

The paper is organized as follows: For completeness, we
end this introduction by writing down the standard form of
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the Kondo lattice Hamiltonian explicitly. In Sec. II, we discuss
canonical transformations for the one-site Anderson model and
derive different representations for this model. In particular,
we consider the limit of this model that reproduces the
one-site Kondo impurity problem. These local transformations
can easily be generalized to the lattice since they involve
canonical fermions. In Sec. III, we provide an elementary
derivation of the O(3)-symmetric representation of Sec. II
using Majorana fermions. We also consider the hopping of
c-electrons. On bipartite lattices, the hopping term can be
chosen in a particularly symmetric form with a manifest
global O(3) symmetry. The resulting Hamiltonian is written
down explicitly in Eq. (21) of Sec. IV where we study this
interacting fermion model using variational mean field theory
at half-filling. The variational solutions are worked out in 1D
for simplicity. Of particular interest is an O(3)-symmetric
mean field state that is found to be favorable for some
parameter values. This spin liquid state is characterized further
in Sec. V where it is shown to have rotationally invariant
spin-spin correlations as well as a nonzero triplet pairing
amplitude. Our conclusions and an outlook are to be found
in Sec. VI, and some mathematical details in the Appendix.

A. The Kondo lattice model

In this paper, we study the Kondo lattice model that can be
described by the Hamiltonian2

HKLM = −t
∑

σ

∑
〈i,j〉

c†c,σ (r i)cc,σ (rj ) + h.c.

−μ
∑

i

[nc(r i) − 1] + J
∑

i

Sc(r i) · Sf (r i). (1)

The first line describes the hopping of c-electrons on the lattice,
and σ =↑ , ↓ is a spin label. For simplicity, we consider only
hopping between nearest-neighbor lattice sites r i and rj , as
indicated by the notation

∑
〈i,j〉. The first term on the second

line can change the average number of c-electrons away from
half-filling by introducing a nonzero chemical potential μ.
nc(r i) = ∑

σ c
†
c,σ (r i)cc,σ (r i) is the number operator of the

c-electrons. The second term on the second line describes
the interaction between the spins of the c-electrons and the
localized f -electron spins. On each site of the lattice, Sf (r i) is
a local spin- 1

2 object (we use units such that h̄ = 1 throughout
the paper) that satisfies the usual spin- 1

2 algebra [Si,Sj ] =
iεijkSk and S2 = 3/4.27 The spin operator of the c-electrons
can be represented as Sc(r i) = 1

2

∑
σ,σ ′ c

†
c,σ (r i)τ σ,σ ′cc,σ ′ (r i),

with τ a (a = 1, . . . ,3), the standard Pauli matrices.27

II. CANONICAL TRANSFORMATIONS FOR THE
ONE-SITE ANDERSON MODEL

The spin-spin interaction term in Eq. (1) can be derived from
the periodic Anderson model in the limit that the occupation
of the f -electrons is not fluctuating. For this derivation, it is
sufficient to consider a one-site Anderson model on each site of
the lattice. This is the model that we consider in this section and
we extend the formalism in Ref. 10 to allow for more general
canonical transformations. Because we are dealing with only
one site, we will suppress the site index in this section.

A. One-site Anderson model

We consider first the symmetric one-site Anderson Hamil-
tonian at half-filling

H1A = −W
∑

σ=↓,↑
(c†c,σ cf,σ + c

†
f,σ cc,σ ) + U (nf − 1)2, (2)

where nf = ∑
σ nf,σ = ∑

σ c
†
f,σ cf,σ . The Hilbert space of this

model consists of 16 states that are enumerated in Eq. (A1).
Following Ref. 10, we then introduce another basis using
electron e†σ and hole h†

σ creation operators, the corresponding
states are enumerated in Eq. (A7).

We define the states in the new basis according to the
following rules: (1) The singlet ground state |0〉s of Eq. (2)
is equal to the vacuum state |1〉eh that has no quasiparticles
(i.e., no electrons or holes). (2) The lowest energy eigenstates
with the appropriate charge and spin (measured with respect
to the singlet ground state) are mapped to the states with one
quasiparticle, i.e., h

†
↓|1〉eh, e

†
↓|1〉eh, h

†
↑|1〉eh, and e

†
↑|1〉eh. (3)

The assignment of the other states is fixed by the charge
and spin quantum numbers, except for (4) the two remaining
singlets that can be assigned by considering the parity transfor-
mation that exchanges the f - and c-electrons. This uniquely
defines the quasiparticle operators up to a gauge choice. We
fix this arbitrariness by demanding that the quasiparticles go
smoothly to the bonding and antibonding eigenstates in the
noninteracting limit U = 0. The transformation matrix that
implements this transformation is given explicitly in Eq. (A8).

This transformation is similar to the one in Ref. 10,
except that it provides an adiabatic connection between the
low-energy states in the noninteracting and the interacting
systems. Since the quasiparticle excitations also have the
same spin and charge quantum numbers as the noninteracting
particles, this transformation is an explicit demonstration of
the Landau quasiparticle concept.

B. Kondo limit U → ∞, fermionic representations

The Kondo limit can be obtained by taking U,W → ∞
while keeping J = 4W 2/U finite. In this limit, the Hamilto-
nian (2) becomes

H1A → HJ + U (nf − 1)2 ≡ J Sc · Sf + U (nf − 1)2. (3)

The last term is effectively a constraint that enforces that the
f -level is singly occupied. In the Kondo limit, it is therefore
natural to describe the remaining low-energy spin degree of
freedom of the f -electrons in terms of a localized spin- 1

2
operator Sf . Doing this on every site of the lattice, we are
left with the spin-spin interaction term in Eq. (1).

Alternatively, this limit can be studied in terms of the
electron and hole operators of Sec. II A.10 This representation
has the advantage of having nice transformation properties of
charge and spin. A disadvantage is that states with more than
one quasiparticle present (outside the triplet sector) at a site
will have weight in the high-energy sector. This weight can
nevertheless be kept small in the Kondo lattice by being close
to the atomic limit t 
 J .10

We will instead use a less symmetric representation of
charge and spin with the basis defined in Eq. (A11). The
advantage of this is that it will allow us to entirely get rid
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of the high-energy sector by taking one of the operators that
span the local Hilbert space (i.e., c†4) to encode the high-energy
excitations. This operator is then straightforwardly eliminated
from the periodic Anderson model to generate a low-energy
theory that is the Kondo lattice model.

