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It is theoretically shown that, in the fourfold symmetric d-wave superconducting phase, a paramagnetic pair-
breaking (PPB) enhanced sufficiently by increasing the applied magnetic field induces not only the Fulde–Ferrell–
Larkin–Ovchinnikov (FFLO) superconducting state but also an incommensurate antiferromagnetic (AFM) order
with the Q vector parallel to a gap node. This AFM ordering tends to occur only below Hc2 at low temperatures,
i.e., in the presence of a nonvanishing superconducting energy gap � rather than in the normal phase. Through a
detailed study on the resulting AFM order and its interplay with the FFLO spatial modulation of �, it is argued
that the strange high-field, low-temperature (HFLT) superconducting phase of CeCoIn5 is a coexisting phase
of the FFLO and incommensurate AFM orders, and that this PPB mechanism of an AFM ordering is also the
origin of the AFM quantum critical fluctuation which has occurred close to Hc2(0) in several unconventional
superconductors including CeCoIn5.
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I. INTRODUCTION

Recently, the presence of an antiferromagnetic (AFM)
quantum critical behavior near the superconducting (SC)
depairing field (or the mean-field upper critical field) Hc2(0)
at low temperatures has been commonly found in several
unconventional superconductors such as CeCoIn5,1,2 pressured
CeRhIn5,3 NpPd2Al5,4 Ce2PdIn8,5 and Tl compounds of
cuprates.6 Most of these materials belong to the so-called
heavy-fermion superconductors and hence are expected to
have a large Zeeman term, i.e., remarkable Pauli paramagnetic
pair-breaking (PPB) effects. Conventionally, an AFM order is
expected to be suppressed by the presence of a finite SC energy
gap |�|7,8 below the mean-field SC phase transition, indicating
a possibility of enhancement of an AFM fluctuation or order
above Hc2(0). However, a closer examination of the AFM
critical behavior suggests the presence of an AFM quantum
critical point (QCP) below Hc2(0).2 In fact, measurements in
the SC state of the heavy-fermion superconductor CeCoIn5

showing a remarkably large PPB9–11 in finite magnetic fields
(H �= 0) clearly show the presence of an AFM fluctuation
in the SC state which is enhanced with increasing H up to
Hc2.12–14 A schematic picture on the AFM critical fluctuation
near Hc2(0) is represented in Fig. 1.

The incommensurate AFM order discovered recently
through neutron scattering measurements15,16 at the high-field
corner of the H -T SC phase diagram of CeCoIn5 in H‖ab

will not be an independent event of the above-mentioned field-
induced enhancement of an incommensurate AFM fluctuation
below Hc2. This AFM order has been detected just in the
so-called high-field low-temperature (HFLT) phase of this
material in H⊥c which has been previously identified9,17 with
the long-sought spatially modulated Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) SC state.18 If focusing only on the
magnetic properties seen through, e.g., the neutron scattering
data,15,16 it might be natural to identify the HFLT phase
with an incommensurate AFM phase coexisting with the
spatially uniform d-wave SC order. However, the fact that
the HFLT phase is destabilized by quite a small amount of

not only magnetic impurities19 but also nonmagnetic ones20

is incompatible with the picture15 favoring the presence of
the uniform d-wave SC order in the HFLT phase. In fact, it
has been found21 that such an unexpected impurity effect is
consistent only with the picture identifying the HFLT phase
with a SC state with one-dimensional modulation parallel to
H,17 such as a kind of FFLO state. Then, it is necessary to
clarify how this FFLO picture on the HFLT phase is compatible
with the presence of the AFM order detected in the same phase.

In the present paper, we develop a theory comprehensively
explaining the above-mentioned phenomena occurring at the
high-field side of the H -T SC phase diagram of a d-wave
superconductor with strong PPB such as CeCoIn5. To be
specific, the favorable direction of the expected staggered
moment is assumed throughout this paper to be perpendicular
to the basal plane, i.e., parallel to the c axis of the tetragonal
structure of the quasi-2D (two-dimensional) SC materials
according to an observation15 of CeCoIn5. It is found by
extending the conventional model on the coexistence of SC
and AFM orders to the nonzero field (H �= 0) case with
strong PPB that, in d-wave superconductors with strong
PPB, an incommensurate AFM order tends to be realized
in higher fields but below Hc2(0) if the AFM Q vector in
the commensurate limit, called Q0 hereafter, is parallel to the
nodal direction of the SC energy gap. Throughout this paper,
the component of Q0 in the a-b plane of a tetragonal crystal is
(π , π ) so that the SC pairing state with a gap node parallel to
Q0 is inevitably the dx2−y2 -paired one.

This PPB-induced AFM ordering or fluctuation has two
crucial implications. First, the present AFM order occurs more
easily in the SC phase with a finite SC energy gap than in the
normal state and thus clarifies why no situation with AFM
order only in the normal phase above Hc2(0) is seen in those
materials1–6 with an AFM critical behavior around Hc2(0).
Second, since the presence or absence of the field-induced
AFM ordering or fluctuation strongly depends on the relative
orientation between the gap node direction and Q0, the present
theory is also useful for addressing the pairing symmetry
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FIG. 1. (Color online) Field dependence of the AFM correlation
length ξAF described schematically. For simplicity, the presence of a
narrow HFLT phase just below Hc2 is neglected here (see Secs. V
and VI). The ξAF (solid) curve below Hc2 reflects the PPB-induced
AFM ordering, while the solid curve above Hc2 results purely from
the AFM fluctuation in the normal state. The dotted curve below Hc2

is the extrapolation of the high-field curve to lower fields. If the Hc2

transition (the mean-field SC transition) is of second order so that the
SC fluctuation is not negligible above Hc2, the growth of ξAF upon
decreasing the field in H > Hc2 should, as indicated by the dashed
curve, become sharper as a consequence of the coupling between the
two orderings [see Eqs. (29) and (31)].

of those SC materials including CeCoIn5: In the case with
Q0 parallel to (π ,π ), the presence of the field-induced AFM
fluctuation near Hc2(0) implies the dx2−y2 -pairing symmetry
of the SC material.

The present field-induced AFM ordering is a characteristic
property of superconductors with strong PPB together with
the FFLO SC state and the first-order Hc2 transition,17,22 and
hence, a consistent emergence of both this AFM order and the
FFLO SC order in the same material is naturally expected. In
fact, a couple of observations19–21,23–26 in the HFLT phase of
CeCoIn5 have been done so far which support identification
between the HFLT phase of this material and a FFLO state
with a modulation parallel17,21 to the applied field H, which
will be called a longitudinal FFLO state hereafter.27 For this
reason, we also examine the field-induced AFM ordering in the
longitudinal FFLO state by invoking the Pauli limit, in which
the orbital pair-breaking inducing the vortices is neglected, to
evaluate thermodynamics and construct a H -T phase diagram.
It is found that the FFLO spatial modulation significantly
extends the AFM ordered region so that the situation in which
the AFM order is absent outside the FFLO state in the phase
diagram is easily realized. The obtained results on the phase
diagram will be compared with recent NMR data,28 presenting
firm evidence of both the longitudinal FFLO structure and
the AFM order in the HFLT phase of CeCoIn5 in H⊥c.
A preliminary report of the present paper can be found in
Refs. 29 and 30. We note that the presence of PPB-induced
AFM fluctuation has been first noticed through our numerical
studies of effects of an AFM quantum critical fluctuation on
the vortex form factor.29,31

When we discuss the phase diagram including a field-
induced AFM ordering in the text, a situation with an indication
of the presence of an AFM QCP H ∗ will not be distinguished

from the case with a finite AFM transition temperature
in some field range. In fact, the field at which the AFM
transition temperature is the highest in the latter situation
would correspond to H ∗ if the former situation is realized, and
the former is easily realized from the latter, i.e., by reducing the
strength of the electron repulsion leading to the AFM ordering
in the normal state.

This paper is organized as follows. In Sec. II, two theoretical
methods for studying the AFM ordering in the d-wave
superconductors are explained in detail. In Secs. III and IV,
numerical results on the AFM ordering following from them
are presented, and their implications are explained by assuming
that the d-wave SC phase does not include a FFLO spatial
modulation. The corresponding results in a FFLO phase are
considered in Sec. V. Section VI is devoted to a summary of
the present paper and final remarks.

II. MODEL

In the present paper, we examine a possible AFM ordering
according to two approaches to be explained below. In zero
magnetic field (H = 0), our starting electronic model is the
same in the two approaches and can be expressed by the
Hamiltonian including just the two interaction channels of
a d-wave superconductivity and antiferromagnetism H =
Hkin + HAF + HSC, where

Hkin = d
∑
σ,j

∫
d2r⊥

[[
ψ

(σ )
j (r⊥)

]†
ε⊥(−i∇⊥)ψ (σ )

j (r⊥)

− J

2

([
ψ

(σ )
j (r⊥)

]†
ψ

(σ )
j+1(r⊥) + h.c.

