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Heating of quasiparticles driven by oscillations of the order parameter in short
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We predict “heating” of quasiparticles driven by order parameter oscillations in the resistive state of short
superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |�| and the
dependence of the spectral functions both on |�| and the supervelocity Q are the origin of this effect. Our results
are opposite to those of Aslamazov and Larkin [Zh. Eks. Teor. Fiz. 70, 1340 (1976)] and Schmid et al. [Phys.
Rev. B 21 5076 (1980)] where “cooling” of quasiparticles was found.
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I. INTRODUCTION

We study theoretically the resistive state in short supercon-
ducting microbridges [with length L less than the coherence
length ξ (T )] at temperatures close to the critical one. This
subject was widely discussed and studied in the 1970s of last
century (for review, see Ref. 1) and has regained renewed
interest recently (see, for example, Refs. 2 and 3). Interesting
phenomena occurring in such a system, and which are still
not completely understood, are: (i) the hysteresis of current-
voltage (IV) characteristics at relatively low temperatures1

and (ii) the “foot”-like (sometimes also called “shoulder”-
like, see Ref. 4) feature in the IV characteristics observed
experimentally mainly in tin microbridges at low voltages and
at temperatures close to Tc (Refs. 5–7) (see also Ref. 1). The
hysteresis is usually explained by Joule heating while for the
“foot”-like structure several theories were proposed8–10 that
are based on the idea that the quasiparticle distribution function
is out of equilibrium (overcooled) as a consequence of the
variation in time of the magnitude of the superconducting order
parameter � = |�|eiφ in the superconducting microbridge.
The motivation for those theories comes from the fact that
the energy of the quasiparticles depends on |�| and when the
characteristic time scale for the variation of |�| is smaller than
the inelastic relaxation time τin of the quasiparticle distribution
function f (ε), the occupancy of the states with energy ε may
differ from the equilibrium one (for a detailed discussion, see
the book of Tinkham11).

To simplify the analytical treatment of the problem, the
authors of Refs. 8 and 9 assumed that in the dynamic (resistive)
state, |�| varies as fast as δφ and to find the coordinate and time
dependence of |�|(x,t), they solved the stationary Ginzburg-
Landau equation with a time dependent δφ(t). Furthermore,
they assumed that: (1) the relaxation term in the kinetic
equations can be neglected when the period of oscillations of
the order parameter is much smaller than τin, (2) the spectral
functions depend only on the local magnitude of the order
parameter |�| (so called local approach). We argue that for
a realistic inelastic relaxation time τin, and even for a short
microbridge L � ξ (T ), the nonequilibrium contributions to
f (ε) strongly affect the dynamics of |�| and results in a larger
time scale for |�| than for δφ. Moreover, the relaxation term in
the kinetic equations plays a very important role at any voltage,
and therefore, cannot be omitted. Taken together with the

dependence of the spectral functions on both |�| and Q, they
provide an averaged “heating” of the quasiparticles, instead
of “cooling”.8,9 Some kind of “cooling” of quasiparticles at
high voltages can be found only when one takes into account
the additional terms in the kinetic equations which couple the
longitudinal fL (odd in energy) and transverse fT (even in
energy) parts of 2f (ε) = (1 − fL(ε) − fT (ε)) due to the finite
spectral supercurrent (in previous works,8,9 these terms were
omitted). This “cooling” is not effective at low voltages and
“heating” together with the large time scale of the variation
of |�| results in a hysteresis of the IV characteristics for
relatively large τin. We should stress that the time averaged
“heating” of quasiparticles is driven by oscillations of |�| in
the superconducting microbridge and not by Joule dissipation
∼j · E (j is the current density and E is the electric field).

The paper is organized as follows. In Sec. II, we discuss
the theoretical model. In Sec. III, we present and discuss our
results. In Sec. IV, we present our conclusions and discuss
the possible origin of the experimentally found5–7 “foot”-like
structure in the IV characteristics.

II. MODEL

To simulate the resistive state in a short superconduct-
ing microbridge, we use the kinetic equations derived in
Refs. 12–15 for “dirty” superconductors near Tc:
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here Q = (∂φ/∂x − 2eA/c) is a quantity which is propor-
tional to the superfluid velocity (vs = DQ), ϕ is an electro-
static potential, δfL = fL − f 0

L and f 0
L(ε) = tanh(ε/2kBT ).