There is considerable freedom in how to assign the eight
states in the low-energy sector to the low-energy states in
the electron-hole basis. In this work, we will only consider
transformations such that the operators c

†
a (a = 1, . . . ,3) are

odd with respect to fermion parity. This has the advantage
that these operators will be fermionic also in between sites in
the Kondo lattice. This implies that the low-energy theory is
represented by a theory of interacting fermions on a lattice that
can be studied with standard many-body methods. The main
disadvantage of this representation is that it is not possible
to do this without mixing the spin and charge content of the
theory. It is also possible to take one or two of the c

†
as to

be hard-core bosons, but we will not consider these types of
transformations in this work.

With this constraint on the allowed transformations, we
have that (1) The vacuum with energy Es = −3J/4 is the
ground state singlet |1〉K = |0〉s . (2) The charged states with
one electron or one hole and energy Ec = 0 maps to the
states with one quasiparticle (|2〉K , |3〉K , and |4〉K ) or three
quasiparticles (|5〉K ). (3) The three triplets with energy Et =
J/4 maps to the three states with two quasiparticles (|6〉K ,
|7〉K , and |8〉K ). The Hamiltonian (3) in this basis is therefore
always of the form

HJ = J

4
[1 − (n1 + n2 + n3 − 2)2], (4)

independently of how the states are actually assigned to the
three fermions. This Hamiltonian is clearly invariant under a
U(3) rotation in the vector space spanned by the three operators
(c†1,c

†
2,c

†
3), but we will restrict ourselves to the real subgroup

O(3) in this paper.

C. At half-filling

At half-filling, it is desirable to use a representation
that is symmetric between electrons and holes, and also
as rotationally symmetric with respect to spin as possible.
We have found that the following procedure gives quite
symmetric representations: (1) We would like the state with
three quasiparticles to be a state with zero charge and spin
on average. A possible choice is |5〉K = s5(e†↓ − h

†
↑)|1〉eh/

√
2,

with s5 = ±1. This couples the charge and spin content of the
excitations, but this is unavoidable in this approach. Note that
we have arbitrarily picked a direction of the spin of the electron
part of the state. (2) The other three odd fermion parity states
can be assigned by demanding that the operators c

†
1 and c

†
3

are related by time-reversal symmetry, we choose the conven-
tion T c

†
1T −1 = −c

†
3 and T c

†
3T −1 = c

†
1. A possible assign-

ment of the states is therefore |2〉K = −(e†↑ − h
†
↓)|1〉eh/

√
2,

|3〉K = (e†↑ + h
†
↓)|1〉eh/

√
2, and |4〉K = (e†↓ + h

†
↑)|1〉eh/

√
2.

(3) Because c
†
1 and c

†
3 are related by time-reversal sym-

metry T |7〉K = |7〉K . This implies that |7〉K = −s7(|6〉eh +
|8〉eh)/

√
2, with s7 = ±1, since this is the only time-reversal

invariant triplet (see the discussion in Subsec. B of the
Appendix). (4) The assignment of the remaining two triplets
can be parametrized by an angle φt and a sign s6 = ±1 ac-
cording to s6|6〉K = cos(φt )(|6〉eh − |8〉eh)/

√
2 − sin(φt )|7〉eh

and |8〉K = sin(φt )(|6〉eh − |8〉eh)/
√

2 + cos(φt )|7〉eh.
The generic transformation is therefore parametrized by

the numbers (s5 s6 s7,φt ). Working out the transformation and
expanding the original c-electron operators in terms of the
new fermions, we find that they are typically of fifth order.
This expansion is most easily performed with the aid of a
computer.10 Only the combinations (+ + +,0), (− + −,0),
and (− − +,φt ) terminate at third order. The (+ + +,0)
transformation generates the most symmetric representation:

c
†
c,↑ = c1 + c

†
1

2
+ c2 − c

†
2

2
,

c
†
c,↓ = −c3 + c

†
3

2
+ (c1 − c

†
1)(c2 + c

†
2)(c3 − c

†
3)

2
. (5)

This representation is most easily formulated in terms of
Majorana fermions. An alternative elementary derivation
of this representation is provided in Sec. III. The other
transformations are equivalent up to a rotation, as an example,
we give the expression for the representation generated by
(− − +,π ):

c
†
c,↑ = (c1 + c

†
1)(1 − 2n2)

2
+ (c2 − c

†
2)(1 − 2n1)

2
,

c
†
c,↓ = −c3 + c

†
3

2
+ (c1 + c

†
1)(c2 − c

†
2)(c3 − c

†
3)

2
. (6)

D. Away from half-filling

Away from half-filling, there is no reason to try to enforce a
symmetry between electron and hole excitations. Considering
the case of hole doping, the hole excitations will have lower
energy than the electron ones. It is therefore natural to choose
two of the low-energy creation operators (c†1 and c

†
3 say) to

create the two hole states. With this choice, the chemical
potential term becomes (μ < 0 for hole doping)

Hμ = −μ(nc − 1) = −μ(n2 − n1 − n3 + 2n1n3). (7)

To be concrete, we define |2〉K = h
†
↓|0〉s and |4〉K = h

†
↑|0〉s .

It is also convenient to let the creation operators c
†
1 and c

†
3

to be related to each other by time-reversal symmetry as in
the case above. This means that the states |6〉K , |7〉K , and
|8〉K can be parametrized exactly as in Sec. II C. The elec-
tron states are defined via |3〉K = [

cos(φe)e†↑ + sin(φe)e†↓
]|0〉s

and s5|5〉K = [− sin(φe)e†↑ + cos(φe)e†↓
]|0〉s . Expanding the

c-electron operators in terms of the new fermions, only two
classes of transformations terminate at third order. In both
cases, φe = φt and the sign structure is (+ + +) or (− + −).
The representations are (φ = φt and s = s7)

c
†
c,↑ = c1(1 − n3) + sc

†
1n3√

2

− c
†
2√
2

[cos(φ) + s sin(φ)(c1 − sc
†
1)(c3 − sc

†
3)],
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c
†
c,↓ = −c3(1 − n1) + sc

†
3n1√

2

− c
†
2√
2

[sin(φ) − s cos(φ)(c1 − sc
†
1)(c3 − sc

†
3)]. (8)

We leave the investigation of the representations in Eqs. (6)
and (8) for a later study and will in the following focus on the
most symmetric representation of Eq. (5).