)]
, (1)

HAF = −U
∑
q,n̂

S
†
n̂(q)Sn̂(q),

HSC =− |g|
4

∑
q

∑
k,σ

w∗
kc

†
k,σ c

†
−k+q,−σ

∑
k′,σ ′

wk′c−k′+q,−σ ′ck′,σ ′ ,

with

ψ
(σ )
j (r⊥) = 1√

NdLxLy

∑
k

ck,σ ei(k⊥·r⊥+kcjd),

(2)
Sn̂(q) =

∑
k,α,β

c
†
k,α(σ̂ · n̂)α,βck+Q0+q,β .

In the above expressions, σ (= ±1) denotes the spin projection,
and the gap function satisfies the property wk+Q0 = −wk
peculiar to the dx2−y2 -pairing state. Further, in the case of a
Fermi surface with perfect nesting, the relation ε(k + Q0) =
−ε(k) is satisfied. Through our explanation of our theoretical
expressions, the unit h̄ = c = kB = 1 will be used.

In the presence of a uniform magnetic field H, the spin
quantization axis parallel to H will be chosen hereafter.
Further, the dispersion relation ε(−i∇⊥) needs to be replaced
by ε(−i∇⊥ + eA) + Iσ , where I is the Zeeman energy and
is usually written as μBgH with a g-factor and the Bohr
magneton μB.

For the moment, we focus on the mean-field approximation,
neglecting both the SC and AFM fluctuations, and the roles
of the AFM fluctuation will be discussed in Secs. IV and V.
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The AFM staggered field m playing the role of the AFM,
or spin-density-wave, order parameter is given by m(q) =
U 〈Sn̂(q)〉, where 〈 〉 denotes the statistical average. When
the AFM staggered moment carries a finite momentum q,
Q ≡ Q0 + q expresses the incommensurate AFM modulation
wave vector. Expecting a finite q to be uniquely chosen at the
microscopic level, the mean-field expression of HAF may be
represented by

HAF,MF = U−1|mn̂(q)|2 − [mn̂(−q)Sn̂(q) + h.c.]. (3)

Here, the expression was written for general n̂. In the ensuing
analysis, we assume n̂ to be fixed to the c axis of the tetragonal
structure for any direction of the magnetic field based on an
experimental report on this issue15 on CeCoIn5. Thus, we
will not write the index n̂ in mn̂ hereafter. The implication
of this assumption on the fixed n̂ will be commented on in
Sec. III. Similarly, the corresponding mean-field expression of
HSC is

HSC,MF

= |g|−1|�(0)|2 −
[
�∗(0)

∑
k,σ

wk

2
σc−k,−σ ck,σ + h.c.

]
.

(4)

Here, the SC order parameter satisfying the gap equation,

� = |g|
2

∑
k,σ

wkσ 〈c−k,−σ ck,σ 〉, (5)

was, for convenience of description, assumed to be spatially
uniform. We perform the mean-field analysis of H in the
following two approaches separately. One is a perturbative
approach based on the microscopic derivation of a Ginzburg–
Landau (GL) free energy of a form expanded in powers
of both the SC and AFM order parameters. This method
is useful in discussing, at least, the case with a relatively
weaker PPB in which the Hc2 transition remains second order,
because the orbital pair-breaking effect of the magnetic field
inducing the vortices, necessary for obtaining the second-order
Hc2 transition, is included in the familiar manner. We note
that the second-order Hc2 transition is not a consequence
of the GL expansion in the SC order parameter, as has
been demonstrated through a derivation of the first-order
Hc2 transition.17 However, this method is insufficient for
examining the detailed structure of the AFM order reflecting
the quasiparticle’s dispersion relation. Another approach is to
focus on the Pauli limit in which the field-induced vortices
are completely neglected. The neglect of the vortices is
inappropriate for considering response properties in the SC
phase such as the vortex elasticity, while it may not affect
evaluation of thermodynamic quantities of superconductors
with strong PPB significantly. Rather, the details of the AFM
order can be examined numerically within this approach.
Note that these two approaches are complementary with each
other.

A. Perturbative approach

First, let us start with explaining the perturbative approach.
The quasiparticle energy incorporated in Hkin is assumed in

this approach to satisfy

ε(k + Q0) = −ε(k) − Tc0δIC, (6)

where the dimensionless parameter δIC measures the incom-
mensurability, i.e., the deviation from the perfect nesting
condition for a spin-density-wave or AFM ordering, Q0 =
(π/a,π/a,π/d) with the lattice constants a (in the ab

direction) and d (in the c direction) is the commensurate AFM
modulation wave vector. Note that, here, δIC is assumed to
be a constant. The general case in which δIC is k dependent
will be studied in the Pauli limit approach to be given later.
Further, the opened Fermi surface in the c direction, i.e., the
quasi-2D nature, might become important in some electronic
processes, while it is safely negligible in considering spatial
variations of the order parameter fields � in a vortex state
and of m as far as the spatial anisotropy of the SC material
to be defined later is relatively small. For this reason, the
order parameter fields will be assumed24 to be functions of
a continuous spatial coordinate r = (r⊥,z) by replacing jd

by z.
Regarding the Green’s function G(σ )(τ ; r⊥,r′

⊥; j,j ′) ≡
−〈Tτ [ψ (σ )

j (r⊥,τ )(ψ (σ )
j ′ (r′

⊥,0))†]〉 defined in the normal state,
the quasi-classical approximation for G(σ )

εn
(r⊥,r′

⊥; j,j ′) =∫ β

0 dτ G(σ )(τ ; r⊥,r′
⊥)eiεnτ , i.e.,

G(σ )
εn

(r⊥,r′
⊥; j,j ′)

� G(σ )
εn

(r⊥ − r′
⊥; j − j ′)|H=0 exp

(
ie

∫ r⊥

r′
⊥

A(s) · ds
)

, (7)

will be used, where εn = π (2n + 1)/β is a fermion Matsubara
frequency and β = 1/T is the inverse temperature. In dia-
grammatic calculations, the formula

exp

(
−2ie

∫ r1

r
A(s) · ds

)
�(r1) = exp (i(r1 − r) · �) �(r)

(8)

with � = −i∇⊥ − 2eA(r) and

G(σ )
εn

(k) = d
∑

j

∫
d2r⊥ G(σ )

εn
(r⊥ − r′

⊥; j − j ′)|H=0

× e−ik⊥·(r⊥−r′
⊥)−ikcd(j−j ′) = 1

iεn − ε(k) + Iσ
(9)

will be used. The orbital pair-breaking effect is incorporated
through relation (7).

The contributions associated with the SC and AFM order-
ings to the free-energy density are given by the sum fGL =
f

(2)
� + f (2)

m + f
(4)
� + f (4)

m + f
(2,2)
�m + f

(2,4)
�m . The last sixth-

order term ∝ |�|2m4 is not negligible in evaluating the sign of
the m4 term in the free-energy in the SC state. The purely SC
contributions take the form

f
(2)
� =

〈
�∗(r)

[
1

|g| − K
(2)
� (�)

]
�(r)

〉
sp

,

(10)
f

(4)
� = 〈

K
(4)
� (�i)�

∗(r1)�(r2)�∗(r3)�(r4)
∣∣
ri→r

〉
sp

,
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where 〈 〉sp denotes the spatial average, and

K
(2)
� (�) = 1

2β

∑
n,k,σ

|wk|2G(σ )
εn

(k)G(−σ )
−εn

(−k + �),

K
(4)
� (�i) = 1

2β

∑
n,k,σ

|wk|4G(σ )
εn

(k)G(−σ )
−εn

(−k + �2)G(σ )
εn

×(k + �∗
3 − �2)G(−σ )

−εn
(−k + �∗

1). (11)

On the other hand, f (2)
m and f (4)

m are the corresponding GL
terms in the AFM order parameter m under vanishing �, and,
for simplicity, its q = 0 case will be described here :

f (2)
m =

[
1

U
− 1

2β

∑
n,k,σ

G(σ )
εn

(k)G(σ̄ )
εn

(k + Q0)

]
m2,

f (4)
m =

[
1

2β

∑
n,k,σ

G(σ )
εn

(k)G(σ̄ )
εn

(k + Q0)

×G(σ )
εn

(k)G(σ̄ )
εn

(k + Q0)

]
m4. (12)

Further, the coupling term between the two orders in the free-
energy density takes the form

f
(2,2)
� m = 〈[2K� m,1(�i) + K� m,2(�i)]�

∗(r1)�(r2)m2|ri→r〉sp,

(13)

where

K� m, 1(�i) = −β−1
∑
n,k,σ

|wk|2G(σ )
εn

(k + Q0)G(σ̄ )
εn

× (k)G(−σ̄ )
−εn

(−k + �2)G σ̄
εn

(k − �2 + �∗
1),

K� m, 2(�i) = −β−1
∑
n,k,σ

wkw
∗
k+Q0

G(σ )
εn

(k + �2)G(−σ )
−εn

(−k)

×G(−σ̄ )
−εn

(−k + Q0)G(σ̄ )
εn

(k + Q0 + �∗
1). (14)

In the above expressions, σ̄ is σ in n̂‖H and −σ in n̂⊥H,
respectively.

