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Fermi liquid theory applied to vibrating wire measurements in 3He-4He mixtures
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We use Fermi liquid theory to study the mechanical impedance of 3He-4He mixtures at low temperatures. The
theory is applied to the case of vibrating wires, immersed in the liquid. We present numerical results based on a
direct solution of the Landau-Boltzmann equation for the 3He quasiparticle distribution for the full scale of the
quasiparticle mean-free path �. The two-fluid nature of mixtures is taken into account in the theory, and the effect
of Fermi liquid interactions and boundary conditions are studied in detail. The results are in fair quantitative
agreement with experimental data. In particular, we can reproduce the anomalous decrease in inertia, observed
in vibrating wire experiments reaching the ballistic limit. The essential effect of the experimental container and
second-sound resonances is demonstrated.
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I. INTRODUCTION

Vibrating wire resonators have extensively been used to
study the properties of quantum fluids. Different regimes can
be observed in Fermi systems at low temperatures. At relatively
high temperatures the fluid obeys hydrodynamic description
and the vibrating wire can be used to extract the density and
the coefficient of viscosity of the liquid. As the temperature is
reduced below the Fermi temperature, the collisions between
the quasiparticles, the elementary excitations of the liquid,
get rare as the final states of a collision are limited by the
Pauli principle. This leads to increasing mean-free path of
the quasiparticles, and to increasing viscosity. With increasing
viscosity the vibrating wire becomes more sensitive to its
surroundings since more liquid is dragged to move with the
wire, and this becomes limited by the experimental container.
The increasing mean-free path also leads to deviations from the
hydrodynamic behavior, which are first visible as a slip on the
walls: the velocity of the fluid does not vanish at the wall
but extrapolates to zero a slip-distance behind the wall (in the
rest frame of the wall). Lowering the temperature further, the
mean-free path becomes comparable to the radius of the wire.
In this regime the dynamics of the quasiparticle gas needs to
be described by the Fermi liquid theory, which is similar as
the theory of rarified gases but uses Fermi distribution and has
remaining interactions between quasiparticles. In the limit of
lowest temperatures one enters the ballistic limit where the
mean-free path exceeds the size of the experimental container.

In this paper we provide theoretical calculations for a
vibrating wire in the full range of mean-free paths in a normal
Fermi system. The theory is applicable to pure liquid 3He, but
the range of applicability is limited by the superfluid transition.
Therefore the main application is in 3He-4He mixtures, where
the fermions remain in the normal state in the full range that
has been measured. Several vibrating wire experiments have
been made in 3He-4He mixtures. We compare our calculations
to the measurements by Martikainen et al.,1,2 which extend
deepest into the ballistic regime. In order to incorporate
the 4He-component, we use Landau’s Fermi-liquid theory3

generalized to the simultaneous presence of condensed bosons,
as formulated by Khalatnikov.4 A formulation of this theory
adapted to the present work is given in Ref. 5. A short
account of the present calculations is given in Ref. 6. This
article highlights the Landau force, the macroscopic force

caused by the Fermi liquid interactions. Here we calculate the
Landau force among other effects and compare to experiments.
We find strong effect of the experimental container on the
resonance frequency of the vibrating wire. We also study sound
resonances that affect the measurements at high frequencies
or in large containers.

Our calculation is the first two-dimensional solution of
normal-state Fermi-liquid equations for a general mean-free
path. Even the cylindrically symmetric case we study, although
effectively one-dimensional, is far more sophisticated than
has been done before. Previous work has considered uniform
bulk liquid3,7–9 or one-dimensional geometries such as an
oscillating planar wall in semi-infinite liquid10–12 or Poiseulle
flow between parallel planes.13,14 For more general geometries
calculations have been done only in limiting cases of small
mean-free path15–17 and in the ballistic limit.16,18–20

We start in Sec. II by stating more precisely the problem
we study. We briefly present the equations we need, which are
derived in detail in Ref. 5. The symmetries of the problem are
studied in Sec. III. In Secs. IV and V we study the special cases
of vanishing mean-free path in the hydrodynamic limit, and
infinite mean-free path in the ballistic limit. The numerical
method is introduced in Sec. VI and the parameter values
used are discussed in Sec. VII. The results of the numerical
calculations are presented and discussed in Sec. VIII.

II. FORMULATION OF THE PROBLEM

A. Main assumptions

We study the force that a vibrating wire exerts on a
Fermi liquid surrounding the wire. The wire is modeled as
an infinite cylinder. We assume that both the wire and the
liquid are in a stationary container that also has the shape
of an infinite cylinder. These assumptions are not essential
in principle, but they simplify the numerical calculations by
allowing translation symmetry in the direction of the cylinder
axis. The cross section of the wire is taken as a circle of radius
a. The oscillation direction of the wire (chosen as the x axis)
is perpendicular to wire axis (chosen as the z axis).

For the container we consider two different shapes. By
cylindrical container we mean a circular cylindrical container
of radius b that is concentric with the wire. By slab container
we mean that the wire is in the middle between two parallel
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plane walls spaced by 2h, and the oscillation direction of the
wire is normal to the walls. Because of the latter case, circular
symmetry is not valid in general.

The force exerted on the liquid per unit length of the wire is
denoted by F. We are interested in the linear response of the
fluid. For that we express the force in terms of the mechanical
impedance of the fluid, Z, as

F = Zu, (1)

where u is the velocity of the wire. In general Z is a tensor, but
we concentrate on symmetric cases, where Z is a scalar. We
assume harmonic time dependence exp(−iωt) with angular
frequency ω. Thus Z is complex valued, Z = Z′ + iZ′′. The
impedance is directly related to the resonance frequency f0

and the line width �f of the resonator by

Z′ = 2π2a2ρw�f, Z′′ = 4π2a2ρw(f0 − fvac). (2)

Here ρw is the density of the wire material and fvac the
resonance frequency of the wire in vacuum. The restriction
to linear response implies that the wire velocity is small
compared to the Fermi velocity, u � vF, or any sound velocity
in the fluid. Because of limitation to linear response, we
systematically write all equations below in their linearized
form.

The plan is to calculate Z in the full range of the
quasiparticle mean-free path �, from the hydrodynamic regime
� � a to the ballistic limit � � a. The liquid is assumed to be
mixture of bosons and fermions, but the corresponding number
densities n4 and n3 are arbitrary. Thus the theory applies to pure
Fermi liquid as well (n4 = 0).

Besides linearity, another simplification is that we neglect
the coupling between the normal and superfluid components.
This can be justified in two different limits: at small frequencies
and at small concentrations. In the former case we aim
to calculate Z to accuracy that is correct to first order in
aω/vF. The coupling contributes to Z in second order in ω.
Assuming that the relevant dimensionless parameter is aω/vF,
the coupling indeed is a small correction in the experimental
case we study, where aω/vF ∼ 0.02 (Table I). In a finite
container there appears a second length scale, h = 8a. Since
hω/vF is not very small, the small-frequency approximation
is not necessarily accurate. For the superfluid component the
low frequency approximation is well satisfied, hω/c � 1, due
to the large sound velocity c of liquid 4He. We note that one
more frequency dependent parameter, a2ω/vF�, occurs in the
theory, but it can have any magnitude (see Sec. IV).