III. THE O(3)-SYMMETRIC REPRESENTATION AT
HALF-FILLING

In this section, we will consider the representation in Eq. (5)
from another point of view. As discussed in Sec. I, it is well-
known that it is possible to represent a spin- 1

2 operator in
terms of three species of Majorana fermions μa , a = 1, . . . ,3.
These Majorana fermions are real μ

†
a = μa and independent

{μa,μb} = δab. It is then straightforward to check that the
operators

S1
f = −iμ2μ3, S2

f = −iμ3μ1, S3
f = −iμ1μ2, (9)

satisfy the angular momentum algebra [Si
f ,S

j

f ] = iεijkSk
f for

a spin- 1
2 since S2

f = 3/4. Let us now define

γ0 ≡ 2iμ1μ2μ3. (10)

This is a proper Majorana fermion (with γ 2
0 = 1/2) that

commutes with the spin operator of the f -electrons: [γ0,Sf ] =
0. Therefore, we can represent another set of Dirac fermion
operators (the c-electrons) in terms of γ0 and three other
Majorana fermions γa , a = 1, . . . ,3, as

c↑ = γ1 − iγ2√
2

, c↓ = −γ3 − iγ0√
2

. (11)

This representation can be found in, e.g., Ref. 22, but the
novelty here is to use the composite operator in Eq. (10) for
γ0, instead of an independent Majorana fermion. Both choices
satisfy the correct operator algebra, but if one keeps γ0 as
an independent fermion, one will somehow have to deal with
the fact that the Hilbert space has been enlarged, see, e.g., the
discussions in Refs. 24 and 25. The model with an independent
γ0 was studied in the context of odd-frequency pairing at the
mean field level in Ref. 22. The effect of the enlarged Hilbert
space then shows up as an additional term in the mean field
Hamiltonian, i.e., H0 in their Eq. (3.3). The remaining part
of their mean field Hamiltonian is similar to ours, the main
difference being that they do not generate nonlocal hopping
terms involving the μs.

The c-electron spin operators are

S1
c = −i(γ2γ3 + γ1γ0)/2,

S2
c = −i(γ3γ1 + γ2γ0)/2, (12)

S3
c = −i(γ1γ2 + γ3γ0)/2.

In terms of the parity operators, pa = 2iγaμa (a = 1, . . . ,3),
which each has eigenvalues ±1, the exchange term HJ =

J Sc · Sf can be worked out to be

HJ = J

8
(p1 + p2 + p3) − J

8
(p1p2 + p2p3 + p3p1)

= J

8
(1 − p1p2p3)(p1 + p2 + p3). (13)

With the identification pa = 2na − 1, we see that Eqs. (4) and
(13) are equivalent. Note that the spin-spin exchange term has
become partly quadratic in the fermions in this representation.
This is not the case if one treats γ0 as an independent Majorana
fermion.

A. Pseudospin symmetry at half-filling

At half-filling, the bipartite Hubbard model, and hence the
bipartite symmetric Anderson model possess another symme-
try. This is called pseudospin symmetry and is implemented by
exchanging the roles of electrons and holes in one of the spin
components.2,26 We can implement this by taking γ0 → −γ0.
The generators of the pseudospin algebra are then

I 1
c = −i(γ2γ3 − γ1γ0)/2,

I 2
c = −i(γ3γ1 − γ2γ0)/2,

I 3
c = −i(γ1γ2 − γ3γ0)/2. (14)

It is straightforward to check that [I i,I j ] = iεijkI k and
[I i,Sj ] = 0. If we enforce unit occupancy for the f -electrons,
we see that If = 0 so that the pseudospin algebra of the f -
electrons becomes trivial. Combining the spin and pseudospin
symmetry, the system has a global SO(4) symmetry,26 which
is very transparent in the Majorana representation.28

Going away from half-filling, only the generator I 3
c com-

mutes with the Hamiltonian and we recognize I 3
c as the

generator of the U(1) gauge symmetry related to charge
conservation. This can be seen by including a chemical
potential term for the c-electrons in the Hamiltonian:

Hμ = −μ(nc − 1) = i(γ1γ2 − γ3γ0)μ = −2μI 3
c . (15)

B. Arbitrary Kondo lattice

Let us now consider another site with the same representa-
tion:

c̃↑ = γ̃1 − iγ̃2√
2

, c̃↓ = −γ̃3 − iγ̃0√
2

. (16)

The hopping term between neighboring sites then becomes

Hn.n. = −t
∑

σ=↓,↑
(c†σ c̃σ + h.c.)

= −it(γ3γ̃0 + γ̃3γ0 + γ̃2γ1 + γ2γ̃1). (17)

This representation has the advantage that it generates at most
quartic fermion terms in the Hamiltonian. This implies that the
interaction terms can be decoupled using standard Hubbard-
Stratonovich transformations.
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C. Bipartite Kondo lattice at half-filling–An O(3)-symmetric
representation

On a bipartite lattice, it is useful to employ different
representations on the two sublattices. We introduce an extra
phase of π/2 on one sublattice such that

c̃↑ = i
( γ̃1 − iγ̃2√

2

)
, c̃↓ = i

(−γ̃3 − iγ̃0√
2

)
. (18)

Because this just involves a gauge transformation, it leads to
the same on-site exchange term. Using this, the hopping term
between two neighboring sites becomes

Hn.n. = −t
∑

σ=↓,↑
(c†σ c̃σ + h.c.) = −t

3∑
a=0

iγaγ̃a. (19)

In the representation in terms of γa and the μa (a = 1, . . . ,3),
iγ0γ

′
0 is a nonlinear operator. This implies that we have made

a nonlinear transformation that preserves a fraction of 3/4 of
the linearity of the hopping term. Explicitly, the remaining
nonlinear part of the hopping term can be written as

iγ0γ̃0 = −4(iμ1μ̃1)(iμ2μ̃2)(iμ3μ̃3). (20)

Clearly the Hamiltonian has a global O(3) symmetry that
is obtained by the rotation of all local vectors of (γ1,γ2,γ3)
and (μ1,μ2,μ3) in the same way. This corresponds to a
rotation of spin and pseudospin with the same angle, i.e., the
three symmetry generators are S

j
c + S

j

f + I
j
c for j = 1, . . . ,3.