N1, N2, R2 are the spectral functions which should be
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found from the Usadel equation for the normal α(ε) =
cos � = N1(ε) + iR1(ε) and anomalous β1 = βeiφ , β2 =
βe−iφ (β(ε) = sin � = N2(ε) + iR2(ε)) Green functions

h̄D
d2�

dx2
+

((
2iε − h̄

τin

)
− h̄DQ2 cos �

)
sin �

+ 2|�| cos � = 0, (2)

Equations (1a) and (1b) are coupled through the finite
spectral supercurrent13,16 jε = Re(β1∇β2 − β2∇β1)/2 =
2N2R2Q. Below we show that the coupling terms in Eqs. (1a)
and (1b) strongly influence δfL and the dynamics of the order
parameter which is described by the modified time-dependent
Ginzburg-Landau equation

πh̄

8kBTc

∂�

∂t
+ (�1 + i�2)�

= ξ 2
GL

∂2�

∂x2
+

(
1 − T

Tc
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)
�, (3)

where ξ 2
GL = πh̄D/8kBTc and �2

GL = 8π2(kBTc)2/7ζ (3) are
the zero temperature Ginzburg-Landau coherence length and
the corresponding order parameter. Nonequilibrium parts
of the quasiparticle distribution function enter Eq. (3)
via the potentials �1 = −∫ ∞

0 R2δfLdε/|�| and �2 =
− ∫ ∞

0 N2fT dε/|�|. When δfL is negative, the potential �1

is positive and vice versa. In some respect, from the structure
of Eq. (3), it follows that one may introduce an “effective”
temperature for the quasiparticles Teff(x,t) = T + �1(x,t)Tc

and thus the positive/negative sign of �1(x,t) means local
“heating”/“cooling” of quasiparticles. We should stress that
we use the term “effective” temperature only in order to give
a simple physical interpretation of our numerical results and
describe the integral effect of the nonequilibrium distribution
f (ε) which enters the equation for the order parameter via the
potentials �1(x,t) and �2(x,t). Please note that the resulting
nonequilibrium f (ε) cannot be viewed as a Fermi-Dirac
function with effective temperature Teff(x,t) and electrostatic
potential ϕ(x,t).

The current and the electrostatic potential in the sample can
be found using the following equations:

j = σn
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0
N1

∂f 0
L

∂ε
dε, (5)

where σn is the normal state conductivity. In metals, we have
for the charge density, ρ � 0 and the condition divj = 0 is
satisfied due to Eqs. (1b), (3), and (5).

In the derivation of Eqs. (1a) and (1b), it was assumed
that deviations from the equilibrium are small δfL,fT � f 0

L .
It allowed one to linearize the collision integral due to
electron-phonon collisions and to write it in the relaxation time
approximation. Furthermore, it was assumed that the inelastic
relaxation time due to electron-electron interactions is much
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FIG. 1. (Color online) Schematic illustration of the model system
with the geometric parameters.

larger than due to electron-phonon and hence one can neglect
the corresponding collision integral.

To model the superconducting microbridge connected to
superconducting bulk leads in the current carrying regime, we
consider the system shown in Fig. 1. It consists of normal bulk
reservoirs where the external voltage Vext is applied and the
constriction is modeled as a film with variable cross section
S2 � S1 (here S1(2) = W1(2)d1(2) is the cross section, W1(2) is
the width, and d1,2 is the thickness of the film (in this way,
we model variable thickness microbridge). The narrowest part
of the film is called the microbridge and the wide parts are
assigned as being the leads. The wide part of the film of
length 2L2 is in the normal state and the rest of the film
is in the superconducting state (for relatively small Vext). In
our calculations, we chose L2/L1 � 1 and the length L1 was
taken large enough to neglect nonequilibrium effects from the
NS boundaries located at x = ±(L1 + L/2) on the transport
properties of the microbridge. The large normal part of the
film is needed because the voltage V enters in the boundary
conditions for fL and fT (see, for example, Ref. 16) and almost
all the voltage drop occurs in the normal part of the film,
effectively leading to a state with applied constant current
even when the microbridge transits to the resistive state. Due
to the large ratio S2/S1 � 1, the transport current does not
destroy superconductivity in the wide part of the film and
we mainly study the resistive state in the microbridge. In
our calculations, we assume that the lateral size of the film
is much smaller than the London penetration depth λ (or
effective penetration depth λ⊥ = λ2/d1(2)), and therefore, we
may neglect screening effects. Furthermore, we suppose that
the current density is distributed uniformly over the width of
the film. This assumption is, strictly speaking, not valid in the
region where the current transits from the wide part to the
narrow one (and vice versa). But because the current density
is much smaller in the wide part than in the narrow part, we
may neglect such type of effects (at least for variable thickness
microbridges) and consider variables which are averaged over
the width and thickness of the film. Because the length of the
microbridge is much larger than its width, we may assume a
uniform current distribution over the width of the microbridge.
Thus, our system is quasi-1D and we should only take into
account the continuity of �, �, fT , δfL, and conservation
of the superconducting [Eq. (6a) below], normal [Eq. (6d)],
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energy [Eq. (6c)], and spectral [Eq. (6b)] currents at the points
x = ±L/2 through the boundary conditions

