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Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces
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Light-induced degradation (LID) of crystalline silicon (c-Si) surfaces passivated with hydrogenated amorphous
silicon (a-Si:H) is investigated. The initial passivation decays on polished c-Si(100) surfaces on a time scale much
faster than usually associated with bulk a-Si:H LID. This phenomenon is absent for the a-Si:H/c-Si(111) interface.
We attribute these differences to the allowed reconstructions on the respective surfaces. This may point to a link
between the presence of so-called “fast” states and (internal) surface reconstruction in bulk a-Si:H.
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Hydrogenated amorphous silicon (a-Si:H) is a semicon-
ductor with important applications in a host of large-area
electronic devices, including solar cells.! In recent years, the
interface between a-Si:H and crystalline silicon (c-Si) has
received increased attention because a-Si:H films passivate
c-Si surfaces remarkably well. This allows for the fabrication
of high-efficiency a-Si:H/c-Si heterojunction solar cells at low
temperature (<200 °C), with efficiencies of up to 23% reported
to date.”? For thin-film microcrystalline silicon (pc-Si:H)
solar cells, the a-Si:H/c-Si interface is of equal importance
as device-grade wc-Si:H consists of nanometer-sized c-Si
grains embedded in an g-Si:H matrix.! For atomically sharp
interfaces,® passivation by intrinsic a-Si:H films stems from
hydrogenation of c-Si surface states,* and near-surface a-Si:H
bulk defects. Characteristically, a-Si:H bulk material suffers
from the so-called Staebler-Wronski effect (SWE).® This is
manifested by (self-limiting) light-induced generation of elec-
tronically active defects,” most likely as Si dangling bonds.®°
The increase in Si dangling bond density is detrimental for
device performance. Even though the microscopic origin of
this defect is still under debate,'© it is often linked to how
hydrogen is bonded to silicon in the ¢-Si:H films.'!- 12

In this article we investigate the influence of light soaking on
a-Si:H films deposited on ¢-Si surfaces of two different crystal
orientations: ¢-Si(100) and c-Si(111). The use of high-grade
c-Si surfaces combined with carrier-lifetime measurements
in the wafer gives us a uniquely sensitive tool to probe the
influence of different interfacial silicon-hydrogen bonding
configurations on the electronic properties during light expo-
sure. We confirm that light-induced degradation (LID) occurs
in a-Si:H/c-Si structures by dangling-bond creation.'? At very
short exposure times we observe strong crystal-orientation
dependence, however. This may point to a link between the
presence of so-called “fast” states in a-Si:H and (internal)
surface reconstruction in the films.

For the experiments, ~280-um-thick ~4.0-Q2 cm
phosphorus-doped mirror-polished float-zone ¢-Si(100) and
c-Si(111) wafers from Topsil were used. Surface cleaning
consisted of native oxide stripping in a dilute HF solution (4%)
for 45 s, after which the samples were immediately transferred
to the deposition systems. Intrinsic a-Si:H films (thickness of
~50 nm) were codeposited on the ¢-Si(100) and c-Si(111)
substrates. For this, a narrow-gap (13 mm), parallel-plate
plasma-enhanced chemical vapor deposition reactor powered
at very-high frequency (40.68 MHz) was used. The deposition
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temperature Tyepo Was set at 200 °C; other processing details
are described elsewhere.'* On glass, such films yield an optical
band gap of 1.68 eV, determined from spectroscopic ellipsome-
try. We also tested c-Si wafers passivated with aluminum-oxide
(A1,03) films.">~!7 Such films (thickness of ~30 nm) were pre-
pared by alternating trimethylaluminum [Al(CHj3)3] exposure
and a remote O, plasma using a plasma-assisted atomic layer
deposition reactor; typical deposition and activation-annealing
conditions are described elsewhere.!” These samples served
as a benchmark against which the a-Si:H/c-Si structures were
compared. In all cases, films were deposited on both sides of
each wafer to evaluate the surface passivation quality. Follow-
ing this, the samples were subjected to low-temperature hot-
plate annealing (220 °C in air), and subsequent light-soaking
for prolonged times. The latter was done at ~50°C under a
standard 1-sun (100 mW cm~2) air mass 1.5-global (AM 1.5 G)
spectrum. The effective carrier lifetime of the samples, ., is
a direct indicator of the passivation quality and was measured
at room temperature with a Sinton Consulting WCT-100 photo
conductance system operated in transient mode.'® The anneal-
ing or light-soaking treatments were briefly interrupted for
these measurements. Finally, thermal desorption spectroscopy
(TDS) was used to characterize the surfaces immediately after
HF termination; details are described elsewhere.!®