Note also the peculiar feature that the c-electron charge and
spin operators are no longer quadratic in fermions in this
representation.

IV. MEAN FIELD STUDY

In this section, we will use a mean field Hamiltonian, which
is quadratic in the fermions, to approximate the interacting
fermion theory. For concreteness, we will only solve the
mean field equations for the 1D lattice with nearest-neighbor
hopping, but the generalization to other bipartite lattices
is straightforward. The Kondo lattice Hamiltonian in the
representation of Sec. III C is

HKLM = −t

3∑
a=0

∑
〈i,j〉

iγa(r i)γ̃a(rj )

+
∑

i

HJ (r i) +
∑

j

H̃J (rj )

−μ
∑

i

[iγ2(r i)γ1(r i) + iγ3(r i)γ0(r i)]

−μ
∑

j

[iγ̃2(rj )γ̃1(rj ) + iγ̃3(rj )γ̃0(rj )]. (21)

HJ (r i) and H̃J (rj ) are the generalizations of Eq. (13) to
include a lattice index. The two sublattices are distinguished
by the absence or the presence of a tilde.

A. O(3)-symmetric mean field at half-filling

The simplest mean field Hamiltonian at half-filling (i.e.,
μ = 0) is manifestly O(3) invariant:

HO(3) =
3∑

a=1

Ha, (22)

Ha = −t
∑
〈i,j〉

iγa(r i)γ̃a(rj ) +
∑
〈i,j〉

g(rj − r i)iμa(r i)μ̃a(rj )

+V
∑

i

iγa(r i)μa(r i) + Ṽ
∑

j

iγ̃a(rj )μ̃a(rj ). (23)

This form can be motivated from a mean field decoupling of
Eq. (21) using Eqs. (13) and (20). We now take the ground
state of the mean field Hamiltonian in Eq. (22) as a trial state
to approximate the ground state of the full interacting theory
of Eq. (21). Rather than fixing the variational parameters by
the usual Hartree-Fock decoupling procedure directly, we will
keep them arbitrary for the time being, since it is in general
possible that different mean field Hamiltonians give the same
trial state.29

It is straightforward to diagonalize this problem by going
to Fourier space using

γa(r i) = 1√
N/2

∑
k

′
[eik·r i γa(k) + e−ik·r i γ †

a (k)], (24)

and similarly for the other operators. The prime indicates that
one should only include one of the states for each pair of k and
−k in the sum, see, e.g., the discussion in Refs. 21,22. This is a
consequence of γa(−k) = γ

†
a (k). The physics is independent

of the choice of k or −k. Note also that the Brillouin zone
corresponds to a lattice with two sites per unit cell, hence
the N/2, where N denotes the total number of lattice sites.
Introducing the spinors 	a(k) = [μa(k),γa(k),μ̃a(k),γ̃a(k)]T

one has

HO(3) =
3∑

a=1

∑
k

′
	†

a(k)H(k)	a(k), (25)

where the Hamiltonian matrix H(k) is

H(k) =

⎛
⎜⎜⎝

0 −iV ig(k) 0
iV 0 0 −itα(k)

−ig∗(k) 0 0 −iṼ

0 itα∗(k) iṼ 0

⎞
⎟⎟⎠. (26)

Here α(k) = ∑
j eik·δj and g(k) = ∑

j g(δj )eik·δj , where δj

are the vectors that connect one lattice site (without a
tilde) to its nearest neighbors. The mean field Hamiltonian
is straightforwardly diagonalized in any dimension, but for
simplicity, we only perform the mean field analysis in 1D
in the following. Setting the nearest-neighbor distance to 1,
sums can then be converted to integrals with the replacement
1
N

∑′ → ∫ π/2
0

dk
2π

. We now introduce g± = [g(1) ± g(−1)]/2,
and the mean field solution involves solving for g±, V , and Ṽ .
For each value of k, the spectrum of H(k) is

Es,t = ±s

√
A + B + ±t

√
A − B

2
, (27)
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where ±s and ±t are two independent signs and

A = V 2 + Ṽ 2 + t2α2 + g2
+α2 + g2

−β2,

B2/4 = (V Ṽ + tg+α2)2 + t2g2
−α2β2,

α = 2 cos(k), β = 2 sin(k). (28)

Taking the ground state of HO(3) as a trial state, the variational
ground state energy per site is (taking Ṽ = V for simplicity)

εvar,O(3) = −3t

2

∑
bonds

〈iγ γ̃ 〉 + 2t
∑
bonds

〈iμμ̃〉3

+3J

4
〈iγμ〉 − 3J

2
〈iγμ〉2. (29)

Here and throughout the rest of this section, we will drop the
indexes on the operators since only averages of bilinears with
two equal indexes are nonzero because of the O(3) symmetry.
Minimizing this variational energy is typically equivalent
to a mean field calculation. We have found two classes of
solutions to the mean field equations that give low values of
the variational ground state energies: one that is translationally
invariant and one that is dimerized.