At this stage, one of key observations in the present paper
can be explained by noting that G(−σ )

−εn
(k + Q0) = −G(σ )

εn
(k)

in the commensurate (δIC → 0) limit: In the n̂‖H case, it
is noticed through comparison with Eq. (11) that K� m, n

(n = 1 and 2) becomes the same expression as K
(4)
� , except the

presence of �’s operations, and thus that, as well as the sign
change of K

(4)
� in higher fields resulting in the first order Hc2

transition,17,32 they also become negative as PPB is enhanced.
Since it implies that the m2 term in the free energy is reduced
with increasing PPB, coexistence of the SC and AFM orders
is favored, or an AFM QCP becomes closer with increasing H

or by an enhancement of PPB. This conclusion is not limited
to the dx2−y2 -pairing case and is satisfied for any pairing state.
In contrast, the corresponding mechanism of a PPB-induced

AFM ordering in the SC state in n̂⊥H is peculiar to the
dx2−y2 -pairing case and will be explained later.

To perform the k integrals, a particle-hole symmetry will
be assumed to be approximately satisfied around the Fermi
surface by introducing a constant density of states N (0) on the
Fermi surface as a useful parameter. By replacing ε(k + �)
by ε(k) + vk · � with the velocity vk on the Fermi surface,
we obtain

K
(2)
� (�) = N (0)

2β

∑
n,σ

∫
dε(k)

〈|wk|2G(σ )
εn

(k)G(−σ )
−εn

(−k)
〉
FS

= πβ−1N (0)
∑
n,σ

〈
i sgn(εn)|wk|2

2iεn + 2Iσ − vk · �

〉
FS

= 2πtN (0)
∫ ∞

0
dρf (ρ)

〈
|wk|2 exp

(
−iρ

vk · �

Tc0

)〉
FS

,

(15)

where 〈 〉FS denotes the angle average over the Fermi
surface, f (ρ) = cos(2Iρ/Tc0)/sinh(2πtρ), t = 1/(βTc0),
v(k) = ∂ε(k)/∂k, and the parameter integral

1

κ
=

∫ ∞

0
dρ e−κρ (Re κ > 0) (16)

was used. As usual, the zero-field SC transition temperature
Tc0 is defined by

1

N (0)|g| = ln

(
1

βTc0

)
+

εc∑
εn>0

2π

βεn

, (17)

where εc is a high-energy cutoff.
In the presence of the orbital pair-breaking, the SC gap is

varying in real space due to the presence of vortices. As far
as the PPB is not extremely strong in the ballistic limit,26 the
vortex lattice solution may be described by the lowest Landau
level mode of �. Then we have

�(r) = �ϕ0(r). (18)

Here, ϕ0 is the familiar Abrikosov state,33

ϕ0(r)=
(

k2

π

) 1
4

∞∑
s=−∞

exp

[
i

(
sk

rH

y+ π

2
s2

)
− 1

2

(
x

rH

+sk

)2]
,

(19)

expressed in terms of the integer s, which satisfies
the normalization condition 〈|ϕ0|2〉sp = 1. Further, rH =
1/

√
2|eH | is the magnetic length for the Cooper pairs,

and k = π1/2/31/4 for the triangular lattice. Noting that
�± = rH (�x ± i�y)/

√
2 is the raising and lowering

operator for the Landau levels satisfying [�−,�+] =
1, we have exp(iT −1

c0 vk · �ρ) = exp(−|η|2/2)eiη�+eiη∗�− ,
where η = ρ(vx − ivy)/(

√
2rHTc0). Using the property

〈ϕ∗
0 (r)e−iρT −1

c0 vk·�ϕ0(r)〉sp = exp(−|η|2/2), the quadratic term
in the free energy is expressed in terms of Eq. (15) by

f
(2)
� = N (0)

[
ln

(
1

Tc0β

)
+ 2πt

∫ ∞

0
dρ

〈
|wk|2

(
1

sinh(2πtρ)
− f (ρ) exp

(
− v2

⊥
4r2

HT 2
c0

ρ2

))〉
FS

]
〈|�|2〉sp, (20)

where v2
⊥ = v2

x + v2
y in H ‖ c.
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Deriving the corresponding expression of the SC quartic term F
(4)
� is performed in a similar manner. The kernel in

F
(4)
� takes the form

K
(4)
� (�i) = πT N (0)

∑
n,σ

〈 −isgn(εn)|wk|4
[2iεn + 2Iσ + vk · �∗

1][2iεn + 2Iσ + vk · �2][2iεn + 2Iσ + vk · �∗
3]

〉
FS

+ (�2 ↔ �4)

= 2πtN (0)

T 2
c0

∫ ∞

0

3∏
i=1

dρi f (ρ1 + ρ2 + ρ3)〈|wk|4 eiT −1
c0 (ρ1vk·�∗

1+ρ2vk·�2+ρ3vk·�∗
3)〉FS + (�2 ↔ �4). (21)

By using the identity

exp

(
iρ

vk · �

Tc0

)
ϕ0 =

(
k2

π

) 1
4

∞∑
s=−∞

exp

[
−1

2
(|η|2 − η2) + i

(
sk

rH

y + π

2
s2

)
− 1

2

(
x

rH

+ sk +
√

2η

)2]
, (22)

we have

f
(4)
� = 2πtN (0)T 2

c0

[∫ ∞

0

3∏
i=1

dρi f (ρ1 + ρ2 + ρ3)
k√
2π

∑
l1,l2

(−1)l1l2 exp

[
−1

2

(
l2
1 + l2

2

)
k2

]

×
〈
|wk|4 exp

[
−1

2
(|η1|2 + |η2|2 + |η3|2)

]
Re[e−p0 ]

〉
FS

]〈( |�|
Tc0

)4〉
sp

, (23)

where

p0 = 1

2

(
η∗

1
2 + η2

2 + η∗
3

2) − 1

4
(η2 − η∗

1 − η∗
3)2 − k√

2
[l1(η2 − η∗

1 + η∗
3) + l2(η2 + η∗

1 − η∗
3)], (24)

ηi = ρi(vx − ivy)/(
√

2rHTc0) in H ‖ c, and �4 = �∗
1 − �2 + �∗

3.
In H⊥c, the expressions corresponding to Eqs. (20) and (23) are given by replacing vx and vy in H‖c by γ −1/2vy and γ 1/2vz,

respectively, where γ = (〈v2
y〉FS/〈v2

z 〉FS)1/2 = 2EF(1 − J/EF)1/2/(πJ ) is the anisotropy of the SC length scales and EF is the
Fermi energy in the 2D (J → 0) limit.

Next, the quadratic term f (2)
m will be rewritten by assuming the AFM staggered field to be uniform. A sign change of f (2)

m

determines a position of the second order transition to the AFM phase if the O(m4) term in the free-energy density is positive
(see below). By defining the Néel temperature TN in the normal phase according to Eq. (17) with |g| and Tc0 replaced by U and
TN, respectively, f (2)

m in n̂‖c‖H becomes

f (2)
m =N (0)

[
ln

(
1

βTN

)
+ 1

2

∑
σ

Re

[
ψ

(
1

2
+ i

Iσβ

2π
+ i

δICβ

4π

)
− ψ

(
1

2

)]]
m2, (25)

where ψ(z) is the digamma function

ψ(z) = −γ +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
. (26)

The Zeeman energy term plays a similar role to the incommensurability δIC for the AFM ordering in this field configuration.
On the other hand, in n̂⊥H, f (2)

m becomes

f (2)
m = N (0)

[
ln

(
1

βTN

)
+ Re

[
ψ

(
1

2
+ i

δICβ

4π

)
− ψ

(
1

2

)]]
m2. (27)

Within the present model in which no k-dependent anisotropy is assumed in the Zeeman energy term, the AFM transition
temperature is H independent even in the normal phase in this field configuration.
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Now, let us turn to evaluating the kernels in the coupling term f
(2,2)
� m . To be specific, in this subsection, we focus on the

dx2−y2 -pairing case in which wk = −wk+Q0 . The corresponding results in the dxy-pairing case are given by changing the overall
sign of K� m, 2 in the following expressions. In the n̂‖H ‖c case, we have

K� m, 1(�i) = −2πβ−1N (0)
∑
n,σ

〈
i sgn(εn)|wk|2

[2iεn + 2Iσ + vk · �∗
1][2iεn + 2Iσ + vk · �2][2iεn + 2Iσ + Tc0δIC]

+ i sgn(εn)|wk|2
[2iεn + 2Iσ + vk · �∗

1][2iεn + 2Iσ + Tc0δIC][2iεn + 2Iσ + Tc0δIC + vk · (�∗
1 − �2)]

