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Spin waves in diluted magnetic quantum wells

P. M. Shmakov,1 A. P. Dmitriev,1,2 and V. Yu. Kachorovskii1,2

1A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
2Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany

(Received 23 July 2010; revised manuscript received 28 March 2011; published 13 June 2011)

We study collective spin excitations in two-dimensional diluted magnetic semiconductors, placed in an external
magnetic field. Two coupled modes of the spin waves (the electron and ion modes) are found to exist in the system
along with a number of the ion-spin excitations decoupled from the electron system. We calculate analytically
the spectrum of the waves, taking into account the exchange interaction of itinerant electrons both with each
other and with electrons localized on the magnetic ions. The interplay of these interactions leads to a number of
intriguing phenomena, including tunable anticrossing of the modes and a field-induced change in a sign of the
group velocity of the ion mode.
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Diluted magnetic semiconductors (DMS) have recently
been the subject of great interest1,2 due to their potential in
combining magnetic and semiconductor properties in a single
material. The DMS are formed by replacing cations in ordinary
semiconductors with magnetic ions, typically Mn ions. Strong
exchange interaction (EI) between the itinerant electrons and
the electrons localized on d shells of the magnetic ions leads
to a number of remarkable features of the DMS. In particular,
it results in the effective indirect interaction between the ion
spins and is thus promising for creating room-temperature
ferromagnetic systems that may offer the advantages of
semiconductors. It also dramatically enhances the effective
coupling of the itinerant electrons with the external magnetic
field. In contrast to conventional GaAs/GaAlAs systems,
where small values of the g factor prevent manipulation of the
spin degree of freedom, the giant electron Zeeman splitting
arising in the DMS as a manifestation of the EI can be on
the order of the Fermi energy,3,4 offering a wide range of
spintronics applications.

Here we discuss spin excitations in the two-dimensional
DMS. Our studies are motivated by recent experiments5–9

and a theoretical discussion9–11 focused on the spin dynamics
in diluted magnetic Cd1−xMnxTe quantum wells placed into
the magnetic field B.12 In Refs. 5–7, the spectrum of the
spin waves ω(k) was measured. Only one excitation mode
was observed. It was demonstrated that the excitations exist
in a finite range of wavelengths, k < km, and their group
velocity is negative: dω(k)/dk < 0. The experimental data
were interpreted5–7,10 in terms of conventional spin waves in
the Fermi liquids,13 while km was attributed to the edge of the
Stoner continuum (SC) of the single-particle spin excitations
(see Ref. 14 for discussion of the Stoner excitations). Such
interpretation implies that the only effect of the magnetic ions
on the electron-spin waves is the strong renormalization of the
electron Zeeman splitting. However, more recent experimental
observations8,9 supported by theoretical studies9,11 appear to
be in disagreement with this conclusion. Indeed, in Refs. 8
and 9, two modes of the collective homogeneous (k = 0) spin
excitations were observed in Cd1−xMnxTe wells. The modes
were identified8,9,11 as the spin excitations of delocalized
electrons (the electron mode) and the electrons on d shells of
Mn ions (the ion mode). The dependencies of the frequencies

ω1,2(0) of observed modes on B are shown schematically in
Fig. 1. The most important observation is the anticrossing
(AC) of the modes, which occurs at a certain “resonant” field
B = Bres. As was also shown,9 other types of spin modes may
exist in the system, corresponding to excitations of the ion
spins decoupled from the spins of the itinerant electrons.

In this paper, we develop a theory of the spin waves in
diluted magnetic quantum wells placed into a magnetic field.
We study analytically two collective modes that correspond to
coupled propagation of the electron and ion-spin excitations.
We also discuss the ion modes decoupled from the electron
system. To describe the homogeneous spin oscillations (k =
0), it is sufficient to take into account only one type of the
EI: the interaction of the itinerant electrons with electrons
localized on the Mn ions. The thus-obtained results coincide
with those presented in Refs. 8 and 9. For k �= 0, the EI
between delocalized electrons comes into play.15 Our main
purpose is to demonstrate that the simultaneous presence of
two types of EI give rise to interesting phenomena; the most
remarkable one is the magnetic-field-driven AC of the spin
modes. In contrast to the case k = 0, the AC can take place in
a wide range of B and may be tuned by the field to occur at a
certain value of k (see Fig. 2).