1. Translationally invariant phase

This phase has Ṽ = V > 0, g− = 0, and g+ � 0. In this
case, the ground state energy per lattice site of Ha in each
component is

ε0,a = − 1

N

∑
k

′√
4V 2 + (t + g+)2|α(k)|2

= −V E(−a2
+)

π
, (30)

where a+ = (t + g+)/V and E(x) is the complete elliptic
integral of the second kind.30 From this, we can compute the
translational invariant averages of the operators that appear in
the variational calculation by differentiation with the result

〈iγμ〉 = 〈iγ̃ μ̃〉 = ∂ε0,a

∂V
= − 1

π
K(−a2

+),

〈iμμ̃〉 = −〈iγ γ̃ 〉 = ∂ε0,a

∂t
= K(−a2

+) − E(−a2
+)

πa+
. (31)

Here K(x) denotes the complete elliptic integral of the first
kind.30 Interestingly, if we view the ground state of the mean
field Hamiltonian as a trial state, the bound on the ground
state energy does only depend on the variational parameters
g+ and V in the combination a+. This means that there is a
one-parameter family of mean field Hamiltonians that have the
same ground state. We can imagine to try to fix the best value
of a+ in four ways: (1) We use the mean field Hamiltonian
to construct a trial density matrix at finite temperature T .
Taking the limit T → 0 in the trial free energy, the entropy
term is maximized if one minimizes the gap in the mean field
Hamiltonian. In our system, this means that we should choose
g+ = 0. (2) We can consider a calculation to second order
in the interaction Hamiltonian HI = HKLM − HO(3). (3) We
maximize the energy gap in HO(3) by taking g+ = t . This
has the additional appealing property that every eigenvalue
in Eq. (27) becomes double degenerate since A = B with

this choice. (4) We use the standard Hartree-Fock decoupling
procedure.29

The usual Hartree-Fock scheme gives

V = J

4
(1 − 4〈iγμ〉), g+ = 4t〈iμμ̃〉2, (32)

and picks out particular values of g+ and V . Note that the
expectation value in the atomic ground state gives V = 3J/4
and g+ = 0. The mean field self-consistency conditions (31)
and (32) are easily solved numerically. The variational energy
is exact in the limit J/t → ∞ but gives −t(3/π + 4/π3)
instead of the correct value −t4/π if the limit J/t → 0. In
the limit J = 0, the energy of this state is therefore about
15% too high and hence not a good approximation to the
ground state. The trial state is better at intermediate values
of t/J : taking J = 1 and t/J = 1/2, the best variational
energy is εvar,O(3) ≈ −0.878, which should be compared to
the most accurate estimate from high-order series expansions
ε ≈ −0.926.31 The result is therefore about 5% to high for
these parameters. The discrepancy can presumably be made
smaller by considering fluctuations around the mean field state.

2. Dimerized phase

For smaller values of J/t, a dimerized
solution, which has the form of a spin-Peierls
state, is found to be energetically favorable. It is
characterized by Ṽ = V > 0 and g− = ±(g+ − δ)
with 0 < δ < g+. The state with δ = 0 is maximally
dimerized and has all of its f -spins locked up into singlets
with one of its nearest-neighboring f -spins. As δ grows, the
dimerization diminishes until it goes away when g− = 0.

For J/t � 1, the optimal value of g− is found to be
extremely small and no gain in energy is found compared
with the translationally invariant phase. For J/t 
 1, we find
that δ 
 g+, but a nonzero δ is needed for a self-consistent
solution. Taking the state with δ = 0 as a variational wave
function, we find that this solution is energetically favorable
to the translational invariant phase for J/t � 1.24 in 1D. In
the limit J/t → 0, it gives −t(3/π + 1/4) which is about 5%
too high, but clearly favorable to the translationally invariant
state.

B. SO(2) × Z2-symmetric mean field at half-filling

In the O(3)-symmetric mean field states, there are three
degenerate fermion bands. This leads to a natural description
of triplet excitations in terms of two quasiparticle excitations,
but it is unnatural in terms of the original description in terms
of c-electrons and localized f -spins. The O(3) symmetry
of the Hamiltonian is also broken in the presence of a
chemical potential or crystal fields. In this subsection, we will
therefore allow for a less symmetric mean field solution that
has a global SO(2)×Z2 symmetry with the SO(2) generator
S3

c + S3
f + I 3

c . We can then write the mean field Hamiltonian
as HSO(2) = H12 + H3, where H3 is of the same form as in Eq.
(23). The mean field Hamiltonian in the remaining components
can be decomposed into an on-site part and a hopping part
according to H12 = Hl

12 + Ht
12. The allowed terms in this

Hamiltonian are restricted by symmetry. The general on-site
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local term is

Hl
12 = V (iγ1μ1 + iγ2μ2) + Ṽ (iγ̃1μ̃1 + iγ̃2μ̃2)

+m0(iμ1μ2 + iγ1γ2) + m̃0(iμ̃1μ̃2 + iγ̃1γ̃2)

+m1(iγ1μ2 + iμ1γ2) + m̃1(iγ̃1μ̃2 + iμ̃1γ̃2)

+m3(iμ1μ2 − iγ1γ2) + m̃3(iμ̃1μ̃2 − iγ̃1γ̃2), (33)

and the general hopping term is

Ht
12 = −t

∑
a=1,2

∑
〈i,j〉

iγa(r i)γ̃a(rj )

+
∑
a=1,2

∑
〈i,j〉

g(rj − r i)iμa(r i)μ̃a(rj )

+
∑
〈i,j〉

h(rj − r i)[iμ1(r i)μ̃2(rj ) − iμ2(r i)μ̃1(rj )].

(34)

Note that we use the same notation for some of the variational
parameters in H3 and H12, i.e., g and V , although their values
will in general be different. All in all, there are 16 mean field
parameters (in 1D), with 4 in the third component, in the
most general SO(2)-symmetric mean field Hamiltonian. As
in Sec. IV A, the spectrum of H12 can be found by going to
Fourier space using Eq. (24) and diagonalizing the resulting
8×8 matrix. Generically, the spectrum is then given by the
solutions to a quartic equation for the pair (α,β) and one for
(−α,β), but if the quantity,

f1 = (m0 − m̃0)
(
m2

1 − m̃2
1 + m2

3 − m̃2
3 + V 2 − Ṽ 2

)

−(m3 + m̃3)(t2α2 − G2
+ − G2

−), (35)

vanishes the spectrum is again given by Eq. (27) with different
A and B. We have also introduced G+ = g+α + h−β and
G− = g−β − h+α. We defer a full analysis of the general
mean field to a later study. In the following, we confine
ourselves to the simplified situation with m̃a = −ma for a =
0,1,3 (to allow for antiferromagnetism) and Ṽ = V (leading
to sublattice-symmetric on-site 〈iγμ〉) so that f1 ≡ 0. Then
the spectrum is given by Eq. (27) with parameters