〉
FS

= 2πtN (0)T −2
c0

∫ ∞

0

3∏
i=1

dρi f

(
3∑

i=1

ρi

)
〈|wk|2[eiδICρ3eiT −1

c0 vk·(ρ1�
∗
1+ρ2�2) + eiδIC(ρ2+ρ3)eiT −1

c0 vk·((ρ1+ρ3)�∗
1−ρ3�2)] + h.c.〉FS,

K� m, 2(�i) = −2πtN (0)T −2
c0

∫ ∞

0

3∏
i=1

dρi f

(
3∑

i=1

ρi

)
〈|wk|2[eiδIC(−ρ2+ρ3)eiT −1

c0 vk·((ρ1+ρ3)�∗
1−ρ3�2)

+ eiδIC(ρ2−ρ3)eiT −1
c0 vk·(ρ2�

∗
1−(ρ1+ρ2)�2)] + h.c.〉FS. (28)

Then, the coupling term of the free energy is expressed, using the relation 〈eiT −1
c0 vk·(ρ1�

∗
1+ρ2�2)ϕ∗

0 (r1)ϕ0(r2)|ri→r〉sp =
e−(1/2)(|η1|2+|η2|2+2η∗

1η2) in the form

f
(2,2)
� m = 2πtN (0)T 2

c0

[∫ ∞

0

3∏
i=1

dρi f (ρ1 + ρ2 + ρ3) 〈|wk|2[4cos(δICρ3)e−(ρ1+ρ2)2((v⊥)2/(2rH Tc0)2

− 8 sin(δICρ2) sin(δICρ3)e−ρ2
1 (v⊥)2/(2rH Tc0)2

]〉FS

]〈 |�|2
T 2

c0

m2

T 2
c0

〉
sp

. (29)

On the other hand, in the H⊥c and n̂‖c case, the expressions corresponding to Eqs. (28) and (29) are

K� m, 1(�i) = N (0)

T 2
c0

∫ ∞

0

3∏
i=1

dρi

2πt

sinh[2πt(ρ1 + ρ2 + ρ3)]

〈
|wk|2

[
cos

(
2

I

Tc0
(ρ1 + ρ2)

)
eiδICρ3eiT −1

c0 vk·(ρ1�
∗
1+ρ2�2)

+ cos

(
2

I

Tc0
ρ2

)
eiδIC(ρ1+ρ3)eiT −1

c0 vk·((ρ1+ρ2)�∗
1−ρ1�2)

]
+ h.c.

〉
FS

,

K� m, 2(�i) = −N (0)

T 2
c0

∫ ∞

0

3∏
i=1

dρi

2πt

sinh[2πt(ρ1 + ρ2 + ρ3)]

〈
|wk|2

[
cos

(
2

I

Tc0
(ρ1 − ρ2)

)
e−iδICρ3eiT −1

c0 vk·(ρ1�
∗
1−ρ2�2)

+ cos

(
2

I

Tc0
(ρ1 − ρ2)

)
eiδICρ3eiT −1

c0 vk·((ρ1+ρ3)�∗
1−(ρ2+ρ3)�2)

]
+h.c.

〉
FS

, (30)

f
(2,2)
� m = N (0)T 2

c0

[∫ ∞

0

3∏
i=1

dρi

2πt

sinh[2πt(ρ1 + ρ2 + ρ3)]

〈
|wk|2

[
4 cos

(
2I

ρ1 + ρ2

Tc0

)
cos(δICρ3)e−(ρ1+ρ2)2v2

⊥/(2rH Tc0)2

+ 4 cos

(
2I

ρ2

Tc0

)
cos(δIC(ρ1 + ρ3))e−ρ2

2v2
⊥/(2rH Tc0)2

−4 cos

(
2I

ρ1 − ρ2

Tc0

)
cos(δICρ3)e−(ρ1−ρ2)2(v⊥)2/(2rH Tc0)2

]〉
FS

]〈 |�|2
T 2

c0

〉
sp

m2

T 2
c0

. (31)

The above K�m,n (n = 1 and 2) expressions clarify how
the AFM ordering in the SC state in n̂ ⊥ H case occurs: For
simplicity, let us consider again the commensurate case with
vanishing δIC and neglect the orbital pair-breaking. Then, it
is easily found that, in the low-T limit, K� m, 1 approaches
the positive value N (0)/(2I 2), while −K� m, 2 shows the

logarithmic divergence I−2N (0)ln(π−1I/T ). Note that the
term appearing through the anomalous Green’s functions
grows with a minus sign. Since this overall minus sign
of K� m, 2 inducing an AFM ordering is a consequence of
the property wk+Q0 = −wk in the dx2−y2 -pairing case, this
tendency of an AFM ordering in the SC state is peculiar to a
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d-wave pairing symmetry with a gap node parallel to the
expected Q0 vector of a commensurate AFM order. Of course,
the divergence indicated above in low-T limit is, strictly speak-
ing, an artifact of the use of the GL expansion with respect to �.
In Sec. IV, however, it will be shown that the corresponding
growth of the anomalous term of the coupled term of AFM
and SC orders with a negative sign is satisfied beyond the
GL expansion and thus that the PPB-induced AFM ordering
in n̂ ⊥ H should occur generally in any dx2−y2 -wave paired
superconductor with strong PPB under a high magnetic field.

To examine the character of the AFM transition, the terms
quartic in m have to be examined. In this perturbative approach,
they consist of the normal contribution f (4)

m and the additional
term f

(4,2)
�m , including the SC contribution of O(|�|2). As a

broad tendency, the SC contribution f
(4,2)
�m seems to make the

AFM transition a continuous one, even if, as is seen in H ‖ c

in some cases, f (4)
m is negative. The expressions of these two

terms in the free-energy density will be given in the Appendix.

B. Pauli limit

In the charged systems leading to superconductivity at low
temperatures, the two field-induced pair-breaking processes,
the spin effect (i.e., PPB) and the orbital one inducing the
vortices, need to be taken into account. In particular, when
studying fluctuation effects and SC response properties such
as the elastic responses peculiar to the vortex states, as pointed
out elsewhere,34 the use of the Pauli limit in which the
orbital pair-breaking effect is neglected could lead to erroneous
results on physical properties. On the other hand, most of
thermodynamic properties and the high-field phase diagram of
bulk superconductors with strong PPB are, in the mean-field
approximation, reasonably described by the Pauli limit.17,32

Paying attention to this point, we present here a formulation
in the Pauli limit of the FFLO states and the AFM ordering in
superconductors with strong PPB where the Hc2 transition is
expected to be of first order at low temperatures. For simplicity,
we assume here a 2D Fermi surface for which J = 0.

The Matsubara Green’s functions will be defined in the
form

G(σ )(τ ; r⊥,r′
⊥) = −〈Tτ [ψ (σ )(r,τ )[ψ (σ )]†(r′,0)]〉,

F
(σ )

(τ ; r⊥,r′
⊥) = −〈Tτ [([ψ (−σ )]†(r,τ )[ψ (σ )]†(r′,0)]〉,

F (σ )(τ ; r⊥,r′
⊥) = −〈Tτ [ψ (σ )(r,τ )ψ (−σ )(r′,0)]〉,

G
(σ )

(τ ; r⊥,r′
⊥) = −〈Tτ [[ψ (σ )]†(r,τ )ψ (σ )(r′,0)]〉, (32)

where the notation of the Green’s functions has been changed
to avoid a unnecessary confusion. Alternatively, they will be
used often in the matrix form

Ĝ(σ ) =
[

G(σ ) F (σ )

F
(σ )

G
(−σ )

]
. (33)

Then, the Fourier transform of Ĝ(σ ), Ĝ(σ )
εn

(k; R) ≡∫
dτeiεnτ

∫
d3(r⊥ − r′

⊥)Ĝ(σ )(τ ; r,r′)e−ik·(r⊥−r′
⊥), where R =

(r + r′)/2, satisfies[
iεn − ε(k) + Iσ −�k(R)σ

�∗
k(R)σ −iεn − ε(k) − Iσ

]
Ĝ(σ )

εn
(k,R)

= 1̂ + [vk · ∂R]Ĝ(σ )
εn

(k,R), (34)

where �k(R) = �(R)wk, and the derivative operator will be
defined as

∂R =

⎧⎪⎨
⎪⎩

� = −i∇R − 2eA(R) for �(R)

�† = −i∇R + 2eA(R) for �∗(R)

−i∇R otherwise.