We consider the two-dimensional (2D) degenerate electron
gas interacting with randomly placed magnetic ions. The elec-
trons are located in the r = (x,y) plane and occupy the lowest
level in the well. The ions are distributed homogeneously
with the 2D concentration nJ , which is assumed to be much
higher than the electron concentration ne. The magnetic field
is applied parallel to the well plane (B ‖ ex). The field leads
to the Zeeman splitting of the electron- and ion-spin levels
with energies h̄ωe and h̄�J , respectively, while the orbital
motion remains intact. The Hamiltonian of electron-ion EI
reads ĤJe = −α/2

∑
k σ̂ Ĵkδ(r − rk)|�(zk)|2, where σ̂ is the

Pauli matrix vector, Ĵk are the spin operators of the ions located
at the points Rk = (rk,zk), and �(z) = √

2/a sin(πz/a) is a
wave function of the lowest level in a rectangular well of width
a. Since nJ � ne, the distance between the ions is much
smaller than the electron wave length, and the mean-field
approximation is applicable. In this approximation, we first
replace σ̂ Ĵk with 〈σ̂ 〉Ĵk + σ̂ 〈Ĵk〉, where averaging is taken
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FIG. 1. (Color online) AC of the electron- and ion-spin precession
frequencies �e and �J at resonant magnetic field B = Bres; �0

e is the
edge of the SC.

over density matrix of the system ρ̂. After such decoupling,
one may search the solution of the quantum Liouville equation
for ρ̂ as a product of the electron and ion density matrices:
ρ̂ = ρ̂e(r,r′,t)

∏
k ρ̂k(t). The average spins of the electrons and

ions are given by s0(r,t) = n−1
e

∫
s(r,p,t)d2p/(2πh̄)2, Jk(t) =

Tr[ρ̂k(t)Ĵk], where s(r,p,t) = Tr(σ̂ f̂ )/2 is the electron-spin
density and f̂ = f̂ (r,p,t) is the Wigner function correspond-
ing to ρ̂e. Next, we replace Jk(t) with a smooth function
J(r,z,t). Doing so, one finds the electron-spin precession
frequency in the ion-induced exchange field,

ωeJ (r,t) = αnJ J̄(r,t)/h̄a (1)

[here J̄(r,t) = ∫
dz|�(z)|2J(r,z,t)], and the local frequency

of the ion-spin precession,

ωJe(r,z,t) = αnes0(r,t)|�(z)|2/h̄. (2)

In addition to the electron-ion EI, we take into account the
isotropic ferromagnetic electron-electron EI by adding the
term13

ωee(r,t) = −2Gneν
−1s0(r,t) (3)

to the electron-spin precession frequency. Here G < 0 is
the interaction constant, ν = m/2πh̄2, and m is the electron
effective mass.

The equilibrium electron-spin density, seq(p) = [n↑(ε) −
n↓(ε)]ex/2 (here n↑↓(ε) = {exp[(ε ∓ h̄�0

e/2 − EF )/T ] +
1}−1 and ε = p2/2m), is expressed via the effective Zeeman
splitting h̄�0

e . The average electron spin reads seq
0 = exξ/2,

FIG. 2. (Color online) (a) AC of the two collective spin modes
for B < Bres. (b) Sign inversion of the group velocity of the ion mode
for B > B0.

where ξ = h̄�0
e/2EF . The frequency �0

e = ωe + ωeJ + ωee is
found self-consistently from Eqs. (1) and (3):

�0
e = �e/(1 + G), (4)

where �e = ωe + αnJ J
eq
x /ah̄ is the effective electron Zeeman

splitting renormalized by EI with the ions. In deriving these
equations, J(r,z) was substituted with the equilibrium ion
polarization, Jeq = J

eq
x ex = 5

2B5/2(h̄�J /T )ex , where BJ (x) is
the Brillouin function. We also assumed that the equilibrium
exchange field acting on the ions is small, αneξ/2a � h̄�J ,

which implies that the equilibrium ion polarization is not
affected by EI. In contrast, the electron Zeeman splitting
is strongly enhanced due to high ion concentration, so that
�e � |ωe|.16