A = t2α2 + G2
+ + G2

− + 2
(
V 2 + m2

0 + m2
1 + m2

3

)
,

B2/4 = (
V 2 + m2

1 + m2
3 − m2

0

)2 + (m0 + m3)2t2α2

+ (G2
+ + G2

−)[(m0 − m3)2 + t2α2]

+ 2G+
(
V 2 − m2

1

)
tα + 4G−m1V tα, (36)

and the same with α → −α. This reduces to Eq. (28) when
m0 = m1 = m3 = h± = 0 and Ṽ = V . We also note that this
spectrum is the same as the mean field spectrum of Ref. 16
when m1 = h± = g± = 0. The imposed symmetries lead to
the following relations for the operator averages:

〈iγ1γ2〉 = −〈iγ̃1γ̃2〉,
〈iμ1μ2〉 = −〈iμ̃1μ̃2〉,

〈iγ1μ1〉 = 〈iγ2μ2〉 = 〈iγ̃1μ̃1〉 = 〈iγ̃2μ̃2〉, (37)

〈iγ1μ2〉 = 〈iμ1γ2〉 = −〈iγ̃1μ̃2〉 = −〈iμ̃1γ̃2〉,
〈iμ1μ̃2〉 = −〈iμ2μ̃1〉.

The relations between the averages on different sublattices
can be derived by considering inversion symmetry about a

bond in the crystal together with translational invariance. The
variational energy per site is

εvar,SO(2) =− t

2

∑
bonds

(2〈iγ1γ̃1〉+〈iγ3γ̃3〉)

+2t
∑
bonds

〈iμ3μ̃3〉(〈iμ1μ̃1〉2+〈iμ1μ̃2〉2+〈iμ1μ2〉2)

+ J

2
〈iγ1μ1〉 + J

4
〈iγ3μ3〉 − J 〈iγ1μ1〉〈iγ3μ3〉

−J

2
〈iγ1μ1〉2− J

2
〈iγ1μ2〉2+ J

2
〈iγ1γ2〉〈iμ1μ2〉,

(38)

where we have used the symmetries in Eq. (37). Comparing
this with the O(3) case in Eq. (29) the difference is the
possibility of having nonzero averages for terms involving
a coupling between the first and second components on
the second and fourth lines. Of particular importance is the
possibility of having 〈iμ1μ2〉 �= 0 since this will allow the
system to take full advantage of the kinetic term in the limit
J → 0. The operator averages can be calculated by taking the
appropriate derivatives of the mean field ground state energy,
just like in the O(3) case. The expressions we need are given
in the Appendix in Eqs. (A13) and (A14). We now have all the
pieces in place [i.e., Eqs. (27), (36), (38), (A13), and (A14)]
to perform the variational mean field study.

1. Result of the SO(2)-symmetric mean field study

The values of m1, both g−s, and h± are found to be
extremely small when minimizing the variational energy
for all values of J/t . Thus, we will set these parameters
to zero in the following discussion. For large values of
J/t , the variational parameters flow toward the family of
O(3)-symmetric solutions. For J/t � 1.56, nonzero m3 and
m0 are found to lower the energy with respect to the O(3)
family. This implies an antiferromagnetic SO(2)-symmetric
solution that is always favorable to the dimerized O(3)-
symmetric solution at the mean field level. This is not
surprising in view of earlier work in 1D,18 2D,14 and 3D.11 In
the limit J/t → 0, the antiferromagnetic solution reproduces
the correct value of the ground state energy, namely, −4t/π . In
our mean field analysis, the transition to the antiferromagnetic
state is discontinuous. The variational mean field energies for
the different trial states are shown in Fig. 1.

V. CHARACTERIZING THE O(3)-SYMMETRIC PHASE

In this section, we will characterize the O(3)-symmetric
mean field phase further by looking at the spin-spin correlation
functions and the triplet pairing amplitudes. First, we note that
the average c-electron spin and charge (measured with respect
to half-filling) as well as the average f -spin are zero on every
site. As we will see, the spin-spin correlation functions are
rotationally invariant, and we are thus dealing with a spin
liquid state. That the system is a gapped spin liquid for large
values of J/t is known,2 but the O(3)-symmetric trial state
provides a simple realization of such a state for finite values
of t/J .
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FIG. 1. Variational energies for different trial states in 1D. From
top to bottom: O(3)-symmetric translationally invariant state, O(3)-
symmetric dimerized state, and SO(2)-symmetric antiferromagnetic
state. Only the last state gives the correct value in the limit
J/t → 0. The mean field theory predicts a transition between the
O(3)-symmetric spin liquid phase and an SO(2)-symmetric state with
antiferromagnetic order at J/t ≈ 1.56.

To characterize the state, we first derive the correlation
functions for some of the fermion bilinears. Note that we
do not consider the trivial autocorrelation functions in the
following. Using the Fourier representation in Eq. (24), it is
straightforward to show that

χμμ(r) ≡ 〈iμa(0)μa(r)〉
= 1

N/2

∑
k

′
sin(k · r)(1 − 2〈μ†

a(k)μa(k)〉). (39)

In the translationally invariant O(3) phase, g− = 0. In this case,
particle-hole symmetry enforces 〈μ†

a(k)μa(k)〉 = 1/2 for all k,
which means that χμμ(r) = 0. Similarly, 〈iμ3(r)μ3(r ′)〉 = 0
in the SO(2)-symmetric antiferromagnetic state. When the two
μ operators reside on different sublattices, we have

χμμ̃(r) ≡ 〈iμa(0)μ̃a(r)〉
= 1

N/2

∑
k

′
cos(k · r)〈iμ†

a(k)μ̃a(k)〉 + h.c., (40)

in the translationally invariant O(3) phase, and from the
diagonalization of Eq. (26), we obtain

〈iμ†
a(k)μ̃a(k)〉 + h.c. = − a+α√

4 + a2+α2
. (41)

With this result, it is straightforward to evaluate the sum in
Eq. (40) in the continuum limit numerically. The result is
illustrated in Fig. 2 and clearly shows that the result is an
alternating almost exponentially decaying function of r . In
the atomic limit, a+ 
 1 and the nonlocal correlations are
small: χμμ̃(1) ∼ −a+/4. This will have direct consequences
for the spin-spin correlation functions and the triplet pairing
amplitudes. Similarly, we can show that 〈iγa(0)γa(r)〉 = 0 and
〈iγa(0)γ̃a(r)〉 = −χμμ̃(r) in the translationally invariant O(3)-
symmetric phase. It is interesting to note that these correlation
functions depend on the variational parameters only through
a+ and not on the actual spectrum of HO(3).