(35)

Next, since a possibility of the FFLO state is considered,
the Green’s function will be expanded in powers of ∂R in
the way

Ĝ(σ ) = Ĝ
(σ )
(0) + Ĝ

(σ )
(2) + Ĝ

(σ )
(4) + · · · , (36)

where Ĝ
(σ )
(n) is the nth-order term of Ĝ in the gradient. The

terms with odd n have been neglected above which do not
contribute to the free-energy density. Each term in expansion
(36) is given by

Ĝ
(σ )
εn, (0)(k,R) =

[
iεn − ε(k) + Iσ −�k(R)σ

�∗
k(R)σ −iεn − ε(k) − Iσ

]−1

= 1

D

[−iεn − ε(k) − Iσ �k(R)σ

−�∗
k(R)σ iεn − ε(k) + Iσ

]
,

(37)

where

D ≡ [ε(k)]2 − (iεn + Iσ )2 + |�k|2, (38)

Ĝ
(σ )
εn, (2)(k,R) = Ĝ

(σ )
(0)

(
vk · ∂R

(
Ĝ

(σ )
(0) vk · ∂RĜ

(σ )
(0)

))
,

Ĝ
(σ )
εn, (4)(k,R) = Ĝ

(σ )
(0)

(
vk · ∂R

(
Ĝ

(σ )
(0) vk · ∂R

(
Ĝ

(σ )
(0) vk · ∂R

(
Ĝ

(σ )
(0) vk · ∂RĜ

(σ )
(0)

))))
. (39)

In writing the expression of the free energy, the magnitude of the SC energy gap |�| has been assumed to be much more
rigid compared with that of a possible AFM order parameter. This approximation is reasonable when the Hc2 transition is
discontinuous. Then, |�| may be determined self-consistently just from the SC part of the free-energy density f�, which
becomes35

f� =
〈

|�(R)|2
|g| + 1

2β

∑
εn,k,σ

∫ ∞ sgn(εn)

εn

dω Tr
[
iσ̂zĜ

(σ )
ω (k,R)

]〉
sp

. (40)

224518-7



YUHKI HATAKEYAMA AND RYUSUKE IKEDA PHYSICAL REVIEW B 83, 224518 (2011)

As well as Ĝ, f� may also be classified in the form of a gradient expansion:35

f
(0)
� =

〈
|�|2
|g| − β−1

∑
εn>0

∑
k

ln

[(
ε2
n + [ε(k)]2 + |�k|2 − I 2

)2 + 4ε2
nI

2(
ε2
n + [ε(k)]2 − I 2

)2 + 4ε2
nI

2

]〉
sp

,

f
(2)
� = β−1

〈∑
εn>0

∑
k

[
a2

s − b2
s(

a2
s + b2

s

)2 |vk · ��k|2

+ 2

3

(
2[ε(k)]2 − ε2

n + I 2 − |�k|2
)(

a4
s − 6a2

s b
2
s + b4

s

) − 4asb
2
s

(
a2

s − b2
s

)
(
a2

s + b2
s

)4 (vk · ∇|�k|2)2

]〉
sp

, (41)

f
(4)
� �

〈
β−1

∑
εn>0

∑
k

[
2

3

(
2[ε(k)]2 − ε2

n + I 2 − |�k|2
)(

a4
s − 6a2

s b
2
s + b4

s

) − 4asb
2
s

(
a2

s − b2
s

)
(
a2

s + b2
s

)4 |(vk · �)2�k|2
]〉

sp

,

where as = [ε(k)]2 + ε2
n + |�k|2 − I 2 and bs = 2εnI .

In our analysis in the Pauli limit, the only R dependence of
the SC order parameter we consider is that of the longitudinal
FFLO state,

�(r) = [
√

2 cos(qLO x)]�, (42)

in H‖ x̂, where just a single Fourier component with the
wavelength 2π/qLO is assumed for the FFLO modulation,
while the two kinds of d-wave pairing symmetries,

wk =
{

cos(kxa) − cos(kya) (dx2−y2 -wave)

sin(kxa) sin(kya) (dxy-wave)
, (43)

will be considered. Further, to examine the details of the
resulting AFM order in the SC state, the dispersion relation

ε(k) = −2t1(cos(kxa) + cos(kya)) − 4t2 cos(kxa) cos(kya)

−2t3(cos(2kxa) + cos(2kya)) − μ (44)

will be used following Ref. 36. An incommensurability of
AFM order primarily stems from a nonvanishing t2 term.

A possible AFM order may be considered in the form of a
Landau expansion in the staggered field m of the free-energy
density, in particular, if the AFM transition is of second order.
Then, the AFM contributions in the free-energy density take
the form fm = f (2)

m + f (4)
m as a power series in m, where

f (2)
m = 〈[U−1 − χ (n) − χ (an)]m2〉sp. (45)

In H⊥ n̂ with n̂⊥ab,

χ (n) = −β−1
∑
n,k,σ

G
(σ )
εn, (0)(k) G

(−σ )
εn, (0)(k + Q0),

(46)
χ (an) = β−1

∑
n,k,σ

F
(σ )
εn, (0)(k) F

(−σ )
εn, (0)(k + Q0),

f (4)
m = 1

2β

∑
εn,k,σ

1

2
Tr
[
σ̂zĜ

(σ )
εn, (0)(k + Q0)σ̂zĜ

(σ )
εn, (0)

× (k)σ̂zĜ
(σ )
εn, (0)(k + Q0)σ̂zĜ

(σ )
εn, (0)(k)

]
m4. (47)

It is found that these expressions are rewritten in the form

χ (n) = β−1
∑
εn>0

∑
k

4
[
ε2
n + I 2 − ε(k)ε(k + Q0)

]
a⊥

a2
⊥ + b2

⊥
, χ (an) = −β−1

∑
εn>0

∑
k

4�k�
∗
k+Q0

a⊥
a2

⊥ + b2
⊥

, (48)

a⊥ = (
ε2
n + [ε(k)]2 + |�k|2 − I 2

)(
ε2
n + [ε(k + Q0)]2 + |�k+Q0 |2 − I 2

) + 4ε2
nI

2,
(49)

b⊥ = 2εnI ([ε(k + Q0)]2 − [ε(k)]2 + |�k+Q0 |2 − |�k|2),

f (2)
m =

[
1

U
− β−1

∑
εn>0

∑
k

4a⊥
a2

⊥ + b2
⊥

(
ε2
n + I 2 − ε(k)ε(k + Q0) − �k�

∗
k+Q0

)]
m2, (50)

f (4)
m = 2β−1

∑
εn>0

∑
k

1

(a2
⊥ + b2

⊥)2

{
(a2

⊥ − b2
⊥)
[(

ε2
n + I 2 − ε(k) ε(k + Q0) − �∗

k+Q0
�k

)2 − ε2
n[ε(k) − ε(k + Q0)]2

+ I 2|�k − �k+Q0 |2 − |ε(k + Q0)�k − ε(k)�k+Q0 |2
] − 2a⊥b2

⊥
}
m4. (51)

In n̂‖H ‖ c,

χ (n) = β−1
∑
εn>0

∑
k

4
[(

ε2
n − I 2 − ε(k)ε(k + Q0)

)
a‖ + 2εnIb‖

]
a2

‖ + b2
‖

, χ (an) = −β−1
∑
εn>0

∑
k

4�k�
∗
k+Q0

a‖
a2

‖ + b2
‖

, (52)
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where

a‖ = (
ε2
n + [ε(k)]2 + |�k|2 − I 2

)(
ε2
n + [ε(k + Q0)]2 + |�k+Q0 |2 − I 2

) − 4ε2
nI

2,

b‖ = 2εnI
(
2ε2

n − 2I 2 + [ε(k + Q0)]2 + [ε(k)]2 + |�k|2 + |�k+Q0 |2
)
, (53)

f (2)
m =

[
1

U
− β−1

∑
εn>0

∑
k

4
[(

ε2
n − I 2 − [ε(k)][ε(k + Q0)] − �k�

∗
k+Q0

)
a‖ + 2εnIb‖

]
a2

‖ + b2
‖

]
m2, (54)

f (4)
m =

∑
εn>0

∑
k

2β−1

(a2
‖ + b2

‖)2

{
(a2

‖ − b2
‖)
[(

ε2
n − I 2 − ε(k)ε(k + Q0) + �∗

k+Q0
�k

)2

− (
ε2
n − I 2

)
([ε(k) + ε(k + Q0)]2 + |�k − �k+Q0 |2) − |ε(k + Q0)�k + ε(k)�k+Q0 |2

]
− 4εnIa‖b‖

[
[ε(k) + ε(k + Q0)]2 + |�k − �k+Q0 |2 − 2

(
ε2
n − I 2 − ε(k)ε(k + Q0) + �∗

k+Q0
�k

)]}
m4. (55)

The expressions given in this section are used to examine the
resulting H -T phase diagram and the details of the expected
AFM ordering.