S2∂�/∂x|±L/2 = S1∂�/∂x|±L/2, (6a)

S2∂�/∂x|±L/2 = S1∂�/∂x|±L/2, (6b)
S2D
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2
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It is easy to find the solution to Eqs. (1)–(5) in the normal
region, and therefore, we only need to solve them in the super-
conducting region (in the interval, −L1 − L/2 < x < L1 +
L/2) with the following boundary conditions: �|±(L1+L/2) =
0, �|±(L1+L/2) = 0, δfL|±(L1+L/2) = 0, fT |±(L1+L/2) = −eϕ± ·
∂f 0

L/∂E, where ϕ± = ∓Vext ± j±L2/σn and the current den-
sity j± in the points x = ±(L1 + L/2) could be found from
Eq. (4).

In our numerical calculations, we use dimensionless units.
The order parameter is scaled by �0 (�0 = 1.76 kBTc �
0.57�GL is the zero temperature order parameter value in
the weak coupling limit), distance is in the units of the zero
temperature coherence length ξ0 = √

h̄D/�0 � 1.2ξGL, time
is in the units of t0 = h̄/�0, and temperature in the units of
the critical temperature Tc. The current is scaled in the units
of j0 = �0σn/(ξ0e), the superfluid velocity is in the units of
Q0 = h̄c/2eξ0, and the electrostatic potential is in the units
of ϕ0 = �0/e. It is useful to introduce the dimensionless
inelastic relaxation time τ̃in = τin/t0 which is the main control
parameter in the model described by Eqs. (1a) and (1b).

We used the implicit method for the numerical solution
of Eqs. (1)–(3). The coordinate step of the grid was equal
to ξ0 (which is much smaller than ξ (T ) for the considered
temperature interval 0.92 < T/Tc < 0.99) and the time step
varied from 0.5t0 up to 2t0 depending on the temperature.
In our numerical procedure, we use an even number of grid
points and consequently the center of the microbridge where
the order parameter goes to zero (the phase slip center) is
situated between grid points. Therefore, any quantity in the
phase slip center (PSC) is in fact calculated at a distance δx =
ξ0/2 � ξ (T ) from the PSC.

For the geometrical parameters of the film, we used the
following values: S2/S1 = 10, L2 = 500 ξ0, and L1 was varied
from 15 ξ0 (at T = 0.92Tc) up to 45 ξ0 (at T = 0.99Tc). In our
calculations, we used τ̃in =4–1000 which covers typical values
for many low temperature superconductors (for example,
Ref. 15 in Nb τ̃in � 102 and in Al τ̃in � 103). In the wide
part of the film, we used τ̃in = 5 which allows us to decrease
Lin and the length L1 in order to optimize the calculation time.