Figure 1(a) shows how t.; changes under prolonged
annealing at 220 °C for the respective structures. The initial e
values are very similar for the a-Si:H/c-Si(100) and a-Si:H/c-
Si(111) samples. These data sets can be fitted to stretched
exponentials, pointing to local rearrangement of hydrogen at
the interface.* Notably, values for T; of 8—10 ms are obtained
which are among the highest reported for such structures. The
same panel also gives data for Al,O3/c-Si(100) structures.
Here, annealing leads to a slight decrease in passivation. This
behavior contrasts with the effect of the initial postdeposition
anneal needed to activate the surface-passivation properties of
Al 03 films.'®!7 The observed decrease may be linked to in
situ hydrogenation of Al,Os/c-Si interface charge carrier traps,
resulting in a lower fixed-charge density,2° and consequently
less repulsion of electrons from the interface.

Figure 1(b) gives 7. data for the same samples as in
panel (a), but now during 1-sun light soaking up to 500 h.
After as little as 1 min, . of the a-Si:H/c-Si(100) structure
unexpectedly drops by close to 40% (see arrow). Such a drop is
absent for both the a-Si:H/c-Si(111) and the Al,O3/c-Si(100)
structures. Prolonged light soaking of the a-Si:H/c-Si(100)
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FIG. 1. (Color online) Changes in ty for the different test
structures. (a) Influence of low-temperature annealing in air. (b) In-
fluence of prolonged 1-sun exposure. Measurements at An = 1.0 x
10" cm™3.

structures leads then to an improvement. After ~6 h, steady
decay sets in, however. A smaller initial improvement occurs
for the a-Si:H/c-Si(111) structure, and again after ~6 h
decay sets in. Notably, the long-term degradation of the two
surfaces is almost indistinguishable. Also, for both structures,
reannealing at 220 °C fully reinitializes the samples (not
shown), indicating metastability.

The Al,O3/c-Si(100) structure shows quite a different
behavior. Here, a significant monotonic light-induced im-
provement in Tg is observed. The improvement in passivation
of this structure is likely caused by a light-induced increase of
negative fixed charge Qy at its interface. Briefly, UV exposure
may lead to an increase of Q¢ in Al,O3 films," without
much influence on the interface-state density Dj;. This effect
is linked to internal photoemission (IPE) of electrons from
the ¢-Si valence-band maximum into the Al,O3; conduction-
band minimum. It can also occur under intense lower-energy
illumination, where the electron pumping is now achieved
by multiphoton IPE.?' In any case, the improvement for the
Al,O3/c-Si(100) structure strongly suggests that the bulk of the
n-type c-Si wafers used does not degrade under light soaking.
Consequently, the observed a-Si:H/c-Si light-soaking phe-
nomena can almost certainly be attributed to the a-Si:H films
and the interface they share with the specific c-Si surfaces.

