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Exact energy of the spin-polarized two-dimensional electron gas at high density
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We derive the exact expansion, to O(r,), of the energy of the high-density spin-polarized two-dimensional

uniform electron gas, where r; is the Seitz radius.
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The three-dimensional uniform electron gas is a ubiquitous
paradigm in solid-state physics' and quantum chemistry,” and
has been extensively used as a starting point in the development
of exchange-correlation density functionals in the framework
of density-functional theory.> The two-dimensional version of
the electron gas has also been the object of extensive research*>
because of its intimate connection to two-dimensional or
quasi-two-dimensional materials, such as quantum dots.%’

The two-dimensional gas (or 2-jellium) is characterized
by a density p = py + p,, where p; and p, are the (uniform)
densities of the spin-up and spin-down electrons, respectively.
In order to guarantee its stability, the electrons are assumed
to be embedded in a uniform background of positive charge.®
We will use atomic units throughout.

It is known from contributions by numerous workers’!
that the high-density (i.e., small ry) expansion of the energy
per electron (or reduced energy) in 2-jellium is
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where r, = (p)~/? is the Seitz radius, and
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is the relative spin polarization.®> Without loss of generality,
we assume p, < p4,1.e., ¢ € [0,1].

The first two terms of the expansion (1) are the kinetic and
exchange energies, and their sum gives the Hartree-Fock (HF)
energy. The paramagnetic ({ = 0) coefficients are
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and their spin-scaling functions are
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In this Brief Report, we show that the next two terms, which
dominate the expansion of the reduced correlation energy,””
can also be obtained in closed form for any value of the relative
spin polarization ¢.
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The logarithmic coefficient £,(¢ ) can be obtained by a Gell-
Mann-Brueckner resummation®! of the most divergent terms
in the infinite series in Eq. (1), and this yields'?
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where
1
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1+ 1/u?
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is the Fermi wave vector associated with the spin-up and spin-
down electrons, respectively. After an unsuccessful attempt
by Zia,!! the paramagnetic ({ = 0) and ferromagnetic ({ = 1)
values,

£ (0) = —v2 (3]—2 - 1) = —0.0863136..., (10)
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were found by Rajagopal and Kimball'? and the spin-scaling
function,
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was obtained 30 years later by Chesi and Giuliani.'® The
explicit expression for F(x,y) is

F(x,y)=4(x+y)—nx —4xE (1 — z—j> + 2x2K(x,y),
13)
where
(x? —y»)~Y2arccos(y/x), x <y,
wele,y) = {(y2 — x?)""2arccosh(x/y), x>y, (14)

and E(x) is the complete elliptic integral of the second kind.?
The constant coefficient £9(¢) can be written as the sum

e0(0) = e3(¢) + &b (15)
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of a direct (“ring-diagram”) term £j(¢) and an exchange term
e. Following Onsager’s work”® on the three-dimensional gas,
the exchange term was found by Isihara and Ioriatti'* to be

8
6b = B(2) — —p(4) = +0.114357 ..., (16)
T
where g is the Dirichlet beta function?? and G = B(2) is

Catalan’s constant. We note that 83 is independent of ¢ and the
spin-scaling function therefore takes the trivial form
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where
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In the paramagnetic ({ = 0) case, the transformation s =

2 2 :
eb(¢) q°/4 —u” and t = q u yields
Ty =22 =1 17
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The direct term has not been found in closed form, but we g5(0) = —— / / Wi
now show how this can be achieved. Following Rajagopal and 27 Jooo Jo s° )
Kimball,'* we write the direct term as the double integral (s—12+2+5—1\"?
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which confirms Seidl’s numerical estimate!’
£5(0) = —0.306 82 £ 0.000 12. (22)
In the ferromagnetic (¢ = 1) case, Eq. (18) yields
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In intermediate cases, where 0 < ¢ < 1, we define the spin-
scaling function

£5(0)
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and, from (18), we have
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Integrating over r gives
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where
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FIG. 1. Y_»(¢), Y_1(2), Y§(2), T(?({), and Yy(¢) as functions of ¢.
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TABLE 1. Energy coefficients and spin-scaling functions for
2-jellium in the high-density limit.