Alternatively, the normal-superfluid coupling can also be
neglected in the limit of small 3He concentration. This is
because the response of the superfluid to the motion of 3He
is proportional to the ratio of their number densities, n3/n4.5

Thus, irrespective of frequency, the coupling can be neglected
for small n3/n4.

B. Bulk Fermi-liquid theory

The Fermi-liquid theory was formulated by Landau to
describe the low-energy states of interacting Fermi liquids.3 It
was generalized by Khalatnikov to simultaneous presence of
condensed bosons.4 A new presentation of the Fermi-Bose-
liquid theory is given in Ref. 5. Here we briefly review

the equations of Ref. 5 that are necessary for the numerical
calculation.

The central quantity in the theory is the quasiparticle
distribution function ψ p̂(r,t). It depends on the momentum
p only through its direction p̂ = p/p. In addition it depends
on the location r and on time t . The distribution ψ p̂ is obtained
from the more common quasiparticle distribution n p by
integration over the magnitude of the momentum and making a
transformation that partly decouples the normal and superfluid
components.5 The state of the bosons is described by the
deviation of the chemical potential δμ4(r,t) = μ4(r,t) − μ

(0)
4

from its equilibrium value μ
(0)
4 and by the superfluid velocity

vs(r,t).
One more important quantity is the quasiparticle energy

shift on the Fermi surface, δε p̂(r,t). It depends on ψ p̂ and on
δμ4 as

δε p̂ = K

1 + F0
δμ4 +

∞∑
l=0

Fl

1 + 1
2l+1Fl

〈Pl( p̂ · p̂′)ψ p̂′ 〉 p̂′ . (3)

Here K is a parameter describing coupling to the superfluid
component, Fl with l = 0, 1, 2, etc., are the Landau parameters
describing interactions between quasiparticles, Pl are Leg-
endre polynomials, and 〈· · ·〉 p̂ denotes average over the unit
sphere of p̂. The validity of the Fermi-liquid theory requires
that the fields δμ4(r,t), vs(r,t), and ψ p̂(r,t) are approximately
constants on the length scale of the Fermi wave length. In our
case they vary on the scale of the wire radius a, which is
assumed macroscopic.

It follows from Eqs. (5) and (15) below that the first term in
Eq. (3) contributes to Z proportional to ω2, and we neglect it.
Since there are no experimental determinations of Fl for l � 2,
we neglect the corresponding terms. Therefore δε p̂ simplifies
to

δε p̂ = F0

1 + F0
〈ψ p̂′ 〉 p̂′ + F1

1 + F1/3
p̂ · 〈 p̂′ψ p̂′ 〉 p̂′ . (4)

The kinetic equation in the relaxation-time approximation
takes the form

∂

∂t
(ψ p̂ − δε p̂) + vF p̂ · ∇ψ p̂ = − 1

τ

(
ψ p̂ − ψ le

p̂

)
. (5)

Here vF is the Fermi velocity that is related to the Fermi
momentum pF and to the effective mass m∗ by vF = pF/m∗.
In the collision term τ = �/vF is the relaxation time and the
local-equilibrium distribution

ψ le
p̂ = 〈ψ p̂′ 〉 p̂′ + 3 p̂ · 〈 p̂′ψ p̂′ 〉 p̂′ . (6)

This form takes into account that particle number and
momentum are conserved in collisions. In particular, there
is no relaxation of a displaced spherical Fermi surface.
Assuming time dependence exp(−iωt) and parameterizing
the quasiparticle trajectories by r = r0 + s p̂, the transport
equation can be integrated in the form

ψ p̂(r0) = ψ p̂(r0 + s0 p̂)eks0

+
∫ 0

s0

ds

[
1

�
ψ le

p̂ (r0 + s p̂) − i
ω

vF

δε p̂(r0 + s p̂)

]
eks,(7)

where k = 1/� − iω/vF . For convergence of the integral s0 <

0, and the limit s0 → −∞ is approached. When a boundary
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is hit, the solution should be constructed piecewise, and the
boundary conditions applied in between.

C. Boundary conditions

The boundary condition appropriate for specular scattering
from a surface moving with velocity u is5

ψ p̂ = ψ p̂−2n̂(n̂· p̂) + 2pF(n̂ · p̂)(n̂ · u), (8)

where n̂ is the unit surface normal pointing to the liquid. In
specular scattering, the incoming and reflected quasiparticle
trajectories make the same angle to the surface normal on the
wire. The boundary condition for diffusive scattering is that
for outgoing quasiparticles (n̂ · p̂out > 0)

ψ p̂out
= −2〈n̂ · p̂inψ p̂in

〉 p̂in
+ pF

(
p̂out + 2

3
n̂
)

· u, (9)

where 〈· · ·〉 p̂in
is an average over half of the unit sphere

(n̂ · p̂in < 0). In diffuse scattering the reflected (outgoing)
quasiparticles on the surface of the wire are in equilibrium
evaluated at the quasiparticle energy ε p = vF(p − pF) + δε p̂.
The distribution of reflected quasiparticles depends on the
incoming quasiparticles only on the average. We can also
consider mixed boundary conditions where fraction S of
incoming quasiparticles is scattered specularly and fraction
1 − S diffusely.

The boundary conditions (8) and (9) imply the momentum
transfer between the wire and the quasiparticles. The first terms
on the right hand sides describe the effect of non-equilibrium
(with respect to the laboratory frame) quasiparticles incoming
on the wire [for p̂ = p̂out in (8)] and the second terms
describe the effect of the motion of the wire. In principle the
boundary conditions have to be evaluated at the instantaneous
location of the wire surface, but this leads to an effect that
is second order in u. Therefore, in our linearized theory (1),
boundary conditions (8) and (9) can be applied at the stationary
equilibrium location of the wire surface.

At the container wall, one possibility is to assume diffuse
scattering, i.e., to use Eq. (9) with u = 0. An alternative,
simpler boundary condition is an absorbing wall. This reflects
no quasiparticles and is described by the condition ψ p̂out

= 0,
where n̂ · p̂out > 0. Such a boundary condition could be a
reasonable model for experimental cells that have walls made
of sintered silver.1,2 The absorbing boundary condition is also
a theoretical tool to suppress sound resonances (Sec. VIII).

We demonstrate the generalization of Eq. (7) to include
mixed boundary condition. By defining X p̂(s) = ψ le

p̂ (s)/� −
iωδε p̂(s)/vF we write

ψ p̂(s = 0) = Sgce
ksc + {

2SpF(n̂w · p̂)(n̂w · u)

+ (1 − S)
[
pF

(
p̂ + 2

3 n̂w

) · u + gw

]}
eksw

+
∫ 0

sw

dsX p̂(s)eks + S

∫ sw

sc

dsX p̂′(s)eks (10)

for a trajectory that is reflected from the wire (surface normal
n̂w) at s = sw, and hits the container (surface normal n̂c) at
s = sc. In the latter integral the prime in direction p̂′ stands

for the specularly reflected trajectory. We have defined two
boundary condition terms

gw(rw) = −2n̂w · 〈 p̂inψ p̂in
(rw)〉 p̂in

,
(11)

gc(rc) = −2n̂c · 〈 p̂inψ p̂in
(rc)〉 p̂in

,

which depend on the locations rw and rc on the wire and
container surfaces, respectively. For a trajectory with no
collision with the wire, we get simply

ψ p̂(0) = gce
ksc +

∫ 0

sc

dsX p̂(s)eks . (12)

D. Force on the liquid

The momentum flux tensor is5

↔
�= P (0) ↔

1 + ρs

m4
δμ4

↔
1 +3n3〈 p̂ p̂ψ p̂〉 p̂, (13)

where P (0) is the equilibrium pressure. The superfluid density
ρs is defined as ρs = m4n4 − Dm∗n3/(1 + F1/3), where m4 is
the mass of a 4He atom, n4 the 4He number density, D = 1 −
(1 + F1/3)m3/m∗, and n3 = p3

F/3π2h̄3 the number density
of 3He. The force per area exerted by a surface element of

the wire on the fluid is n̂· ↔
� evaluated at the wire surface

rw = a(x̂ cos θ + ŷ sin θ ). Integrating this over the perimeter
of the wire gives the force

F = aρs

m4

∫ 2π

0
δμ4n̂ dθ + 3an3

∫ 2π

0
〈(n̂ · p̂) p̂ψ p̂〉 p̂ dθ. (14)

In linear theory both terms are proportional to u and thus this
expression allows to determine Z (1).