The out-of-equilibrium spin dynamics can be described by
the Landau-Silin equation17 for the electrons and an equation
describing the dynamics of the local ion-spin density:

∂f̂

∂t
+ p

m
∇f̂ − 1

2

{
∂f̂

∂p
,
∂ε̂

∂r

}
+ i

h̄
[ε̂,f̂ ] = 0, (5)

∂J
∂t

+ [�J ex + ωJe] × J = 0. (6)

Here [· · ·] and {· · ·} stand for the commutator and the anticom-
mutator, respectively, and ε̂ = −h̄[ωeex + ωeJ + ωee]σ̂/2.

For ξ � 1, Eqs. (5) and (6) give a system of coupled equations
for the perpendicular (with respect to B) components of the
electron and ion spins:

∂s

∂t
+ (

vF n∇ + i�0
e

)
(s + Gs0) = δ1(iJ̄ + ηn∇J̄ ),

∂J̄

∂t
+ i�J J̄ = iδ2s0. (7)

Here s = sy + isz,J̄ = J̄y + iJ̄z, vF is Fermi velocity, n =
(cos ϕ, sin ϕ), ϕ is the velocity angle in the well plane,
δ1 = αnJ ξ/2h̄a, δ2 = 3αneJ

eq
x /2h̄a, η = vF /�0

e , and s0 =∫ 2π

0 sdϕ/2π.18 From Eqs. (7) we find the dispersion equation
for the collective modes,√√√√1 − v2

F k2(
ω − �0

e

)2 = ω

ω − �0
e

δ2 + G�0
e(ω − �J )

δ2 + �e(ω − �J )
,

where δ = √
δ1δ2. For k = 0, we get9,11 ω1,2(0) =

(�e + �J )/2 ±
√

(�e − �J )2/4 + δ2. The AC occurs when
�e(B) = �J (B). We see that the constant G drops out from
ω1,2(0). In contrast, the dispersion of the collective modes
strongly depends on the relation between |G| and the dimen-
sionless parameter δ/�e. For δ/�e � |G|, the anticrossing
occurs for B < Bres when �e > �J [see Fig. 2(a)]. To see
this, one may consider the case δ = 0 (coupling between the
transverse components of electron and ion spins is turned off)
as a first approximation. This approximation was implicitly
used in Ref. 10. For δ = 0, there are two branches of
the spectrum [dashed lines in Fig. 2(a)], corresponding to
the Fermi-liquid spin waves with negative dispersion and the
dispersionless excitations of the ion spins. Importantly, for
B < Bres these two branches intersect each other. Turning on
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a finite coupling, δ �= 0, results in the AC, which, for B close
to Bres, occurs at the point

kres =
√

2|G|�e(�e − �J )/vF (1 + G). (8)

Remarkably, kres depends on B, so that the AC position may
be tuned by the external field. The splitting between the modes
for k ≈ kres is given by ω1(kres) − ω2(kres) ≈ 2δ.

As seen from Fig. 2(a), the upper branch of the spectrum at
a certain wave vector km reaches the SC, which is defined by
inequality |ω − �0

e | � vF k. For k > km the corresponding ion-
type excitations slowly decay in time due to weak exchange
coupling with the system of itinerant electrons. This decay is
similar to the well-known Landau damping in plasma,17 so the
decay rate γ is calculated in a quite analogous way, yielding

γ ≈ δ2�J vF

√
k2 − k2

m

�0
e

[
(1 + G)2v2

F

(
k2 − k2

m

) + G2�2
J

] . (9)

As a function of k, γ has a maximum. The maximal value
is given by γmax = δ2/2|G|�e ≈ 3αneξ/8h̄|G|a. Using the
data of Ref. 9 (ne = 0.7 × 1011 cm−2, a = 80 Å, α = 1.5 ×
10−23 eV cm3, |G| ≈ 0.2, ξ ≈ 0.2), we find γmax ≈ 109 s−1.

Let us now comment on experimental results.5–9 References
8 and 9 were mostly focused on the resonant case, B ≈ Bres.