To discuss the long-term light-soaking behavior, Fig. 2(b)
shows dangling-bond densities, Npg, for the a-Si:H/c-Si(100)
structure. For this, the 7.4 data given in Fig. 1 were plotted over
their full carrier-injection range and fitted to an appropriate
surface-recombination model [Fig. 2(a)].?> The two major
model parameters are the surface dangling-bond density NSB
and the fixed-charge density Qf. The latter parameter com-
prises all contributions to the surface potential, including inter-
face trapped charge, fixed charges in the film, and band offsets
at the a-Si:H/c-Si interface. Dangling bonds are electronically
characterized by their electron and hole capture cross sections,
respectively, in the neutral state, a,? and 02, and the charged
state, G,f and o,. The following ratios, similar to a-Si:H
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FIG. 2. (Color online) (a) Changes in T (An) for an a-Si:H/c-
Si(100) structure during prolonged 1-sun exposure. Symbols are
measured data, solid lines are fits using recombination-model calcu-
lations. For clarity, only a few selected examples are shown. The inset
shows the band diagram of the interface in (dark) thermal equilibrium,
simulated with AFORS-HET. (b) Dangling-bond density Npg of the
same structure, extracted from the fitting shown in (a). The lines are
fits to power laws. Fitting parameters are A =0.27 x 10'5 cm™3 s~!
and B=0.13 x 102 cm™3 s~'. For reference, we also show ~¢'/3 and
~t1/2 power laws.

bulk, were found for the interface dangling-bond capture cross
sections*: o )/o,) =20 and 0,7 /o) =& /o) = 500. Following
Schulze er al” we assume o) =10~'% cm?. For all fits and

for both surface orientations only NSB required adjustment,
whereas Q; could be kept constant at —0.64 x 10'! cm~2. This
shows that the surface-state density changes upon light soaking
and not the surface band bending, within fitting error. As such,
it suggests that the observed light-induced changes are driven
by changes in dangling-bond density. Finally, we converted
Np to an equivalent ad hoc “bulk” density, Npp = (Njg)¥/2.

Following the fast LID, Npg decreases under 1-sun illumi-
nation for several hours for the a-Si:H/c-Si(100) structure.
After about 6 h of light exposure, Npp starts to increase
monotonically, however. Both phenomena (i.e., the sequential
decrease and increase in Npg) can be nearly fit to, respectively,
~t72/3 and ~t*/3 power laws, as seen in Fig. 2(b). The data
show saturation, likely pointing to the self-limiting nature of
the SWE.” A better estimate for Nz may be NJg divided
by the (unfortunately unknown) probing depth of the wave
function into the @-Si:H film, yielding ~¢**/ laws. For both
Np estimations, the long-term degradation is faster than the
familiar ~¢!'/3 law characteristic for bulk a-Si:H material.’
In films on glass, intense illumination (resulting in higher
excess-carrier densities) is known to yield an increase in Npg
faster than the ~7!/3 law.? Considering this, we attribute the
observed faster decay under 1-sun illumination to possible
differences in carrier-injection exposure of a-Si:H bulk states
compared to states close to the a-Si:H/c-Si interface. For
films on high-grade c-Si wafers, excess carriers recombining
through states in the vicinity of this interface may have
been generated either in the film or in the wafer. As such,
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under identical illumination, near-surface states are likely
exposed to higher excess-carrier densities than their bulk
a-Si:H counterparts, explaining the faster decay.

The observed defect reduction and subsequent creation as
shown in Fig. 2(b) points to a kinetic process for the total defect
density that cannot be described by a single rate equation.
Rather, more than one type of defect with different kinetic
characteristics may be present. Such conclusion was drawn
earlier for bulk ¢-Si:H material based on a two-step high-low
intensity light-soaking experiment, identifying so-called “fast”
and “slow” defects.?* Here, considering the identical long-term
degradation behavior for both surface orientations [see tails in
Fig. 1(b)], the slow defect could be linked to the (identical)
near-surface a-Si:H bulk of these thin layers, whereas the fast
defect may rather be linked to their specific interface. Alterna-
tively, the kinetics could be interpreted as due to the combined
effect of defect creation and (de-)trapping of interface charge.