The two terms appearing in Eq. (14) can be interpreted
as superfluid and normal fluid contributions, respectively, and
correspondingly Z can be written as Z = Zs + Zn. We can
calculate Zs as follows. Because the superfluid component
is curl free, ∇ × vs = 0, the fluid flow can be described as
potential flow, vs = ∇χ . The ideal fluid equation of motion5

∂vs/∂t + ∇δμ4/m4 = 0 then gives δμ4/m4 = −∂χ/∂t . For
small frequencies ω � c/a, vF/a we can neglect the com-
pressibility of the superfluid and the coupling to the normal
component, and assume ∇ · vs = 0, or ∇2χ = 0. This has to
be solved using the boundary conditions n̂ · vs = n̂ · u on the
wire surface and n̂ · vs = 0 on the container walls. Thus the
problem reduces to solving the Laplace equation. The solutions
in several geometries have been found, see Ref. 21. The result is

Zs = −iωπa2ρs G, (15)

where the factor G depends on the geometry of the
container. For infinite fluid G = 1, for the cylindrical
container G = (b2 + a2)/(b2 − a2), and for the slab container
G ≈ 1 + π2a2/12h2.

In the limit � � a the Fermi liquid theory reduces to the
hydrodynamic theory (Sec. IV). In the extreme limit �/a → 0
the viscosity is negligible, and the whole fluid behaves like an
ideal fluid except thin boundary layers on the walls. In this
limit Z approaches

Zideal = −iωπa2ρ G, (16)
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where ρ = m4n4 + m3n3 is the total density of the fluid. It
is convenient to present Z by its deviation from the ideal
fluid behavior. Simultaneously, we define a dimensionless
impedance Z̃ by writing

Z = Zideal + an3pFZ̃. (17)

Using the symmetry assumption F ‖ u on Eq. (14) and
comparing to (17) gives

Z̃ = iπG

1 + F1/3

aω

vF
+ 3

pFu

∫ 2π

0
〈(n̂ · p̂)( p̂ · û)ψ p̂〉 p̂ dθ, (18)

where the second term remains to be calculated numerically.
It follows from the equations above that Z̃ depends on the
dimensionless parameters aω/vF(1 + F1/3), �/a, S, F0, F1,
and b/a in the cylindrical container or h/a in the slab container.
Note that choosing �/(1 + F1/3) as an independent variable
instead of � ≡ aω/vF is convenient because this combination
frequently occurs in the hydrodynamic region, an example
being the first term in Eq. (18).

III. SYMMETRY

The problem stated in Sec. II A has symmetries that can
be used to simplify the numerical calculation. We need to
consider scalar and vector functions of location r . Because
of the translational symmetry, there is no dependence on
z, and therefore effectively r = x̂x + ŷy, or using polar
coordinates r = r(x̂ cos θ + ŷ sin θ ). Because we are studying
linear response, these functions depend linearly on the wire
velocity u. In the slab container we have reflection symmetries
in the planes perpendicular to both symmetry directions x and
y. Choosing û = x̂ we have for scalar functions f and vector
functions f = fr r̂ + fθ θ̂ the symmetries

f (r,θ ) = f (r, − θ ) = −f (r,π − θ ) = −f (r,θ + π ),

fr (r,θ ) = fr (r, − θ ) = −fr (r,π − θ ) = −fr (r,θ + π ), (19)

fθ (r,θ ) = −fθ (r, − θ ) = fθ (r,π − θ ) = −fθ (r,θ + π ).

For the cylindrical container we argue as follows. Because
of rotational symmetry in simultaneous rotations of r and
u, a scalar function has the form f (r,u) = f (r,u,θ ), where
θ denotes the relative plane angle and r = |r| and u = |u|.
Assuming reflection symmetry with respect to the x-axis
f (r,u,θ ) = f (r,u, − θ ). This allows to write f (r,r̂ · û,u) or
f (r,r̂ · u,u). Requiring f to be linear in u limits this to the
form

f (r,u) = f̃ (r)r̂ · u (20)

with some function f̃ (r). Note that the symmetry (20) often
appears in solutions of the Laplace equation. Our derivation
shows that this symmetry remains valid in the case of an
arbitrary linear and isotropic equation.

Next, we consider a vector field f (r,u) = r̂fr (r,u) +
θ̂fθ (r,u). Rotational symmetry limits the two functions to the
forms fr (r,u,θ ) and fθ (r,u,θ ). Assuming reflection symmetry
fr (r,u,θ ) = fr (r,u, − θ ) allows to write this into the form
fr (r,r̂ · u,u). Assuming reflection symmetry fθ (r,u, − θ ) =

fθ (r,u,π + θ ) allows to write this into the form fθ (r,θ̂ · u,u).
Finally, assuming linearity with respect to u implies

f (r,u) = r̂ r̂ · uf̃r (r) + θ̂ θ̂ · uf̃θ (r). (21)

The results above are applied to the bulk angular averages

c(r) = 〈ψ p̂(r)〉 p̂, b(r) = 3〈 p̂ψ p̂(r)〉 p̂ (22)

and to the boundary-condition averages gw(rw) and gc(rc)
Eq. (11). The functions c and b are needed to calculate δε p̂

Eq. (4) and ψ le
p̂ Eq. (6).

IV. HYDRODYNAMIC LIMIT

The Fermi-Bose liquid theory reduces to two-fluid hy-
drodynamic theory22 in the limit of short mean-free path.4,5

The normal fluid component is described by a Navier-Stokes
equation where the density is the normal fluid density ρn =
m∗n3/(1 + F1/3) = ρ − ρs and the coefficient of viscosity
η = 1

5n3pF�. The diffusive boundary condition leads to no-slip
boundary condition, which means that the fluid velocity at a
wall equals the velocity of the wall. The specular boundary
condition leads to perfect slip, where the transfer of transverse
momentum between the liquid and the wall vanishes. Applied
to the wire surface this means �rθ = 0. The hydrodynamic
equations have analytic solution in some cases, which we
discuss below.