In the vicinity of the resonance, the electron and ion collective
modes are strongly coupled and, consequently, are equally
excited by the light impulse. This allowed the authors of Refs. 8
and 9 to identify both modes and to observe the AC at k = 0. In
contrast, for B � Bres (which corresponds to the experimental
situation in Refs. 5–7), the coupling is very weak for small k,
so the ion mode is difficult to excite. The coupling is enhanced
in the AC point. One can see, however, that km becomes
smaller than kres for �J < �0

e(κ + ξ )/(1 + κ + √
1 + 2κ)

[here κ = ξ (1 + 2G)/G2], and the AC disappears.19 This
inequality was satisfied in Refs. 5–7, which may explain why
the ion-type mode and the AC were not observed in those
experiments.

Next, we focus on another interesting phenomenon arising
due to the interplay of two types of interaction, namely, a
change in a sign of the group velocity of the ion mode. It can
by understood by analyzing the spectrum in the limit k → 0
when ω1,2(k) ≈ ω1,2(0) + v2

F k2/2β. Here β = �0
e[ω1,2(0) −

�0
e][(ω1,2(0) − �e)2 + δ2]/ω1,2(0)δ2, so that the dispersions

of the modes are controlled by signs of ω1(0) − �0
e and

ω2(0) − �0
e , respectively. As seen from Fig. 1, there is a critical

field B0 ≈ Bres/(1 + G), at which ω1(0) = �0
e (for G ≈ −0.2

and Bres = 6 T,8,9 one gets B0 = 7.5 T). For B < B0, both
branches are below the SC and have negative dispersions.
While B increases, the ion branch becomes shorter (km → 0)

and disappears when B = B0. For B > B0, this branch appears
again above the SC and has a positive dispersion [see Fig. 2(b)].
The dispersion of the ion mode can also change sign for
�e > �J , provided that δ/�e � |G|.

Above we discussed the coupled collective modes. Now
we notice that Eqs. (7) also have a solution s = 0 and J̄ = 0.

Importantly, the latter equation, apart from the trivial solution
J(r,z,t) = 0, also has nonzero solutions obeying the constraint∫

dz|�(z)|2J(r,z,t) = 0. Such solutions were called “decou-
pled” modes.9 To find a number of such modes, one should go
beyond continuous approximation and replace integration over
dz in all of the above equations with the sum over N atomic
layers. This yields N − 1 decoupled modes, corresponding to
independent solutions of the equation

∑m=N
m=1 Jm|�(zm)|2 =

0.9 All these modes are, indeed, decoupled from electron
system, provided that one neglects the equilibrium electron
exchange field acting on the ion spins. In this approximation,
we find from Eq. (6) that the modes have no dispersion and
their frequencies coincide and are equal to �J . In fact, weak
interaction with the electrons gives rise to a small splitting
of the ion Zeeman energies, which become dependent on
m: h̄�Jm = h̄�J + αneξ |�(zm)|2/2. Taking into account this
splitting, one finds that in a symmetric quantum well, which
we consider here, the decoupled modes with antisymmetric
distribution of ion spins Jm ∝ δm,m0 − δm,−m0 still obey the
condition J̄ = 0, thus having no dispersion. For the m0th
mode, the ion-spin precession frequency is equal to �Jm0 .

As for the modes with a symmetric distribution, they become
weakly coupled to the electron collective mode. However,
the corresponding dispersion is very weak, provided that
ne/nJ � 1. Symmetric modes also become weakly coupled
to the single-electron excitations and, consequently, slowly
decay in the region of the SC with the characteristic rate
δ2vF

√
k2 − k2

m/�e�J N.

To conclude, we have developed a theory of the spin waves
in the 2D DMS. We have described analytically two collective
modes corresponding to the coupled excitations of the electron
and ion spins and a large number of decoupled excitations
of the ion spins. Our main finding is the tunable AC of
the collective modes. We have also predicted a field-induced
change in a sign of the group velocity of the ion mode and
have calculated the decay of the waves in the SC.

Note added in proof. Recently, we became aware of two
papers were published discussing closely related issues.20,21
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