We now turn to the discussion of the fast initial decay
observed in the a-Si:H/c-Si(100) structure. Figure 3(a) gives
more detailed information on this phenomenon by comparing
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FIG. 3. (Color online) (a) Normalized 7. values for a-Si:H/c-
Si(100) (closed symbols) and a-Si:H/c-Si(111) (open symbols)
structures during flash-light exposure. Each flash is ~1 ms long.
Measurements are evaluated at An=1.0 x 10 cm™. The lines
are linear and single-exponential fits. The insets represent the two
different test structures featuring identical capping films, y, but
different interfaces, o and §. (b) Normalized 7 values for a different
a-Si:H/c-Si(100) structure during repeated cycles of flash-light
exposure, dark relaxation at room temperature and annealing (220 °C
for 2 min, see arrow). (c) Calculated Npg values corresponding to data
in (b). (d) and (e) H,-effusion rate data for HF-terminated ¢-Si(111)
and ¢-Si(100) surfaces, respectively, prior to film deposition. Heating
rate was 20 K min~!. Insets show the different surface structures
schematically. (f)—(h) Schematic representation of the SWE model
by Carlson. See main text for explanation.
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the normalized changes in 7.y during flash-light exposure at
room temperature for the same codeposited a-Si:H/c-Si(100)
and a-Si:H/c-Si(111) samples. Each flash is <1 ms long and
is the same flash as used during lifetime measurements. Prior
to the experiment, the samples were reinitialized by annealing
at 220 °C. The earlier observed differences between these two
surfaces are confirmed in this graph. For the a-Si:H/c-Si(111)
structure the initial passivation is relative stable, whereas
for the a-Si:H/c-Si(100) case a smooth single-exponential
decay occurs. Figure 3(b) shows that following exposure the
passivation slowly (and partially) recovers at room temperature
in dark. Full recovery is achieved by brief annealing (2 min
at 220 °C; see arrow). Figure 3(c) shows calculated values for
Npg for one cycle, following the earlier outlined conversion
procedure. Again, the value of Oy could be kept constant for all
fits. The observed metastability must be linked to the specific
a-Si:H/c-Si interface and not to the ¢-Si bulk because identical
c-Si(100) wafers were used for the field-effect passivated
Al,03/c¢-Si(100) structures which did not show such behavior
[Fig. 1(b)]. Next, since the a-Si:H films were codeposited on
both surfaces, this phenomenon is likely caused by surface-
orientation specific defect states.

Carrier trapping can influence transient 7. data for many
surface passivation layers, including a-Si:H, as argued by
Seiffe et al.*> For these films, higher time-integrated carrier
injection (e.g., by more intense flashes) prior to 7.¢ acquisition
yields increased excess hole densities at the interface [see also
simulated band diagram of our a-Si:H(i)/c-Si(n) interface in
the inset of Fig. 2(a)]. Such holes may be trapped at interface
states, yielding increased (field-effect mediated) passivation.?
Our 7. data contrast with this. Firstly, we observe decreased
passivation with increasing time-integrated light exposure.
Secondly, our results show strong surface-orientation de-
pendence. Finally, the occurrence of slow and incomplete
room-temperature recovery suggests a rather more persistent
phenomenon that is not purely driven by charge (de-)trapping.

Alternatively, the fast metastability may be caused by
surface-orientation specific defect formation and annihila-
tion. Shinohara et al., provided evidence that hydrogenated
(di-)vacancies are created beneath Si(100) surfaces when
exposed to atomic hydrogen.?® No such defects were observed
beneath Si(111) surfaces.?® At present, it cannot be excluded
that similar defects form during a-Si:H deposition, potentially
acting as a degradation culprit.