To find the current-voltage characteristics of the super-
conducting microbridge we applied a large voltage ±Vext to
the normal reservoirs which induces a large current (I > Ic)
resulting in a resistive state in the microbridge. Then we
decrease Vext in a step-wise manner and we find the time
averaged difference of the electrostatic potentials between
the ends of the microbridge (V = ϕ(−L/2) − ϕ(L/2)) as a
function of Vext. In a similar way, it is easy to find the critical
voltage V c

ext (or critical current Ic) of the superconducting
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FIG. 2. (Color online) Time dependence of the current, amplitude
of the order parameter in the center of the microbridge and voltage
drop over the microbridge at fixed external voltage Vext. The results
were found from numerical solution of Eqs. (1)–(5) in the presence
of coupling terms in Eqs. (1a) and (1b). The geometrical parameters
of the system are: W2/W1 = 10, L2 = 500 ξ0, L1 = 22 ξ0, and L =
7 ξ0.

microbridge when the superconducting state becomes unstable
(by increasing Vext from small values). As a result, we find the
dependence V (Vext/V c

ext) which practically coincides with the
dependence V (I/Ic). In Fig. 2, we plot the time dependence of
the current in the microbridge which illustrates that indeed I

varies weakly in time and the constant Vext induces an almost
constant I in our model system even when the microbridge is
in the resistive state.

III. RESULTS

In Fig. 3, we show the current-voltage characteristics
of a short microbridge with length L = 7ξ0 at T = 0.96Tc

calculated for different values of the inelastic relaxation time
τin in the regime of decreasing applied current (the length
and temperature were chosen close to the parameters of the
experiment of Ref. 7 and for tin τ̃in ∼ 200). First, we should
note the strong influence of the coupling terms in Eqs. (1a) and
(1b) on the IV characteristics: voltage increases (decreases)
with increasing τin at I � Ic in case of the absence (presence)
of coupling terms. Second, in both cases, the IV curves are
hyperbolic-like with no “foot”-like feature and with hysteresis
for relatively large τin (the transition to the superconducting
state occurs at the retrapping current Ir which could be
smaller than the critical current Ic for the transition from the
superconducting to the resistive state).

We plot in Fig. 4, the energy dependence of δfL averaged
over one oscillation period T|�| taken in the phase slip
center. The effect of the coupling terms are clearly visible

by comparing Figs. 4(a) and 4(b). The δf
PSC
L is on the average

negative in case the coupling terms are absent and positive
when they are included.

Let us now discuss the origin of the sign of δf
PSC
L for

the different energies. First, we consider the case when the
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FIG. 3. (Color online) Current-voltage characteristics (in the
regime of decreasing current) for a short microbridge with length
L = 7 ξ0 at T = 0.96 Tc calculated for different values of the inelastic
relaxation time in the absence (a) and the presence (b) of coupling
terms in Eqs. (1a) and (1b). Solid curve is the IV characteristic of a
short microbridge in the absence of nonequilibrium effects (see, for
example, Ref. 4).

coupling terms are neglected. Let us simplify Eq. (1a) to

∂δfL

∂t
= −δfL

τin

− R2

N1

∂f 0
L

∂ε

∂|�|
∂t

, (7)

where we omit the diffusive and coupling terms. If we average
Eq. (7) over T|�| then we obtain

δf L = −τin

∂f 0
L

∂ε

∫ T|�|

0

R2

N1

∂|�|
∂t

dt. (8)

If R2 and N1 are solely a function of |�| then δf L = 0. But
in general the spectral functions R2 and N1 are a function of
two variables |�|, |Q| [at fixed x and ε, see Eq. (2)]. To get
the insight that how the ratio R2/N1 changes with varying |Q|
at fixed |�|, one may solve Eq. (2) with zero second derivative
and find that the ratio R2/N1 decreases when ε � |�| and
increases when ε � |�| for large |Q|.

In Fig. 5, we present the time dependence of |�|, Q, and �1

in the absence of the coupling terms in Eqs. (1a) and (1b). First
of all, we should note that the amplitude of the oscillations of
|�| is smaller than �lead. The reason for this effect is the large
characteristic time scale for the variation of |�| in comparison
with the one of δφ. Indeed it is known that nonequilibrium
effects may considerably slow down the dynamics of |�|.17–19

When |�| increases (decreases), its value is smaller (larger)
than one could expect from the static dependence |�|stat(δφ)
(see, for example, Eq. (1.3) in Ref. 4) for the given value
of δφ(t) ∼ Q(t)L. For example, when δφ reaches zero (which
corresponds to the moment in time when Q = 0 after the phase
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FIG. 4. (Color online) Typical energy dependence of the time
averaged δfL in the center of the short microbridge (i.e., in the phase
slip center) in the absence (a) and the presence (b) of the coupling
terms in Eqs. (1a) and (1b). In the inset of Fig. 4(b), we show the
distribution of the time averaged �1 and |�| along the microbridge
and the leads (schematically shown).

slip event in Fig. 5), the order parameter is still much smaller
than �lead.