Term  Coefficient £(0) e(l) (&)
. 1
ry £_2(%) 3 1 Eq. (5)
42 8
ry! e-1(2) —3i - Eq. (6)
T 3
o In2—1
r £3(2) In2—1 5 Eq. (29)
8 8
£0(¢) B2 — ;ﬂ(ﬁl) B2 — 95(4) 1
10 1/10
rlnr, e(2) -2 <§ — 1) -7 (g - 1) Eq. (12)

and contour integration over z eventually yields
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This is plotted in Fig. 1 and agrees well with Seidl’s
approximation,'” deviating by a maximum of 0.0005 near
¢ = 0.9815.

In conclusion, we have shown that the energy of the
high-density spin-polarized two-dimensional uniform elec-
tron gas can be found in closed form up to O(ry).
We believe that these results, which are summarized in
Table I, will be useful in the future development of
exchange-correlation functionals within density-functional
theory.

xln<1+

We thank Prof. Stephen Taylor for helpful discussions.
PM.W.G. thanks the NCI National Facility for a gener-
ous grant of supercomputer time and the Australian Re-
search Council (Grants DP0984806 and DP1094170) for
funding.

“loos @rsc.anu.edu.au
fCorresponding author: peter.gill@anu.edu.au

'W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

2]. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).

3R. G. Parr and W. Yang, Density Functional Theory for Atoms and

Molecules (Oxford University Press, 1989).

“T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).

SE. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod.

Phys. 73, 251 (2001).

Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

7S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
8G. F. Giuliani and G. Vignale, Quantum Theory of Electron Liquid

(Cambridge University Press, Cambridge, 2005).

°S. Misawa, Phys. Rev. 140, A1645 (1965).
10F. Stern, Phys. Rev. Lett. 30, 278 (1973).
R, K. P. Zia, JI. Phys. C 6, 3121 (1973).

12A. Isihara and T. Toyoda, Ann. Phys. 106, 394 (1977).

3A. K. Rajagopal and J. C. Kimball, Phys. Rev. B 15, 2819 (1977).

4A. Isihara and L. Ioriatti, Phys. Rev. B 22, 214 (1980).

15B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

16C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys.
Rev. Lett. 88, 256601 (2002).

7M. Seidl, Phys. Rev. B 70, 073101 (2004).

18S. Chesi and G. F. Giuliani, Phys. Rev. B 75, 153306 (2007).

19N, D. Drummond and R. J. Needs, Phys. Rev. Lett. 102, 126402
(2009).

20E. Wigner, Phys. Rev. 46, 1002 (1934).

2IM. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).

2NIST Handbook of Mathematical Functions, edited by F. W. J.
Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge
University Press, New York, 2010).

BL. Onsager, L. Mittag, and M. J. Stephen, Ann. Phys. 18, 71
(1966).

233102-3


http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1267
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.72.895
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/PhysRev.140.A1645
http://dx.doi.org/10.1103/PhysRevLett.30.278
http://dx.doi.org/10.1088/0022-3719/6/21/015
http://dx.doi.org/10.1016/0003-4916(77)90316-5
http://dx.doi.org/10.1103/PhysRevB.15.2819
http://dx.doi.org/10.1103/PhysRevB.22.214
http://dx.doi.org/10.1103/PhysRevB.39.5005
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://dx.doi.org/10.1103/PhysRevB.70.073101
http://dx.doi.org/10.1103/PhysRevB.75.153306
http://dx.doi.org/10.1103/PhysRevLett.102.126402
http://dx.doi.org/10.1103/PhysRevLett.102.126402
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1002/andp.19664730108
http://dx.doi.org/10.1002/andp.19664730108