In the low-frequency limit the normal and superfluid
equations decouple and both components can be considered
as incompressible. In this limit, the superfluid component Zs

Eq. (15) was found above. Analytic solutions for the normal
component are known in the following cases. The no-slip case
in unlimited liquid was solved by Stokes.23 The result is

Zn = −iωπa2ρn

[
1 + 4

aq

H
(1)′
0 (qa)

H
(1)
0 (qa)

]
. (23)

Here, H
(j )
i (x) are the Hankel functions with complex ar-

gument, prime indicates derivative, q = (1 + i)/δ, and δ =√
2η/ρnω is the viscous penetration depth. The no-slip case

in a cylindrical container was calculated by Carless, Hall,
and Hook.15 The case of perfect slip in unlimited liquid was
calculated by Bowley and Owers-Bradley,16 and the result is

Zn = −iωπa2ρn

[
1 + 8H

(1)′
0 (qa)

2aqH
(1)
0 (qa) − a2q2H

(1)′
0 (qa)

]
. (24)

The hydrodynamic results are illustrated in Fig. 1.
The results (23) and (24) illustrate the argument made in

Sec. II A that Z̃ (17) is linear in aω/vF but one should allow
a2/δ2 = 5

2a2ω/vF�(1 + 1
3F1) to have arbitrary magnitude. In

the parameter space formed by aω/vF and �/a, Z̃ is singular
at the point (0,0).

It is possible to go beyond the low-frequency approximation
at the expense of neglecting viscosity. We study the case of the
cylindrical container. At frequency ω the velocity potential χ

of ideal fluid should satisfy the wave equation,

ω2χ + c2∇2χ = 0, (25)
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where c is the sound velocity. We make the ansatz

χ (r,θ ) = [AJ1(kr) + BY1(kr)] cos θ, (26)

where J1 and Y1 are Bessel functions and here k = ω/c. The
radial velocity has to equal u cos θ at r = a and vanish at
r = b. This gives conditions from which A and B can be
solved. Calculating the force similarly as for the superfluid
component in Eq. (14), we get

Zideal = iπaρω

k

J1(ka)Y ′
1(kb) − Y1(ka)J ′

1(kb)

J ′
1(ka)Y ′

1(kb) − Y ′
1(ka)J ′

1(kb)
, (27)

where ρ is the density of the fluid. To first order in ω

this reduces to the low-frequency result Zideal (16). Sound
resonances are found at frequencies where the denominator of
Zideal (27) vanishes. For large b/a this condition reduces to
zeros of J ′

1(kb). The lowest zero appears at kb = 1.84.
The two-fluid hydrodynamics allows two sound modes. The

first sound is in-phase motion of the normal and superfluid
components. The corresponding sound velocity is close to
the sound velocity of pure liquid 4He, which is relatively
high, and is not of interest here. Second sound is the counter
motion of the normal and superfluid components. In 3He-
4He mixture it is essentially a compressional mode of the
normal fluid as the superfluid motion causes only a small
correction to the sound velocity because of smallness of
n3/n4.4 In the present approximation (Sec. II A) the sound
velocity is vF

√
(1 + F1/3)(1 + F0)/3 ≈ 0.4vF in the absence
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FIG. 1. (Color online) The impedance Z = Z′ + iZ′′ in the
region of short mean-free paths, � � a. The curves are plotted using
� as parameter. The hydrodynamic results in unlimited fluid for
diffusive wire (23) and for specular wire (24) are shown by thin
dashed and dotted lines, respectively. The slip correction to the
former is shown by dash-dotted line.13 The hydrodynamic result for
a diffuse wire in diffuse container of radius b = 8a is shown by thick
dashed line. Also shown are our numerical results: a large cylindrical
container with a diffusive wire (line 3) and specular wire (line 5)
with absorbing walls, a small container, b = 8a, with a diffusive wire
(line 2) and specular wire (line 4) in diffusive container, and a slab
of thickness 16a (line 1) with diffusive walls. The parameters are
appropriate for a 3.6% mixture, aω/vF = 0.0180, F0 = −0.25, and
F1 = 0.22. Experimental data from Ref. 1 is shown for reference
(data points).

of dissipation. This result will be applied below to identify
resonances of second sound.

An extension of the hydrodynamic theory to slightly
longer mean-free-path is known as slip theory.14 The leading
corrections appear in the boundary conditions. Considering the
diffusive boundary condition (9), the outgoing (scattered from
the wall) quasiparticles are in equilibrium with the wall, but the
incoming quasiparticles generally are not. In the case of short
� these populations get rapidly mixed and therefore also the
incoming quasiparticles are in equilibrium with the wall, which
leads to the no-slip boundary condition. With increasing � this
is no more the case. In slip theory one uses bulk hydrodynamic
theory together with boundary conditions that assume the
velocity of the fluid to extrapolate to the wall velocity the
slip length ζ behind the wall. Microscopic calculation of ζ for
degenerate fermions on a planar wall was made by Jensen
et al.13 The generalization of the slip boundary condition
to curved surfaces and partial specularity is discussed in
Refs. 16,17,24. The slip increases the validity range of the
hydrodynamic theory to slightly larger �, see Fig. 1. Several
extrapolations of the slip theory for vibrating wires have been
suggested, see Carless, Hall, and Hook,15 Guénault et al.,25

and more recently by Bowley and Owers-Bradley16 together
with Perisanu and Vermeulen.17 None of these have attempted
to include the effect of the container or the Fermi-liquid
interactions.

V. BALLISTIC LIMIT

At the lowest temperatures one enters the ballistic regime,
where the mean-free path of quasiparticles becomes large
compared to the experimental dimensions. In the extreme case
one can neglect the collision term in the kinetic equation (5).
In this ballistic limit the quasiparticles still interact through the
Fermi-liquid interactions, which appear through δε p̂. In spite
of this, some results can be obtained analytically.16,19,20

If, in addition to the collision term, one also neglects
the time dependence, the kinetic equation (5) reduces to
p̂ · ∇ψ p̂(r) = 0. This implies that ψ p̂ is constant along
trajectories, and changes only when the trajectory hits a wall.
If the fluid far from the wire is in equilibrium, one finds
ψ p̂ = 0 on incoming trajectories. The distribution for outgoing
trajectories is then obtained from the boundary conditions (8)
or (9). The impedance is obtained by integrating over the wire
surface, and it gives16,19

Zdiff = 43π

48
an3pF, Zspec = 3π

4
an3pF (28)

corresponding to the diffusive and specular boundary condi-
tions. These are purely dissipative since our assumption of
ω → 0. These results have been generalized to the cylindrical
container by taking into account the reflection of quasiparticles
from the container wall back to the wire in Ref. 20.