Due to the time delay in the variation of |�|, the superve-
locity Q ∼ δφ/L is different for the same values of |�| taken
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FIG. 5. (Color online) Time dependence of the order parameter
|�|, the supervelocity Q, and the potential �1 in the center of the short
microbridge (parameters are the same as in Fig. 4) at I = 1.2Ic and
τ̃in = 250 as found from a numerical solution of Eqs. (1)–(3) without
coupling terms. The horizontal dashed line marks |�| = �lead/2 to
illustrate the corresponding different Q values at two moments in
time.
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at different times during the period T|�| (see dashed lines in
Fig. 5). Therefore, the ratio R2/N1 in the increasing region
of |�| is larger (smaller) for ε � |�|(x,t)(ε � |�|(x,t)) than
in the decreasing region. It results in δf L < 0 in the phase

slip center for ε � |�|PSC
and δf L > 0 for ε � |�|PSC

[see
Fig. 4(a)]. The time averaged potential �1 is positive in the
microbridge [see inset in Fig. 4(b)] which implies “heating”
of quasiparticles and suppression of the superconducting
properties. The larger the τin the stronger the deviation form
equilibrium [see Eq. (8) and Fig. 4(a)] and the larger the
hysteresis [see Fig. (1a)].

Consider now the effect of the coupling terms in Eqs. (1a)
and (1b). The term D∇(jεfT ) = 2D∇(N2R2QfT ) in Eq. (1a)
may be considered as an additional source of nonequilibrium
which is nonzero in the energy interval δε � Q2 near local
|�|(x) [in the spatially uniform case with Q = 0 and τin =
∞, one has N2R2 ∼ |�|(x)δ(ε − |�|(x)), see, for example,
Ref. 9]. From Eq. (1b), we may roughly estimate fT ∼
−eϕ∂f 0

L/∂ε and the sign of the coupling term D∇(jεfT ) is
defined mainly by the product Q · E (for discussion of the
effect of the coupling terms see also Ref. 19).

Our calculations show (see Fig. 6) that near the supercon-
ducting leads, the product Q · E is mainly (in time) positive
and in the phase slip center, it can be both positive and
negative (due to the sign change of Q, see Fig. 5). It results
in positive δfL at ε ∼ �lead, see Fig. 4(b) (at these energies,
the ends of the microbridge are determinative because near
the leads |�| has a low oscillation amplitude and Q · E > 0).
At lower energies ε ∼ |�|PSC < �lead, the main source of
nonequilibrium is situated in the center of the microbridge
where both Q · E and ∂|�|/∂t change sign during the oscil-

lations and δfL is negative except at low energies ε � |�|PSC

[see Fig. 4(b)]. The net effect is a negative time averaged �1

[see inset in Fig. 4(b)], and therefore, an enhancement of the
superconducting properties which explains the decrease of the
voltage at fixed current I � Ic with increase of τin [see Fig.
3(b)]. But at low voltages, the effect of the coupling terms
(∼QE) becomes smaller and the role of “heating” increases.
This subsequently leads to an increase of the voltage at fixed
current I ∼ Ic with increasing τin and to a hysteresis of the IV
curves [but which is smaller than in the case without coupling
terms, compare Figs. 3(a) and 3(b)].

IV. DISCUSSION

The origin of the here predicted time averaged “heating” of
quasiparticles is different from the Joule dissipation. Indeed,
the source of nonequilibrium ∼∂|�|/∂t changes sign during
oscillations of the order parameter while the term I · V is
always positive. Time averaged “heating” appears only due to
the dependence of the spectral functions both on |�| and Q and
due to the difference in time variation of |�| and δφ. Energy for
“heating” of the quasiparticles [and “cooling” due to the term
∇(jεfT ) in the kinetic equation] comes from the energy I · V

delivered by the external source of the current (this energy
goes also, for example, to the “heating” of phonons due to the
presence of the relaxation term in the kinetic equations).