III. CASE WITH SECOND-ORDER Hc2 TRANSITION

In this section, the H -T phase diagram near Hc2(0) and
possible AFM ordering in the case with a moderately strong
PPB will be numerically examined in terms of the theoretical
expressions in the first half of the last section. In this case
with a moderately strong PPB, the situation with a first-order
Hc2 transition occurs rarely, and the Hc2 transition remains
of second order even in the low-T limit in most cases. This
situation will be appropriate for explaining phenomena in
the pressured CeRhIn5,3 Ce2PdIn8,5 and other dx2−y2 -paired
superconductors.6

The strength of PPB is measured by the dimensionless
parameter αP = I [H = H

(GL)
c2 (T = 0)]/(2πTc0), where I (H )

is the Zeeman energy. The so-called Maki parameter αM

corresponds to αP multiplied by the factor 7.1. Since we focus
here on the family of quasi-2D materials, the following two
PPB parameters will be defined here in the manner depending
on the direction of H:

αP,‖ = I
[
H = H

(GL)
c2,‖ (0)

]
2πTc0

,

(56)

αP,⊥ = I
[
H = H

(GL)
c2,⊥ (0)

]
2πTc0

,

where H
(GL)
c2,‖ and H

(GL)
c2,⊥ = γH

(GL)
c2,‖ are the orbital depairing

field in H‖c and H⊥c, respectively.
In this section, we show only calculation results obtained in

terms of material parameters leading to an AFM order at finite
temperatures. In systems with moderately strong PPB, no true
AFM order has been detected so far, and just the presence of
an AFM quantum critical fluctuation enhanced close to Hc2(0)
has been found. But the field at which the AFM transition
temperature is the highest would be transmuted to an apparent
AFM QCP through a slight tuning of material parameters or
including an introduction of impurity disorder.

A. H ⊥ c

First, calculated results in the in-plane field configuration
H ⊥ c will be explained. A tendency of the PPB-induced AFM
ordering is reflected in a field-induced sign change of the
coupling or mixing term f

(2,2)
� m of the free-energy density. An

example of this sign change of f
(2,2)
� m (H ) is given in Fig. 2. In

the figure, the field dependence to be seen in a conventional
type II superconductor with a negligibly weak PPB is limited
in low-enough fields, H/HP � 0.2, where the field-induced
reduction of f

(2,2)
� m will not be able to be distinguished from

the conventional picture7,8 on the AFM ordering stemming
from a reduction of f

(2,2)
� m due to the field-induced reduction

of |�|. Namely, if the orbital depairing field lies in such a
field range that the PPB is negligible for the disappearance
of superconductivity, the field-induced AFM ordering would
be regarded as being due to the vanishing of |�|. As is seen
below, however, a close inspection of the behaviors near Hc2

indicates that this PPB-induced AFM ordering is weakened by
the field-induced reduction of |�|.
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FIG. 2. (Color online) Field dependence of the coupling term
f

(2,2)
� m (solid black curve) of the free-energy density in H⊥c calculated

in the perturbative approach and taken at t = 0.3. The used parameters
are αP,⊥ = 0.3, δIC = 1.1, and γ = 4.5. The upper (red) dashed curve
is the contribution from K� m, 1, while the lower (blue) dotted one is
that from K� m, 2.
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FIG. 3. (Color online) AFM transition curves described in H -T
phase diagram in H⊥c as a function of TN which is the Néel
temperature in the normal phase in the commensurate limit. Here,
calculation was performed consistently with that in Fig. 2. The AFM
transition curves follow from the TN/Tc0 values in the range between
0.575 (rightmost) and 0.16 (leftmost). The AFM order in the normal
state [i.e., in H > Hc2(0)] is absent when TN < 0.32Tc0. The Hc2

transition on the dotted curve is of second order even at low T

because the orbital pair-breaking at this moderate value of αP,⊥ is
not negligible even in the low-T limit.

In Fig. 3, AFM transition curves in the field range around
Hc2(0), obtained as a function of the Néel temperature TN in
the normal state in H > Hc2, are shown. Here, the same set
of material parameters as in Fig. 2 has been used, and the
pressure dependence in real systems has been assumed to be
directly reflected in that of TN in the normal state. We expect
Fig. 3 to be comparable to the corresponding experimental
phase diagrams on CeRhIn5 (see Ref. 3 and Figs. 4 and 20(a) of
Ref. 37). In the present electronic model, it is expected that not
only the inverse of the electronic repulsive interaction, 1/U ,
but also the incommensurability |δIC| increase with increasing
pressure. As mentioned previously,29 an increase of |δIC| tends
to enhance the PPB-induced AFM ordering (see also Fig. 5
in Sec. IV). In the case of pressured CeRhIn5,3,37 however, it

T/Tc
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/H
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,||
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L

) (
0)
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0.25
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0 0.1 0.2 0.3 0.4 0.5

FIG. 4. (Color online) AFM transition curve described in H -T
phase diagram in H‖c and obtained in terms of γ = 4.5, αP,‖ = 0.39,
δIC = 1.1, and TN/Tc0 = 0.6. The Hc2 transition on the dotted curve
is of second order.

will be natural to expect that the pressure dependence of the
AFM phase boundary is determined by that of TN in the normal
state,38 while that of the incommensurability is a correction.
Hereafter, we focus on the behavior in the SC state of Fig. 3
that the AFM order disappears close to but below Hc2(0). A
couple of remarkable features are seen in Fig. 3. First, at lower
pressures (i.e., higher TN), the AFM transition temperature
monotonously decreases with decreasing field. This behavior
indicates that the reduction of the SC energy gap |�| rather
than the PPB origin plays a dominant role for an increase of
the AFM transition point, because the orbital pair-breaking is
more dominant than PPB at such high temperatures. As TN is
sufficiently lowered, however, the PPB primarily determines
the field dependence of the AFM transition temperature, and
the AFM phase appears just below Hc2 rather than above Hc2.
Note that, very close to Hc2, the AFM order is rather lost in
the present case where the Hc2 transition is of second order.
It implies that this AFM order is purely of SC origin and
hence that it is lost as a consequence of the decrease of |�|
on approaching Hc2 from below. This feature is one of the
features clarifying that this AFM order is induced not by the
decrease of |�| but rather by the PPB which is effective only
in the SC state.

B. H ‖ c

Next, the corresponding results on the PPB-induced AFM
ordering in H‖ n̂ and n̂‖c will be briefly discussed. In contrast
to the case in H⊥ n̂, the AFM ordering in the normal state
in this case is suppressed, as well as the SC ordering, by the
applied magnetic field in the present electronic model.38 Thus,
the tendency of the PPB-induced AFM ordering is weaker
compared with that in the last subsection.

In this field configuration, both of the two coefficients
K� m, n (n = 1 and 2) in the coupling term change their sign
with increasing the field and induce the PPB-induced AFM

H/Hc2 (0)

T
/T

c

0.85 0.9 0.95 1 1.05
0

0.05

0.1

0.15

FIG. 5. (Color online) Upper limits, defined by the vanishing
of χs , of possible AFM transition curves in H⊥c obtained in the
perturbative approach for δIC = 0.44 (lower curve) and 0.63 (higher
one). For each case, an actual transition curve is lower than the dashed
curve depending on the value of the repulsive interaction U . The
parameter values γ = 4.5 and αP,⊥ = 1.1, are common between the
two dashed curves.
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ordering. A typical phase diagram in this case is shown in
Fig. 4. The main feature such that the AFM ordering tends
to be promoted by PPB is qualitatively the same as in H⊥ n̂.
Reflecting the field-induced suppression of AFM order in the
normal state mentioned above, however, the AFM ordering in
this case is quantitatively weaker than that in H⊥ n̂, and the
field region in which the AFM ordering is the most favorable
tends to be shifted to lower fields than Hc2(0). Our assumption
in Sec. I that, in CeCoIn5, n̂ is locked to the c axis irrespective
of the direction of the field, is closely related to this fact,
because the AFM order just below Hc2(0) is not realized in
CeCoIn5 in H‖c.39 This issue will be discussed further in
relation to Fig. 9 again.

IV. CASE WITH FIRST-ORDER Hc2 TRANSITION
AND AFM Q VECTOR

In this section, we explain how the results in the last section
are changed when the PPB is much stronger so that the Hc2

transition at lower temperatures is of first order. For brevity,
the resulting SC state is assumed through this section to
be spatially uniform at least in the direction parallel to H.
Consequently, the only additional transition in the SC state in
high fields is the PPB-induced AFM ordering. We stress here
that, as explained in Sec. I, the resulting coexistent phase of
the AFM order and the uniform d-wave SC one must not be
identified with the HFLT phase of CeCoIn5. The main purpose
of this section is to clarify further details of the PPB-induced
AFM ordering in addition to the obtained results in the last
section. Relevance to the HFLT phase of CeCoIn5 will be
discussed in detail in the next section.

A. H ⊥ c

In most parts of this section, we focus on the H ⊥ c case.
First, let us start with pointing out an important difference
between the PPB-induced AFM order and the ordinary
itinerant AFM one in the normal state. As demonstrated in
Fig. 3, the AFM order usually diminishes with increasing
pressure. However, applying the external pressure also en-
hances the incommensurability of the Fermi surface measured
by |δIC| or |t2|. In relation to this, we present in Fig. 5 two lines
implying the δIC dependence of the positions on which the SC
part of the bare susceptibility χs ≡ χ (n) − χ (n)(� = 0) + χ (an)

vanishes. This figure has been obtained by using a larger Maki
parameter αM � 7 leading to the first-order Hc2 transition
at low temperatures compared with that in Fig. 3. Strictly
speaking, a possibility of appearance of a FFLO state needs
to be considered in the case of Fig. 5. The situation with a
coexistence of the AFM and FFLO orders will be discussed
separately in the next section.