At finite frequency the main complication arises from the
interaction term δε p̂ in the kinetic equation (5). Neglecting
this term it is possible to solve the ballistic limit at arbitrary
frequency in the cylindrical container. We assume diffusive
boundary condition on both the wire and the container.
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Using definitions (11) and the symmetry (20), the boundary
conditions (9) can be written as

ψ p̂w,out
(rw) = g̃w n̂ · u + pF

(
p̂w,out + 2

3
n̂
)

· u, (29)

ψ p̂c,out
(rc) = g̃cn̂c · u, (30)

where g̃w and g̃c are constants. Tracing the different tra-
jectories one can now calculate the averages appearing in
definitions (11). We get g̃w = Dg̃c and

g̃c = Ag̃c + B
(
g̃w + 2

3pF
) + 2

3CpF. (31)

The coefficients A, B, C, and D are expressed as integrals

A = 2

π

∫ π

0
dζ sin2 ζ

∫ π/2

arcsin(a/b)
dγ cos γ (1 − 2 cos2 γ )

× exp

(
2iωb cos γ

vF sin ζ

)
,

B = a

b

2

π

∫ π

0
dζ sin2 ζ

∫ 1

0
dx

(
a

b
x2 +

√
1 − a2

b2
x2

√
1 − x2

)

× exp

(
iω(

√
b2 − a2x2 − a

√
1 − x2)

vF sin ζ

)
= a

b
D, (32)

C = a

b

3

π

∫ π

0
dζ sin3 ζ

∫ 1

0
dx

√
1 − a2

b2
x2

× exp

(
iω(

√
b2 − a2x2 − a

√
1 − x2)

vF sin ζ

)
,

D = 2

π

∫ π

0
dζ sin2 ζ

∫ 1

0
dx

(
a

b
x2 +

√
1 − x2

√
1 − a2

b2
x2

)

× exp

(
iω(

√
b2 − a2x2 − a

√
1 − x2)

vF sin ζ

)
,

where ζ is the angle between the trajectory and the cylinder
axis. We can now solve (31) and get

g̃c =
2
3 (B + C)pF

1 − A − BD
. (33)

Continuation to calculate the force gives

Zn = πan3

(
43pF

48
+ 1

2
g̃w + b

2a
Cg̃c

)

= πan3pF

(
43

48
+ a

3b

(
D + b

a
C

)2

1 − A − a
b
D2

)
. (34)

In the special case ω = 0 the integrals (32) reduce to

A = −1

3
+ a

b
− 2

3

a3

b3
,

C = 2

π

(
a

b

√
1 − a2

b2
+ arcsin

a

b

)
, (35)

D =
∫ 1

0
dx

(
a

b
x2 +

√
1 − x2

√
1 − a2

b2
x2

)
.

where D still needs to be calculated numerically. These
reproduce the result given in Ref. 20.

The result (34) is illustrated in Fig. 2. We see that Zn oscil-
lates around its static value approximately like the exponential
∝ exp(2iωb/vF). The reason is that the quasiparticles excited
by the wire are reflected from the container wall back to the
wire, but are delayed by time ≈2b/vF. The first constructive
interference (after the zeroth one at ω = 0) corresponds to
ω ≈ πvF/b. This is approximately a factor 4 larger than the
first second-sound resonance frequency in the hydrodynamic
limit (Sec. IV). The difference arises because the second sound
velocity is smaller than the quasiparticle velocity vF, and
because the first zero of J ′

1(kb) is at kb = 1.84, which is less
than π . Second sound is strongly damped in the ballistic regime
because of excitation of quasiparticles, known as Landau
damping.

The results above could be generalized to include the
Fermi-liquid interactions. However, the integrals get very
cumbersome even in the case of unlimited liquid. Instead of
partial analytic solution, we therefore prefer the full numerical
solution in the following.

VI. NUMERICAL METHOD

We solve the quasiparticle distribution ψ p̂(r) in a discrete
grid around the wire and for discrete momentum directions
p̂. The location rn = x̂r cos θ + ŷr sin θ can be parametrized
with cylindrical coordinates r and θ , where we have fixed x̂ =
û. The momentum direction p̂j l = sin ζj (cos βl x̂ + sin βl ŷ) +
cos ζj ẑ is parameterized by angles ζj and βl . For the cylindrical
container we use a grid with exponentially increasing spacing
�r in the radial direction, and a fixed spacing �θ . In the
slab container, we use a cylindrical lattice near the wire, and
rectangular lattice near the container walls, with partial overlap
between the lattices. In the y direction, the length of the slab is
increased until the results converge (absorbing walls are used).

The quasiparticle distribution ψnjl ≡ ψ p̂j l
(rn) for each

lattice point n and for each discrete trajectory direction p̂j l

can be written, using Eq. (10), as the sum

ψnjl = Injl + Bnjl + S Hnjl + (1 − S)Qnjl, (36)

where Injl = ∫ 0
sw

ds X p̂j l
(s)eks + S

∫ sw

sc
ds X p̂′

j l
(s)eks is the

integral part, Bnjl = [2SpF(n̂ · p̂j l)(n̂ · u) + (1 − S)pF( p̂j l +
2
3 n̂) · u]eksw is the ψ-independent part of the boundary con-
dition, Hnjl describes the ψ-dependent part of the boundary
condition on the container, and Qnjl describes the boundary
condition on the wire. The integral is calculated from rn

along the trajectory p̂j l , |sw| is the distance to the wire (if
there is a collision with the wire at point rw), and |sc| is
the distance at which the container wall is hit, at point rc.
If there is no collision with the wire, we get from Eq. (12)
ψnjl = Injl + Hnjl , where Injl = ∫ 0

sc
ds X p̂j l

(s)eks . We write
gc,t = gc(r t ) and gw,t = gw(r t ) at each lattice point r t on the
surfaces, and define

Hnjl =
∑

t

Hntj l gc,t , Qnjl =
∑

t

Qntj l gw,t , (37)

where the sums are over all lattice points on the corresponding
surface, Hntjl = wte

ksc and Qntjl = wte
ksw . The weight factors

wt are obtained by interpolating from the lattice points closest
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FIG. 2. (Color online) The normal-fluid impedance Zn = Z′ + iZ′′
n in the ballistic limit in the cylindrical container of radius b = 10a. The

impedance Zn is plotted relative to its static value Z0 = (43π/48)an3pF Eq. (28) in unlimited fluid, and the total impedance Z is obtained by
adding Zs Eq. (15). The solid lines are full numerical result, the dashed lines the approximation (34), and the difference between them is the
Landau force.6 (a) The real and imaginary parts of the impedance as a function of � = aω/vF. (b) Parametric plot of Zn in complex plane with
� as a parameter. In both panels diffusive boundary conditions are used and the full calculation uses F0 = −0.44 and F1 = 0.449.

to rc or rw on the surfaces. In the following the averages (22)
are denoted by �(1)

n = cn, �(2)
n = br, n, and �(3)

n = bθ, n. Now,
the integral part Injl can be conveniently presented as the sum

Injl =
3∑

h=1

∑
m

a
(h)
nmjl �

(h)
m , (38)

where the coefficients a
(h)
nmjl give the weights with which the

equilibrium distribution at other lattice points rm affects ψnjl .
The coefficients are calculated by numerical integration, using
a modified Simpson’s rule, which takes the exponential term
exp(ks) into account exactly. It is necessary to use interpolation
between lattice points. Taking the numerical average over the
trajectories, we can write the averages (22) as a sum

�(i)
n =

∑
m,h

dih
nm�(h)

m + B(i)
n +

∑
t

H
(i)
nt gc,t +

∑
t

Q
(i)
nt gw,t ,

(39)

where

d1h
nm = 〈

a
(h)
nmjl

〉
p̂j l

, d2h
nm = 3r̂n · 〈

p̂j la
(h)
nmjl

〉
p̂j l

,

(40)
d3h

nm = 3θ̂n · 〈
p̂j la

(h)
nmjl

〉
p̂j l

,

and similar averaging gives B(i)
n , H

(i)
nt , and Q

(i)
nt . The diffusive

boundary condition terms can be written as sums over lattice
points m as well,

gc,t =
∑
m,h

g
(h)
c,tm�(h)

m + Bc,t +
∑

s

Hc,tsgc,s +
∑

s

Qc,tsgw,s,

(41)
gw,t =

∑
m,h

g
(h)
w,tm�(h)

m +
∑

s

Hw,tsgc,s ,

where the new coefficients g
(h)
c,tm, Bc,t , Hc,ts , Qc,ts , g

(h)
w,tm, and

Hw,ts are similar to the terms above, but the averages are taken
over the incoming trajectories only. Once the coefficients
have been calculated, we can solve the averages (22) from the
matrix equation