Our result is opposite to the one of Refs. 8 and 9 where a
time averaged “cooling” of quasiparticles and an enhancement

300 310 320 330 340 350 360 370 380

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

.

~ with coupling terms
T=0.96T

c
,I=1.2I

c

τ
in
=250,T

|Δ |
~86t

0

QE-in the center of microbridge
5.QE-near ends of microbridge

Q
 E

/(
ϕ 0

/ξ
02 )

t/t0

FIG. 6. (Color online) Time dependence of the product Q · E in
the phase slip center and near the ends of the short superconducting
microbridge during T|�| as found from a numerical solution of
Eqs. (1)–(3) including the coupling terms.

of superconductivity were found at high voltages (when
T|�| � τin) in the absence of the coupling terms in Eqs. (1a)
and (1b). The differences with our calculations are that we
take into account: (i) the back action of the nonequilibrium
quasiparticle distribution function on the dynamics of |�|;
and (ii) the dependence of the spectral functions N1, N2, and
R2 on both |�| and |Q|. There is also one more difference with
Refs. 8 and 9–we did not neglect the relaxation term in Eq. (7)
at high voltages [see Eq. (3) in Ref. 8 and Eq. (16) in Ref. 9]. By
omitting this term, one may obtain “cooling” with δf L > 0 if
one chooses the initial condition δfL = 0 when |�| = �lead in
the center of the microbridge (and when the spectral functions
R2 and N1 depend only on |�| as was assumed in Refs. 8
and 9). But this choice of the initial condition is not obvious.
By choosing a different initial condition (large negative δfL

at |�| = �lead), one may obtain “heating” in this case too.
Only the presence of the relaxation term in Eq. (7) resolves
this problem, because it defines undoubtedly the time averaged
value of δfL [see Eq. (8)]. Note that due to model assumptions
for spectral functions of Refs. 8 and 9 δf L has to be equal
to zero at any voltage if one does not neglect the relaxation
term. From a physical point of view, the relaxation term in
Eq. (7) tells us that the accumulation of the “heat”/“cold”
(after sudden change of the current, for example) occurs on a
time scale which is proportional to τin � T|�| and one should
take it into account to find the true value of δf L and T|�|
corresponding to the given value of the current. It provides
a strong dependence of the IV characteristics and δf L on
τin even at high voltages [see Figs. 3(a) and 4(a)] while
in Refs. 8 and 9 no dependence on τin was found in this
limit.

According to our numerical calculations the IV charac-
teristics of short “dirty” superconducting microbridges are
hyperbolic-like and hysteretic (at relatively large τin and/or low
temperatures) in the temperature interval 0.92 < T/Tc < 1
[calculated and not presented here the IV characteristics at
T/Tc = 0.92–0.99 are qualitatively similar to those of Figs. 3(a)
and 3(b)]. We believe that the experimentally found “foot”-like
features in the IV characteristics of short superconducting
microbridges is connected with the geometry of the studied
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microbridges—they were short and wide (in experiments,5–7

the width W � 2L). For such a geometry, the current density
distribution over the width of the microbridge (constriction)
should be nonuniform with sharp peaks near the edges of the
microbridge.20 In Ref. 21, it was shown that a nonuniform
current density distribution in the superconductor may lead
to slow vortex motion at low currents and phase slip lines at
high currents21 and to a IV characteristic (see, for example,
Fig. 4 in Ref. 21) which resembles the experimental results
of Refs. 5–7. Moreover, the sharp transition from low to
high voltages occurs at Vc which is inversely proportional
to τin

21—the same result was found in the experiment on tin
superconducting microbridges.6,7 Therefore, we predict that
the IV characteristics of short (L � ξ (T )) superconducting
microbridges should change from hyperbolic-like (in case
when W � L) to the one with a well-pronounced “foot’-like

structure at low voltages when W � L. Good candidates
are Sn, In, Pb, and Al with relatively large coherence
length [ξ (T ) � 500 nm at T ∼ Tc]. We expect that our
results will be tested in the near future because recently it
has become possible to fabricate microbridges with length
L < 500 nm and width W � 50 nm (see, for example,
Refs. 2 and 3) which satisfy the condition W � L � ξ (T )
at 0.9 < T/Tc < 1.
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