Note that Fig. 5 shows that the present PPB-induced AFM
ordering is enhanced with increasing the incommensurability.
Since the normal part of the susceptibility, determining TN

used in Fig. 5 as the key parameter dependent on the pressure,
is not incorporated in Fig. 5, and the pressure dependences
of TN and the incommensurability are competitive with each
other for the PPB-induced AFM ordering, this figure means
that, in the case with a stronger PPB, it cannot be concluded

1.5

1

0.5

0

-0.5

-1
0 0.2 0.4 0.6 0.8 1 1.2

H/HP

-χ
s

FIG. 6. (Color online) Typical −χs vs. H/HP curve (solid black
curve) taken at t = 0.1 in the strong PPB case in H⊥c. This figure
should be compared with Fig. 2 with a second-order Hc2 transition.
The upper and lower dotted curves express the SC part of −χ (n) and
−χ (an), respectively. Calculation was performed in the Pauli limit,
fully taking account of the |�| dependences and assuming the 2D
circular Fermi surface and the incommensurability δIC = 0.1.

generally whether the AFM ordering occurring close to Hc2(0)
is enhanced or diminished with increasing pressure.

The corresponding data to Fig. 2 in the last section are
presented in Fig. 6, where, for brevity, the orbital pair-breaking
effect (the presence of the vortices) has been neglected.
Reflecting the discontinuous nature of the Hc2 transition, χs

discontinuously vanishes at Hc2 with increasing field. In the
region in which χs > 0, the PPB-induced AFM ordering is
possible depending on the value of the normal part of the
susceptibility. This figure clearly shows that the PPB-induced
AFM ordering is not an artifact of the logarithmic divergence of
the anomalous part upon cooling in the perturbative approach.

Next, as one aspect representing the resulting AFM order,
the incommensurate part q of the AFM modulation wave
vector Q = Q0 + q will be investigated. The optimal q is
numerically found by replacing Q0 in Eq. (45) and the
ensuing expressions with Q0 + q and minimizing f (2)

m with
respect to q. Through our examination of possible q, we
have found that a diagonal q consistent with that determined
experimentally in CeCoIn5

16 is not easily obtained in the case
where the nesting condition on the Fermi surface is relatively
kept even if deviating from the diagonal (i.e., Q0) direction.
Dispersion relation (44) with vanishing t3 corresponds to
this case. As shown in Fig. 7, the Fermi surface with a
remarkable inflection close to the diagonal direction is needed
to obtain a diagonal q.16 Here, we have assumed that the
relevant Fermi surface to the d-wave superconductivity and
the itinerant antiferromagnetism is the so-called γ -sheet36

or the band 14-electron one40 which has the largest density
of states and is not cylindrical. As examined previously,26

such a noncylindrical and 3D-like modulation of the Fermi
surface is necessary to theoretically explain the presence of a
longitudinal FFLO state in CeCoIn5 in H ‖ c, suggested from
a NMR experiment.39 On the other hand, it should be noted
that, in contrast to the above-mentioned severe condition on the
required modulation wave vector of the high-field AFM order
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FIG. 7. (Color online) Fermi surface (solid curve) following from
the dispersion relation, Eq. (44), with the values t1 = 20Tc, t2/t1 =
−1.25, t3/t1 = 0.65, and μ/t1 = 1.85, and leading to a diagonal wave
vector of the incommensurate AFM order (see Fig. 8) consistent
with the experimental observation.15,16 The lower left dashed curve
is the branch obtained by performing a Q0+ (0.37, 0.37) shift for the
original Fermi surface, while the dotted curve is the Fermi surface
obtained36 by mimicking the result from the band calculation. For
the Q0 − (0.37, 0.37) shift, essentially the same nesting condition
in the diagonal direction is obtained in the region −π � kx , ky � 0.
Note that the magnitude of the density of states at each k = (kx , ky)
is represented by the colors.

of CeCoIn5, the AFM ordering itself close to Hc2(0) is realized
as a consequence of the strong PPB and the dx2−y2 -pairing
symmetry irrespective of the details of the Fermi surface.

In addition, we have also examined the field and tempera-
ture dependences of q. As Fig. 8 shows, the obtained diagonal q
is mostly robust on sweeping the temperature and the magnetic
field. This fact, consistent with the experimental data,16

supports our picture that, in contrast to that in other work,41

the origin of the AFM order in the HFLT phase of CeCoIn5 is
not a FFLO structure but of a purely electronic origin.42

0.8 0.85 0.9 0.95 1
H/HP

q

0 0.05 0.1 0.15
T/Tc

q

(a) (b)T/Tc=0.05 H/HP=0.9
0
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0.4

0.5

0
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0.4
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FIG. 8. (Color online) H and T dependences of the diagonal q
resulting from the Fermi surface (solid curve) in Fig. 7. This fact that
q is nearly independent of H and T is consistent with the observation
in Refs. 15 and 16, supporting the picture that the basic origin of
making the incommensurate AFM wave vector in the HFLT phase
of the CeCoIn5 diagonal consists of the electronic structures and the
details of the Fermi surface. The corresponding phase diagram is
given later in Fig. 10(b).
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FIG. 9. (Color online) Curves including a −χs vs. H/HP curve
(black solid curve) in H‖c which correspond to those in Fig. 6.
For comparison, the corresponding −χs(H ) in the dxy-pairing case
(uppermost curve) is also shown. Calculation was performed in the
same scheme as that of Fig. 6 but in the commensurate (δIC → 0)
limit.43

B. H ‖ c

In obtaining Figs. 6, 7, and 8, we have used the approach
in the Pauli limit (see Sec. II). As mentioned earlier, this
approach is not necessarily unrealistic in examining thermo-
dynamic data of quasi-2D materials in H⊥c. In contrast, the
corresponding neglect of the orbital pair-breaking in H‖c is
usually unacceptable because of the important roles of the
vortices in this configuration. Nevertheless, it will be useful to
know the PPB-induced AFM ordering in the Pauli limit in this
configuration. In Fig. 9, we show an example of our results in
H‖c obtained in the Pauli limit.43 In contrast to Fig. 4, the field
at which the AFM ordering is the most remarkable is much
closer to Hc2(0), irrespective of the position of an AFM-QCP
suggested from the data in the normal state (see Fig. 1 and the
discussion relevant to Fig. 4 in Sec. III). We believe that this
difference between Figs. 4 and 10 is intrinsic and is a reflection
of the difference in the magnitude of PPB. To clarify this issue
further, one would need to perform a more elaborate analysis,
taking account of both the PPB and the orbital pair-breaking
on an equal footing in future.

In Fig. 9, the corresponding −χs(H ) curve in the case of
dxy-pairing has also been presented, for comparison, which
implies that, even in H‖c, the dxy-pairing case does not lead
to the PPB-induced AFM ordering. This close relation between
the diagonal AFM Q vector and the direction of the gap node
indicates that the fourfold symmetric d-wave SC symmetry
in a SC material showing an AFM ordering enhanced on
approaching Hc2(0) from below with increasing field should
be always the dx2−y2 one.

V. EFFECT OF FFLO MODULATION ON AFM
ORDERING IN PAULI LIMIT

In the preceding sections, we have focused on the case
with a finite AFM transition temperature in some field range
just below Hc2(0). From such a case, the situation with a
remarkable AFM critical fluctuation near Hc2(0) but with no
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genuine AFM order is easily created by reducing the repulsive
interaction strength U . As mentioned in the introduction,
however, when discussing the HFLT phase of CeCoIn5 in H⊥c

with n̂‖c, it is indispensable to, consistently, take account of
appearance there of a different ordered state from the AFM
order induced by the strong PPB, such as the spatial modulation
of the SC order parameter of the longitudinal FFLO state.

Here, it is pointed out that the FFLO spatial modulation
of the SC order parameter in H⊥c significantly enhances the
PPB-induced AFM ordering. In the context of CeCoIn5, it is an
elaborate task to give a full description of this interplay of the
two orderings within the two approaches explained in Sec. II.
Here, we examine this interplay by assuming the wavelength
of the FFLO modulation 2π/qLO, defined through Eq. (42),
to be long enough to neglect the gradient terms in the free
energy on the AFM ordering. The implication of this local
approximation on the AFM modulation will be explained at
the end of this section.

Possible phase diagrams including the FFLO and AFM
ordered states and resulting from our calculation in the Pauli
limit are shown in Figs. 10 and 12. There, the uniform SC
state in lower fields in the Pauli limit corresponds to the
ordinary vortex lattice in the full description including the
orbital pair-breaking effect. In the present formulation in the
Pauli limit, a possible FFLO state is found by substituting
the test solution, Eq. (42), of the SC order parameter � into
the free-energy terms given by Eq. (41) and minimizing them
with respect to qLO. Then, in our formulation in the Pauli
limit, the Hc2 transition was of first order, while the resulting
transition between the FFLO and uniform SC states was of
second order at any temperature, implying that the distance
between the neighboring FFLO nodal planes diverges at the
transition. Note that, in considering the FFLO ordering, the
averaged value of |�| is so rigid that it may be assumed to be
unaffected by an AFM ordering.