� = D� + B ⇔ � = (I − D)−1B. (42)

If the total number of lattice points is N , the number of points
on container surface is V , and the number of points on wire
surface is T , then � is a 3N + V + T component vector
� = (�(1)

1 ,�
(1)
2 , . . . ,�

(3)
N ,gc,1, . . . ,gc,V ,gw,1, . . . ,gw,T )T ,

B = (B(1)
1 ,B

(1)
2 , . . . ,B

(3)
N ,Bc,1, . . . ,Bc,V ,0, . . . ,0)T , and the

(3N + V + T ) × (3N + V + T ) matrix D contains the
terms dih

nm, H
(i)
nt , Q

(i)
nt , g

(h)
c,tm, Hc,ts , Qc,ts , g

(h)
w,tm, and Hw,ts in

appropriate order.
When the averages are known, we can calculate the full

distribution ψnjl on the wire surface using Eq. (36). The force
exerted by the wire on the fluid is then readily calculated from
Eq. (18). If cylindrical symmetry is assumed, the treatment is
similar, but since the dependence of the averages on θ is of
a simple form [Eqs. (20) and (21)], the calculation becomes
effectively one-dimensional.

VII. PARAMETER VALUES

In order to relate the numerical calculations to experiments
we need to consider the parameters that characterize 3He-4He
mixtures and the experimental setup.

The molar volume of a mixture of molar concentration
x3 = N3/(N3 + N4) at temperature T and pressure P is26

Vm(x3,P ,T ) = V4(P,T )[1 + α(x3,P ,T )x3], (43)
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where V4(P,T ) is the molar volume of pure 4He and α is
the so-called BBP parameter.27 For the molar volume of pure
4He, we use the data of Tanaka et al.,28 and for α(P ) at zero
temperature we use the results of Watson et al.26 The number
density of the 3He component is obtained from

n3 = NAx3

V4(1 + αx3)
, (44)

where NA is the Avogadro number. From n3 we can calculate
the Fermi momentum

pF = (3π2h̄3n3)1/3. (45)

If we know the 3He quasiparticle effective mass m∗, we
can also calculate the Fermi velocity vF = pF/m∗, which is
needed in calculating the dimensionless frequency parameter
� = aω/vF. The effective mass m∗ is calculated using the
interpolation formula by Krotscheck et al.29,30 As a starting
point, the zero concentration limit effective mass (so-called
hydrodynamic mass) mH is needed. We have used two
alternative values: mH/m3 = 2.15 based on extrapolation of
the data by Simons et al.31 following Krotscheck et al.,29 and
mH/m3 = 2.3432–34 at zero pressure. Here m3 is the mass
of a 3He atom. At higher pressure P = 10 atm we have
used mH/m3 = 2.39 and mH/m3 = 2.64, correspondingly.
Numerical values are given in Table I. For F1 we use the
approximative9 formula F1 = 3(m∗/mH − 1). For F0 we use
a fit of the form F0 = Ax

1/2
3 + Bx

1/3
3 to two sets of data

presented in Ref. 35, see Table II.
We present Z (17) using the dimensionless Z̃ in order to

remove the strong dependence ∝ n
4/3
3 on the 3He density. The

experimental results1,25 are given as (f0,�f ) pairs. In order to
transform them to Z̃ we use Eqs. (2) and (17), or

Z̃′ = 2π2a2ρw

an3pF
�f,

(46)

Z̃′′ = 4π2a2ρw

an3pF

[(
1 + 1

2
G

ρ

ρw

)
f0 − fvac

]
.

Several vibrating wire measurements have been done in 3He-
4He mixtures.15,17,25,39 Here we study the data of Martikainen
et al.,1,2 which extends deepest into the ballistic regime. The
parameters needed for the conversion (46) are the wire radius
a = 62 μm, the distance between the container walls 2h =
16a, the vacuum frequencies fvac = 1202.85 Hz for wire 1

TABLE II. F0 at different concentrations based on data presented
in Ref. 35. The first line gives results from a fit to the osmotic pressure
data of Landau et al.,36,37 and the second line gives a fit to the second
sound velocity data by Murdock and Corruccini.38 The first four con-
centrations are at saturated vapor pressure, the last two at P = 10 atm.

1.8% 3.6% 5.6% 6.6% 7.0% 9.5%

F0, Refs. [ 36,37] −0.17 −0.25 −0.33 −0.36 −0.38 −0.47
F0, Ref. [ 38] −0.12 −0.21 −0.28 −0.32 −0.24 −0.29

and fvac = 1857.7 Hz for wire 2, the density of the wire ρw =
16700 kg/m3 and the concentration-dependent densities as
explained above. The vacuum frequencies fvac were measured
before filling the cell. The measurements with filled cell show
small deviation from the predicted high temperature behavior
as if the vacuum frequency had some variation during the
measurements. We have compensated this by adjusting fvac

for each concentration separately in the range ±0.2 Hz so that
at high-temperatures Z̃ extrapolates to zero.

VIII. RESULTS AND DISCUSSION

In this section we present the results of numerical calcu-
lations for the full scale of the mean-free path �. In order to
show the dependence of Z on different parameters, we select
a “basic set” of parameters: �/(1 + F1/3) = 0.0145 (where
� ≡ aω/vF), the cylindrical container with b = 10a, S = 0,
F0 = −0.33, F1 = 0.266, and diffusely scattering container
walls. Then we vary each of the parameters �/(1 + F1/3),
b/a, S, F0, and F1 separately while keeping the others fixed
at the basic set values. The real and imaginary parts of
the impedance Z are interpreted as dissipation and shift of
resonance frequency, see Eq. (2).

The dependence of Z on � = aω/vF is shown in Fig. 3.
In the chosen dimensionless variables, the dependence on
frequency ω appears through this parameter only. The reactive
part Z′′ vanishes for vanishing frequency. For the smallest
values of � the dependence seems nearly linear, but the
hydrodynamic limit is more complicated as discussed in
Sec. IV. The dissipative part Z′ has weaker dependence on
frequency and reduces to a finite value at � → 0, except in the
limit � → 0. At larger � nonlinearity appears in Z′′ at all �/a.

TABLE I. Parameter values used in calculations at different concentrations x3. The first four concentrations are at saturated vapor pressure,
the last two at P = 10 atm. We use α = 0.284 at saturated vapor pressure and α = 0.207 at P = 10 atm.26 The frequency parameter � = aω/vF

is calculated for vacuum frequency f = 1202.85 Hz (wire 1) and f = 1857.7 Hz (wire 2). On the left we have used the hydrodynamic mass
mH /m3 = 2.15 as a starting point, and on the right mH /m3 = 2.34 (see text).