1 2 3 4 5 6 7

15

10

5

n r a 2a

ln
1

n
χ μ

μ
n

FIG. 2. The logarithm of the absolute value of the correlation
function χμμ̃(r) ≡ 〈iμa(0)μ̃a(r)〉 at the value a+ = 0.8, which is
appropriate for the trial state at t/J ≈ 0.5. The dashed line is the fit
to a straight line corresponding to exponential decay.

A. Spin-spin correlation functions

In the O(3)-symmetric phase, the spin-spin correlation
functions are easily shown to be rotationally invariant:

〈
Si

α(r)Sj

α′(r ′)
〉 = δijSαα′ (r ′ − r), (42)

for all combination of α,α′ = c,f . This is a consequence of the
representations in Eqs. (9), (10), (12), and the definite fermion
parity of all three components in the O(3)-symmetric ground
state. It is also possible to work out explicit expressions for
the correlation functions in detail, as an example, let us look
at f spin-spin correlation function. Using the result of Sec. V,
Sff (r) = 0 if the spins reside on the same sublattice and
Sff (r) � 0 otherwise. Explicitly we have

〈
Si

f (0)S̃j

f (r)
〉 = −δijχ2

μμ̃(r). (43)

From the behavior of χμμ̃(r), we see that this is a rapidly
decaying negative function.

B. Superconducting correlations

It is easy to see that the singlet Cooper pair amplitude
is zero in both the O(3) and the SO(2) phases. This is a
consequence of the representation in Eqs. (11) and (10) and
the definite fermion parity of the third component in the mean
field ground states. The same argument shows that the triplet
pairing amplitude 〈c↑(r)c↓(r ′) + c↓(r)c↑(r ′)〉 vanishes. Using
the SO(2) symmetry around the third axis, we also find that
〈c↑(r)c↑(r ′)〉 = 0. The third triplet pairing amplitude in the
translationally invariant O(3) phase is

�↓↓(r) ≡ 〈c↓(0)c↓(r)〉
= 〈γ3(0)γ3(r)〉/2 − 2〈μ3(0)μ3(r)〉3. (44)

This expression vanishes in the translationally invariant O(3)-
symmetric phase because of the particle-hole symmetry.
It remains the last triplet pairing amplitude on different
sublattices. In the O(3)-symmetric phase, this is given by

�↓↓̃(r) ≡ 〈c↓(0)c̃↓(r)〉
= 〈iγ3(0)γ̃3(r)〉/2 + 2〈iμ3(0)μ̃3(r)〉3. (45)

The behavior of �↓↓̃(r) is therefore simply related to χμμ̃(r)
and is a rapidly decaying alternating function. The results of
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this section clearly show that spin-rotational symmetry, and
hence time-reversal symmetry, is broken in a subtle way in the
superconducting pairing correlation function in this state.

VI. CONCLUSIONS AND OUTLOOK

The main finding in this work is an O(3)-symmetric
representation of the bipartite Kondo lattice model at half-
filling. To the best of our knowledge, this representation
has not been written down previously. We have used this
representation to construct and investigate an O(3)-symmetric
mean field state in 1D, and found it to be a good trial wave
functions for large to moderate values of J/t . At smaller
values of J/t , a state with antiferromagnetic correlations is
favored. The O(3)-symmetric state is a gapped spin liquid
with rotationally invariant spin-spin correlations and a finite
(short-ranged) triplet pairing amplitude.

For the future, it would be interesting to apply the
transformation to other lattices than the simplest 1D case
considered here, and to see what this representation can tell
us about the Kondo lattice away from half-filling. Another
direction of research would be to study the effects of the finite
triplet pairing amplitude and to allow for slow fluctuations in
the direction of this order parameter.
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APPENDIX: CONVENTIONS AND MATHEMATICAL
DETAILS

A. Original basis

We follow the convention of Ref. 10 to enumerate the states
in the original basis:

|1〉 = |0〉, |2〉 = c
†
f,↑c

†
f,↓|0〉,

|3〉 = 1√
2

(c†c,↑c
†
f,↓ − c

†
c,↓c

†
f,↑)|0〉,

|4〉 = c
†
c,↑c

†
c,↓|0〉, |5〉 = c

†
c,↑c

†
c,↓c

†
f,↑c

†
f,↓|0〉,

|6〉 = c
†
c,↓c

†
f,↓|0〉, |7〉 = 1√

2
(c†c,↑c

†
f,↓ + c

†
c,↓c

†
f,↑)|0〉,

(A1)
|8〉 = c

†
c,↑c

†
f,↑|0〉, |9〉 = c

†
f,↓|0〉,

|10〉 = c
†
c,↓|0〉, |11〉 = c

†
c,↓c

†
f,↑c

†
f,↓|0〉,

|12〉 = c
†
c,↑c

†
c,↓c

†
f,↓|0〉, |13〉 = c

†
f,↑|0〉,

|14〉 = c
†
c,↑|0〉, |15〉 = c

†
c,↑c

†
f,↑c

†
f,↓|0〉,

|16〉 = c
†
c,↑c

†
c,↓c

†
f,↑|0〉.

B. Time-reversal symmetry

We choose the phase convention for the action of the
time-reversal operator T on a generic spin-full fermion level
described by the operators a↓ and a↑ to be

T a
†
↑T −1 = a

†
↓, T a

†
↓T −1 = −a

†
↑. (A2)

This convention implies that: (1) The singlets |1〉 to |5〉
are invariant under time reversal as expected. (2) The ↑
states transform into the corresponding ↓ states (and vice
versa) with our phase convention. (3) The triplets transform
as

T |l = 1,m〉 = −(−1)m|l = 1, − m〉, (A3)

which is different from the transformation of the conventional
spherical harmonics.27 Restricting ourselves to real coeffi-
cients, only the triplet (|6〉 + |8〉)/√2 is invariant under time
reversal.