The interaction of hydrogen with the actual c-Si surface
is perhaps better understood. For example, by immersion
of the Si(111) surface in HF-based solutions, extremely
well-passivated surfaces were demonstrated with surface-
recombination velocities down to 0.25 cm s~} (Ref. 27). This
was linked to ideal hydrogen termination of this surface (in
buffered solutions) yielding the Si(111)-(1 x 1):H structure,
where each silicon surface atom has a single, hydrogenated,
dangling bond.?® Figure 3(d) gives TDS data of our c-
Si(111) surfaces following HF etching, and prior to film
deposition. The dominant higher temperature peak 8, points
to monohydride termination. We attribute the much smaller
B> peak to higher hydrides present at the cleaved sample
edges or possible steps. The interaction of hydrogen with
the ¢-Si(100) surface is quite different: For this surface, each
(unreconstructed) surface atom features two dangling bonds,
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possibly hydrogenated.”” Figure 3(e) gives TDS data of our
¢-Si(100) surfaces following HF etching. The low-temperature
B, state is associated with higher hydrides where annealing
may transform (adjacent) Si(100)-(1 x 1):2H structures to
doubly occupied Si(100)-(2 x 1):H dimers by simultaneous
rupture of two Si-H bonds, forming a H, molecule in the
process [see also inset in Fig. 3(e)]. The B, state again is
rather a signature for monohydride termination.*

In bulk @-Si:H, mono and higher hydrides are present
too, depending on the deposition conditions. Monohydrides
are often associated with the divacancy defect, whereas
higher hydrides are rather present at hydrogenated internal
nanometer-sized voids or surfaces.’! The presence of the
latter is usually undesirable from an electronic point of view.
Dense films with low void density show superior light-soaking
stability.'” Other studies equally assigned a key role to paired
hydrogen atoms in the understanding of the SWE.3?

Of particular significance to our work is the SWE model
developed by Carlson.!" Essentially, this model links the
SWE to surface reconstruction of internal voids, inspired by
reconstructions allowed for the Si(100) surface.”” We briefly
repeat here its most salient features:!' Light-generated holes
can be trapped near voids in the a-Si:H bulk. For simplicity,
the void surface is assumed to be similar to the hydrogenated
Si(100) surface [Fig. 3(f)]. Subsequent motion of these holes
can induce the motion of atomic hydrogen on internal surfaces
[Fig. 3(g)], which may rupture a Si(100)-(2 x 1):H dimer
[Fig. 3(h)]. Further reconstructing may occur (not shown).
Low-temperature annealing yields reconstruction back to the
initial (lower-energy) dimer state.

Considering this model, we propose that the fast LID
is linked to the specific Si(100) surface chemistry where
light soaking results in dimer rupture and subsequent low-
temperature annealing reconstructs the dimers. This leads
respectively to deteriorated and improved passivation. The
main difference between our experimental a-Si:H/c-Si(100)
interfaces and the idealized model is the a-Si:H capping of

PHYSICAL REVIEW B 83, 233301 (2011)

the “internal” surface [indicated respectively by y and g
in the inset of Fig 3(a)]. Reconciling this difference with
the model suggests the presence of (nano-sized) hydrogen
platelets at the interface. For as-deposited material, hydride
modes at higher stretching frequencies are known to be more
dominant close to the interface rather than several nanometers
into the @-Si:H film.*3 The drastic initial improvement in
passivation by annealing [Fig. 1(a)] also points to relatively
disordered films at the interface,* possibly accommodating
such platelets. Our experimental a-Si:H/c-Si(111) structures
can equally be regarded as an idealized “internal” surface
capped by bulk a-Si:H material [indicated respectively by
o and y in the inset of Fig 3(a)]. No reconstruction is
expected for hydrogenated Si(111) surfaces.>* Consistently,
no fast LID is observed either for this surface. Finally, we
remark that (incomplete) room-temperature annealing of bulk
a-Si:H material has been associated with the presence of earlier
mentioned fast states.”*3> As such, it is tempting to conclude
that fast states in g-Si:H material must be linked to structures
similar to those specifically present at the ¢-Si(100) surface.

To summarize, 1-sun light soaking yields degradation in
passivation of the a-Si:H/c-Si interface, contrasting with the
improvement of passivation for its Al,O3/c-Si counterpart. The
degradation follows a power law, even though it may take time
to observe it. The detailed kinetics suggest the presence of
more than one type of defect. Upon very short exposure times
clear differences between ¢-Si(111) and ¢-Si(100) surfaces are
observed, which we interpret as due to a fast defect possibly
linked to ¢-Si(100) surface reconstruction.
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