1.8% 3.6% 5.6% 6.6% 7.0% 9.5% 1.8% 3.6% 5.6% 6.6% 7.0% 9.5%

m∗/m3 2.26 2.31 2.34 2.35 2.60 2.63 2.45 2.50 2.53 2.54 2.85 2.88
vF(m/s) 21.10 25.97 29.60 31.07 29.56 32.36 19.46 24.00 27.38 28.75 26.97 29.55
an3pF (kg/ms) 0.0058 0.0145 0.0259 0.0321 0.0394 0.0589 0.0058 0.0145 0.0259 0.0321 0.0394 0.0589
F1 0.151 0.219 0.266 0.284 0.269 0.301 0.138 0.201 0.245 0.261 0.243 0.272
aω/vF, wire 1 0.0222 0.0180 0.0158 0.0151 0.0159 0.0145 0.0241 0.0195 0.0171 0.0163 0.0174 0.0159
aω/vF, wire 2 - - - 0.0233 0.0245 0.0224 - - - 0.0252 0.0268 0.0245
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FIG. 3. (Color online) The effect of the frequency parameter � = aω/vF. In this and the following Figs. 4–8, (a) shows Z′ vs. Z′′ with �/a

as a parameter in the curves. (b) and (c) show Z′ and Z′′ as a function of �/a, the mean-free path scaled by the radius of the wire. The reactive
part Z′′ vanishes in the limit � → 0 while the dissipative part Z′ remains finite. For other parameters, the basic set is used: b = 10a, S = 0,
F0 = −0.33, F1 = 0.266, and diffusive container walls. The curve for the largest value � = 0.08 differs essentially from the others because it
is close to the lowest second-sound resonance, see Fig. 4 for more details. Here and in Figs. 5–8 the dashed black curve gives the hydrodynamic
(HD) Stokes solution (23) for basic-set values of � and F1.

The last curve at � = 0.08 differs essentially from the others.
This behavior is caused by bω/vF approaching unity, where the
lowest second-sound resonance appears in the container. More
precisely, the lowest pole of Eq. (27) gives the resonance at
�c = 0.0890. The impedance in the neighborhood of the reso-
nance is shown in Fig. 4. Resonance features that resemble our
results have been observed in experiments using quartz tuning
forks, that work at considerably higher frequencies (33 kHz).40

The resonances in Fig. 4 appear strongest at small � while
they are damped at larger �. The behavior of the ballistic limit
point is shown in Fig. 2. Instead of sharp resonances one sees
oscillatory behavior. Thus we see complete change-over from
the second sound resonances in the hydrodynamic regime to
quasiparticle interferences in the ballistic regime.

The effect of confinement is studied in Fig. 5 in terms of
the radius b of the cylindrical container. For diffusive container
walls b has a strong effect on the results: the dissipation and the
minimum frequency are larger for smaller containers. If we use
absorbing walls for the container, the container size does not
have such a drastic effect. It is understood that the reflecting

walls allow for second-sound resonances, which occur at
bω/vF ∼ 1, and have a large effect at higher frequencies or
at larger container sizes.

The dependence on the specularity parameter S of the wire
surface is shown in Fig. 6. Increasing S means increasing
slippage on the wire surface, and leads to less fluid moving with
the wire. Then the dissipation and the change of resonant fre-
quency are smaller than for a fully diffuse wire. We emphasize
that the parameter S is assumed to be independent of �. We see
that the dependence on S is nearly linear except in the hydro-
dynamic region, where the fully specular case S = 1 stands out
from all other values S < 1. For absorbing container walls the
effect on the resonant frequency in the ballistic limit is small.

The contribution of the quasiparticle interactions to Z is
called the Landau force.6 The dependence on the interaction
parameter F0 is studied in Fig. 7. The effect of F0 appears via
the change of density. In the hydrodynamic regime the density
stays almost constant and therefore the effect of F0 is small. In
the ballistic regime density changes are essential and F0 has a
large effect on Z′′. For stability F0 has to be larger than −1. The

FIG. 4. (Color online) Near the expected second sound resonance �c = 0.0890 we observe peculiar behavior in both dissipative and reactive
parts of the impedance. The three short-dashed lines with � = 0.06, 0.07, and 0.08 show the usual behavior below the resonance. The three
solid lines, � = 0.085, 0.088, and 0.089 are close to the resonance and make loops in the Z′ − Z′′ plane as seen in (a). The long-dashed curves,
� = 0.090, 0.091, and 0.095 show the behavior above the resonance; it appears that these curves would form loops as well, if we could extend
the calculations to smaller �. For the resonance curve, �c = 0.089, dissipative part has a maximum at around � = 0.007a and a minimum at
� ∼ 0.08a, while the reactive part has a maximum at � ∼ 0.015a and a minimum at � ∼ 1.2a. These extremal points move toward smaller �

with increasing �.
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FIG. 5. (Color online) The effect of the container radius b. The solid lines correspond to diffuse container walls, while the dashed lines
correspond to absorbing walls. For small � the container radius has only small effect, and the curves merge. At larger �, the maximum shift of
frequency is larger for larger container, while in the ballistic limit the maximum dissipation is larger for smaller container. The largest radius
corresponds to effectively unlimited fluid. We see that although Z′′ > 0 for b = 100a in the ballistic limit, it is quite small in comparison to
the smaller containers. In the case of absorbing walls, the curves end to the same point in the ballistic limit, close to the end point of the large
container curve with diffuse walls.

effect of F0 on Z′′ seems to be amplified for F0 approaching
the instability. For a low frequency such as in Fig. 7, the effect
of F0 on the real part Z′ is small. With increasing frequency the
main effect turns from Z′′ to Z′, as can be seen in the ballistic
limit, Fig. 2. In the large frequency limit the main effect of the
Landau force is the reduction of Z′ (for F0 < 0).

The effect of the second interactions parameter F1 is shown
in Fig. 8. For constant �/(1 + F1/3) its effect is very similar
to that of F0, the curves almost coincide. The difference is that
increasing F1 is compensated by a smaller decrease of F0. The
opposite tendency can be understood based on the qualitative
explanation of the Landau force given in Ref. 6. Namely, the
oscillating wire creates a beam of quasiparticles that affects
the quasiparticles that are incident on the wire. The relevant
interaction thus has p̂ · p̂′ < 0 in Eq. (4) and thus F0 and F1

appear with weights of opposite signs.
We notice that the dissipative part Z′ depends weakly on F0,

F1, and �/(1 + F1/3) (except close to resonance), while the
reactive part Z′′ has a stronger dependence on the parameters.
For S the both parts are affected in a similar fashion, and for b

the dependence is rather complicated.
Our calculations are compared to experiments of Mar-

tikainen et al.1,2 in Fig. 9. We model the experimental chamber
as the slab container with diffusive boundary condition on

both the wire and the container. Since there is uncertainty
in m∗ and F0, we show four combinations of parameters
for each concentration. We also show results for the ab-
sorbing boundary condition at the container walls and for
the cylindrical container of radius b = 8a with the diffusive
boundary condition. Although the agreement between the
experiments and the calculations is not perfect, it is for most
cases satisfactory, noting that no fitting parameters have been
used.

In the ballistic limit the resonance frequency increases to
value higher than in the high-temperature limit. This overshoot
was analyzed in detail in Ref. 6. There the overshoot was
divided into four different contributions: 1) The 3He part of
the fluid decouples from the ideal fluid flow around the wire.
2) Part of 4He moves with the quasiparticles and therefore is
also decoupled. [These two contributions correspond to the
normal density ρn being subtracted from the total density ρ

appearing in (16)]. 3) The Landau force due to quasiparticles
interactions, caused mainly by F0, adds elasticity to the Fermi
liquid and thus increases the resonant frequency. 4) There
are corrections caused by the finite size of the container,
in particular the effect of quasiparticles reflected from the
container back to the wire (34). The four contributions are
shown by vertical lines in Fig. 9.