C. Unitary transformations

Let us first define two different basis sets: {|l〉1} is defined
as in Eq. (A1) with c

†
c,σ → c

†
c1,σ and c

†
f,σ → c

†
f 1,σ . Similarly,

for {|l〉2} with c
†
c,σ → c

†
c2,σ and c

†
f,σ → c

†
f 2,σ . The unitary

operator Û implements the transformation between the old
basis {|l〉1} and the new basis {|l〉2} via the relations

|l〉2 = Û |l〉1, for l = 1, . . . ,16. (A4)

In the following, we will define U to be the matrix representing
Û in the old basis, i.e.,

Uk,l ≡ 1〈k|Û |l〉1 = 1〈k|l〉2. (A5)

From the definition of the states, and completeness of the basis,
we see that the creation operators in the two bases are related
by

c
†
f 2,σ = Ûc

†
f 1,σ Û †, c

†
c2,σ = Ûc

†
c1,σ Û †. (A6)

This clearly preserves the fermionic anticommutation rela-
tions. We also have cf 2,σ |0〉2 = 0 iff cf 1,σ |0〉1 = 0, etc.,
which is consistent with the notion that annihilation operators
annihilate the vacuum.

D. The electron-hole basis

The electron-hole basis of Ref. 10 is obtained by substitut-
ing c

†
c,σ → h†

σ and c
†
f,σ → e†σ in Eq. (A1), and changing the

vacuum state to |0〉s . Explicitly,

|1〉eh = |0〉s , |2〉eh = e
†
↑e

†
↓|0〉s ,

|3〉eh = 1√
2

(h†
↑e

†
↓ − h

†
↓e

†
↑)|0〉s , |4〉eh = h

†
↑h

†
↓|0〉s ,

|5〉eh = h
†
↑h

†
↓e

†
↑e

†
↓|0〉s , |6〉eh = h

†
↓e

†
↓|0〉s ,

|7〉eh = 1√
2

(h†
↑e

†
↓ + h

†
↓e

†
↑)|0〉s , (A7)

|8〉eh = h
†
↑e

†
↑|0〉s , |9〉eh = e

†
↓|0〉s ,

|10〉eh = h
†
↓|0〉s , |11〉eh = h

†
↓e

†
↑e

†
↓|0〉s ,

|12〉eh = h
†
↑h

†
↓e

†
↓|0〉s , |13〉eh = e

†
↑|0〉s ,
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|14〉eh = h
†
↑|0〉s , |15〉eh = h

†
↑e

†
↑e

†
↓|0〉s ,

|16〉eh = h
†
↑h

†
↓e

†
↑|0〉s .

E. The electron-hole transformation

Diagonalizing Eq. (2) and using the procedure of Sec. II A
to assign the states, we obtain the matrix Ueh that implements
the transformation from the original basis in (A1) to the new
one in (A7). Explicitly,

Ueh =

⎛
⎜⎜⎜⎝

Us 0 0 0

0 13 0 0

0 0 U↓ 0

0 0 0 U↑

⎞
⎟⎟⎟⎠, (A8)

with submatrices

Us =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0

sin(ϕ2)/
√

2 0 1/
√

2 0 − cos(ϕ2)/
√

2

cos(ϕ2) 0 0 0 sin(ϕ2)

sin(ϕ2)/
√

2 0 −1/
√

2 0 − cos(ϕ2)/
√

2

0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A9)

U↓ = U↑

=

⎛
⎜⎜⎜⎝

0 cos(ϕ1) 0 − sin(ϕ1)

0 sin(ϕ1) 0 cos(ϕ1)

− sin(ϕ1) 0 cos(ϕ1) 0

cos(ϕ1) 0 sin(ϕ1) 0

⎞
⎟⎟⎟⎠. (A10)

13 is the 3 × 3 unit matrix, tan(ϕ1) = 2W/(U +√
U 2 + 4W 2), and tan(ϕ2) = 4W/(U + √

U 2 + 16W 2).

F. Basis for the low-energy sector in the Kondo limit

To describe the Hilbert space in the low-energy sector in
the limit U → ∞, we only need three operators. It is therefore
natural to use one operator (i.e., c

†
4) to describe excitations in

the high-energy sector. We use the following convention to

label the states

|1〉K = |0〉s , |2〉K = c
†
1|0〉s ,

|3〉K = c
†
2|0〉s , |4〉K = c

†
3|0〉s ,

|5〉K = c
†
1c

†
2c

†
3|0〉s , |6〉K = c

†
2c

†
3|0〉s , (A11)

|7〉K = c
†
3c

†
1|0〉s , |8〉K = c

†
1c

†
2|0〉s ,

|m〉K = c
†
4(−1)n1+n2+n3 |m − 8〉K, m = 9, . . . ,16.

If we are only interested in the low-energy sector of the theory,
the assignment of the states in the high-energy sector does
not matter. We can therefore make any convenient consistent
choice, for example,

|9〉K = |5〉eh, |10〉K = |11〉eh, |11〉K = |12〉eh,
|12〉K = |15〉eh, |13〉K = |16〉eh, |14〉K = |2〉eh,(A12)

|15〉K = |3〉eh, |16〉K = |4〉eh.
If the high-energy operator c

†
4 is of interest, one should make

a better informed choice.

G. Expressions for the operator averages

The expressions that we need to calculate the operator
averages in the SO(2)-symmetric mean field states are

∑
bonds

〈iγ3γ̃3〉 = −2∂tε3,

〈iγ3μ3〉 = ∂V ε3, (A13)

〈iμ3μ̃3(±1)〉 = (∂g+ ± ∂g− )ε3,

for averages in the third component and
∑
bonds

〈iγ1γ̃1〉 = −∂tε12,

2〈iμ1μ̃1(±1)〉 = (∂g+ ± ∂g− )ε12,

2〈iμ1μ̃2(±1)〉 = (∂h+ ± ∂h−)ε12,

2〈iγ1μ1〉 = ∂V ε12, (A14)

2〈iμ1μ2〉 = (∂m0 + ∂m3 )ε12,

2〈iγ1γ2〉 = (∂m0 − ∂m3 )ε12,

2〈iγ1μ2〉 = ∂m1ε12,

for averages in the other two.
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