FIG. 6. (Color online) The effect of specularity S of the boundary condition at the wire surface. The solid and dashed lines correspond to
diffuse and absorbing container, respectively. For small � the effect of S is hardly visible, except for the purely specular curve S = 1 which
stands out in the hydrodynamic limit for Z′′. At larger � the dependence on S is uniform in both Z′ and Z′′. Both the maximum frequency shift
and the maximum dissipation are larger for a diffusive wire.
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FIG. 7. (Color online) The effect of F0. In the Z′ vs. Z′′ curve, F0 controls the end point and the slope of the ballistic branch of the curve,
while its effect is small in the hydrodynamic region. From (b) we see that the effect on the dissipation is small, apart from the smallest value
shown here, F0 = −0.8 in the ballistic regime. The effect on the frequency is larger, as discussed in Ref. 6. The vertical (a) and horizontal (c)
dashed lines mark the ballistic limit value of Z′′ in the case of F0 = 0.

We see that for diffuse chamber walls the calculated
overshoot is larger than in the experiments. It is possible that
the ballistic limit was not quite reached in the experiments.
Alternatively, the calculations with absorbing container walls
give overshoot of the same magnitude as the experiments.
The experimental cell was surrounded by porous sintered
silver, which is likely to absorb some of the quasiparticles
rather than reflecting them. We note that the slope of the
ballistic branches of the calculated curves would better fit to
their experimental counterparts if larger values of −F0 were
used. Also, allowing nonzero specular-scattering fraction S

would scale down the calculated curves, giving better fit for
some of the concentrations, but a systematic improvement
is hard to obtain. We point out that for the calculations in
cylindrical geometry we have fixed the radius b = 8a rather
arbitrarily: using b as a fitting parameter would certainly
lead to better agreement with experiments, but again it
is difficult to find a single value that would fit all the
concentrations.

We see from Table I that for concentrations 5.6% and 7.0%
for wire 1, the frequency parameters are nearly the same,
� ≈ 0.016 (or � ≈ 0.017 depending on the choice of mH ).
However, the experimental results, converted to the (Z′′,Z′)
curve, differ considerably from each other, as can be seen in
Fig. 10 a. The corresponding numerically calculated curves
differ only slightly, due to small difference in F0. There
seems to be some problem involved with the two curves at

higher pressure for wire 1, and for these the fit to numerical
calculations is by far poorest of the nine cases, as seen in Fig. 9
e and f.

Another interesting coincidence is that for the 1.8% curve
of wire 1 and for the 9.5% curve for wire 2, the frequency
parameters are similar � ≈ 0.022 (or � ≈ 0.024). The exper-
imental curves shown in Fig. 10 b are nearly identical in the
hydrodynamic region, and only start to differ at � > a. The
slopes of the ballistic branches of the curves are different,
which is conveniently explained by the different values of F0

for the two concentrations.
There is a systematic difference between the results of wires

1 and 2. For wire 1 the calculated minimum frequencies are
smaller than experimentally observed, while for wire 2 the
opposite is true. As already discussed, the high pressure curves
(7% and 9.5%) for wire 1 seem anomalous. There also seems
to be fine structure in the measured curves that is not present
in the calculations. In particular, the nearly straight part from
the bend of the curves to the ballistic limit seems to have small
positive curvature in the measured curves. As shown above, the
theory gives second-sound resonances, but at higher frequen-
cies or at larger wall distances than used in the measurements.
In other directions the experimental container is ten times
larger and therefore second-sound resonances in these direc-
tions should take place at the experimental frequencies. Ideally,
such modes are not coupled to the oscillation of the wire, but
there might be coupling if the wire is not perfectly aligned with

FIG. 8. (Color online) The effect of F1 at constant �/(1 + F1/3). The dependence is similar as on F0 (Fig. 7) when parameters F1 and F0

are changed in opposite directions. The curve labeled F1 = −1 would correspond to m∗ < mH .
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FIG. 9. (Color online) Comparison of theory to measurements.1,2 Wire 1 has been measured at six concentrations (1.7%, 3.6%, 5.6%, 6.6%,
7.0%, and 9.5%) and wire 2 at the three highest of these. At concentrations 7.0% and 9.5% the pressure is 10 atm, while at the others it is
saturated vapor pressure. The experimental results are shown by blue data points. The principal theoretical result is the red solid line in each
panel (line 1 in panel i). It corresponds to the slab geometry with diffusive walls, F0 from the first row of Table II and other parameters from
the left side of Table I. Other lines differ from it as follows. The orange lines (lines 2) use F0 from the second row of Table II. The dashed red
and orange lines use the right side of Table I. The dashed blue line (line 3) has absorbing container walls. The dashed pink line (line 4) has
the cylindrical container of radius b = 8a. The dashed black line (line 5) is the hydrodynamic result in unlimited fluid. The vertical black lines
give the effects 1–4, see text.

the slab. This may be the origin of the observed structures,
which are not reproduced by our ideal infinite-cylinder
model.

Our calculation can be generalized in a couple of relatively
simple ways. We can tilt the oscillation direction in the slab,
we can allow cylindrical containers of more complicated
cross section, and we can allow two relaxation times (one
for l = 2 spherical harmonics of ψ p̂ and another for higher
harmonics). We have tested all these, but they do not
seem to give any obvious improvement in the comparison
above. Further possible generalizations could be more exact
treatment of the collision term, including higher Fermi-liquid
parameters like F2, and allowing more general boundary
conditions where the degree of specularity depends on the

angle of an incident quasiparticle. It seems unlikely, though,
that these could lead to much better understanding of the
experiments.

IX. CONCLUSION

We have calculated the response of Fermi-Bose liquid to
an oscillating cylinder. This is applied to vibrating wires in
3He-4He mixtures. The results differ from ideal-gas results
because of Fermi-liquid effects. In particular, the resonance
frequency in the ballistic limit exceeds the ideal-fluid value
because of 4He bound to quasiparticles and the Landau force,
i.e., the elasticity of the Fermi liquid caused by interactions
between the quasiparticles. The results are compared to
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FIG. 10. (Color online) (a) The experimental (circles) and numerical results (solid lines) for wire 1 for two concentrations, 5.6% at saturated
vapor pressure (label 0) and 7.0% at P = 10 atm (label 10). The hydrodynamic results (dashed lines) are indistinguishable on this scale. We
see that the numerical results differ only slightly from each other in the ballistic limit. The reason for the difference between the experimental
results is unknown. (b) The frequency parameters for wire 1, x3 = 1.8% curve (label 1) and wire 2, x3 = 9.5% curve (label 2) are nearly equal,
� ≈ 0.022. The numerical curves (solid lines) overlap in the hydrodynamic region, but start to differ around the bend in the curve, due to
different values for F1. The slopes of the calculated curves in the ballistic regime differ because of different values for F0. The theoretical
curves are identical to the principal curves in Fig. 9.

measurements. For the comparison it is essential to take
into account the size and the form of the experimental
container. Good agreement is achieved without any fitting
parameters. It seems that to explain the remaining differ-
ences would require a 3D simulation of the experimental
volume.
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