Then, when considering a coexistence of the AFM and
FFLO orderings in the local approximation for the AFM mod-
ulation, we only have to use Eqs. (50) and (51) with � replaced
with �(r) given in Eq. (42). We have checked that, in all
cases we have examined, f (4)

m > 0 so that the AFM transition
is continuous by itself. First, it will be clarified how spatial
variation of m should be realized in the LO structure, Eq. (42),
of �. It is easily understood by recalling the role of the coupling
term f

(2,2)
� m in the perturbative approach that, when f

(2,2)
� m > 0

(<0), the structure of the AFM order parameter showing the
out-of-phase (in-phase) modulation for the SC order parameter
is the most stable and that the spatially uniform AFM order is
unstable in the FFLO state. It is directly concluded from this
consideration that, in the presence of the Larkin–Ovchinnikov
state, Eq. (42), the uniform AFM order cannot be stable, and
that, at least in higher fields where |�| is smaller, the in-phase
structure, Fig. 11(2), is the most stable as a direct consequence
of the PPB-induced AFM ordering. On the other hand, in lower
fields and particularly close to the second-order transition
to the uniform SC state, we have a couple of candidates of
possible phase diagrams, and it is not easy to predict which
of them should be realized in a particular material. In fact, to
clarify the best candidate for CeCoIn5, extensive consideration
is necessary as follows. First, an experimental fact44 that
the anomalous doping (impurity) effect on the second-order
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FIG. 10. (Color online) Theoretical H -T phase diagrams in H⊥c

following from our calculation in the Pauli limit. The symbols SC,
FFLO, and AF (n) denote the uniform SC order (see the text), the
FFLO one, and the AFM one defined in Fig. 11, respectively. The
Hc2 transition on the dotted curve is discontinuous, while the FFLO
and AFM orders disappears continuously on the red solid and blue
solid curves, respectively. The used values of the parameters are
t1 = μ = 20Tc, t2/t1 = −1.25, and t3/t1 = 0.35 in (a), while, in (b),
they are the same as those in Fig. 7. In the direction parallel to H,
the AFM order in (a) has the in-phase structure relative to the FFLO
modulation in any field range [see Fig. 11(2) below]. However, this
AFM order is lost (i.e., m vanishes) in the FFLO state with finite
qLO, and the incommensurate part, q, of the AFM wave vector Q
is parallel to1, 0,0], in contrast to the observation.15,16 On the other
hand, in (b), the AFM order shows a structural transition46 between
the two structures shown in Fig. 11 within the FFLO state, and, with
decreasing H , the AFM order is continuously lost on the red solid
curve in the manner accompanied by the disappearance of the FFLO
nodal planes. The corresponding q is shown in Fig. 8 and is parallel
to [1,1,0] as seen in experiments.15,16

transition in CeCoIn5,19,20 indicating the presence of the FFLO
state above the transition,21 is seen entirely over the field
range occupied by the HFLT phase implies that CeCoIn5

at ambient pressure does not show realization of the phase
diagram of the type of Fig. 12 in which a direct transition
between the AFM and the uniform SC phases occurs without
the FFLO state at lower temperatures. On the other hand, it is
not easy to theoretically justify a simultaneous disappearance
of the in-phase AFM order, sketched in Fig. 11(2), and the
FFLO one at the same second-order transition where 2π/qLO

diverges: Within this scenario, a simultaneous disappearance
of the two orders would require a discontinuous vanishing of
the AFM order parameter |m| in contrast to the observations
in CeCoIn5. For this reason, we propose two candidates,
following from our microscopic calculations, of the high-field
phase diagram of CeCoIn5 in Fig. 10. In (a), the PPB-induced
in-phase AFM order, sketched in Fig. 11(2), is lost within
the FFLO state just above the second-order transition, while
the longitudinal modulation of the AFM order changes from
the in-phase modulation to the out-of-phase one sketched in
Fig. 11(1) on approaching the second-order transition, as
a result of the reduction of PPB. The out-of-phase AFM
modulation is consistent with the conventional picture41,45

that a spatial region where |�| is small is occupied by a
competitive non-SC order. In this case, the AFM order rides
on the nodal planes and thus is continuously lost through the
continuous disappearance of the FFLO nodal planes, while the
PPB mechanism of the AFM order favors the local coexistence
with the SC order, i.e., a structure like Fig. 11(2). In any
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|Δ|2 |Δ|2

FIG. 11. (Color online) Two structures, (1) and (2), of the spatial
modulation of the AFM order parameter m relative to that of � in the
coupled FFLO and AFM phase. The AF(n) (n = 1 and 2) in Fig. 10
corresponds to the structure (n) in this figures. For simplicity, we have
described the AFM order in the form sin(qLOx + φ0). The structure
(1) [(2)] corresponds to the case with φ0 = 0 (φ0 = π/2). The phase
φ0 continuously changes with increasing H in the interval between
zero and π/2.

case, an additional continuous transition46 inevitably appears
within the resulting HFLT phase of the theoretical phase
diagrams appropriate for CeCoIn5. If taking account of the
consistency on the direction of AFM-Q vector between the
experiment15,16 and our results, Fig. 10(b) with the diagonal
q shown in Fig. 8, becomes the best candidate as the phase
diagram of CeCoIn5, while the electronic parameters (see the
caption of Fig. 10) resulting in Fig. 10(a) never leads to a q in
the diagonal direction. However, this correspondence between
the longitudinal structure of the AFM order and the detailed
direction of the AFM-Q vector is quite a subtle issue and might
be changed due to a further refinement of the starting electronic
model. For this reason, it appears that we should not conclude
here which of the two figures in Fig. 10 is more appropriate
for CeCoIn5.

The presence of the wide FFLO phase with no AFM order
at higher temperatures in Fig. 10 might indicate that the present
picture on the HFLT phase of CeCoIn5 is insufficient, because
such a nonmagnetic FFLO region has not been identified so far
in experiments on this material. However, the present analysis

0.6 0.7 0.8 0.9 1 1.1

H/Hc2(0)

Hc2

FFLO

AF+SC

FFLO
  +AF(1)

SC

Normal

1.2

q = 0

0

0.05

0.1

0.15

0.2

0.25

0.3

T
/T

c

FIG. 12. (Color online) Another theoretically possible phase
diagram including the FFLO and AFM orders following from
the parameter values, t1 = 10Tc, t2/t1 = 0.02, and t3 = μ = 0. The
blue solid curves are the actual AFM transition lines, and, in the
absence of the FFLO state, the dashed blue curve becomes the AFM
transition line at higher fields. This case in which the AFM order
appears without the FFLO state in lower fields does not apply to the
high-field phase diagram of CeCoIn5 (see the text for details).

in the Pauli limit where αP,⊥ = ∞ certainly overestimated the
temperature region of the FFLO phase. In an improved analysis
for finite αP,⊥ values to be performed in future works, the FFLO
region unaccompanied by the AFM order is certainly expected
to be narrower if taking account of the orbital pair-breaking
within the present approach.

Here, we comment on the justification of our use of the local
approximation on the AFM modulation. As far as the transition
between the FFLO and uniform SC states is of second order,
this local approximation is always justified at least just above
the transition because the order parameter17 of this transition,
qLO, is inversely proportional to the distance between the
neighboring nodal planes which diverges at the transition. At
higher fields, however, qLO grows so that the neglect of the
gradient terms may not be justified in general. If so, the above
results in the local approximation would be quantitatively
changed by the gradient terms. In the case of CeCoIn5,
however, the presence of the strong PPB-induced AFM fluc-
tuation induces26 a quasiparticle damping which destabilizes
the transverse FFLO states to be described by higher Landau
level modes of the SC order parameter compared with the
longitudinal FFLO state, Eq. (42). Further, this increase of the
quasiparticle damping even weakens effects of PPB and results
in a reduction of qLO. We expect the use of the local approxi-
mation for the AFM ordering to be justified in this sense.

It should also be noted that the spatial variation due to the
vortices in the real systems with the orbital pair-breaking has
not been incorporated in this section. In fact, as in the AFM
ordering detected in the vortex core of high-Tc cuprates,47 it is
natural to expect the appearance of an AFM order in the spatial
region where the SC order is weaker, like the vortex core. Even
in the present case with strong PPB, the spatial modulation
perpendicular to H of the SC order parameter due to the vortex
structure assists the AFM ordering, although its effect is found
to be weaker than that of the FFLO modulation. On the other
hand, contrary to the event seen in cuprates,47 the present
PPB-induced AFM order tends to coexist with the SC order so
that the AFM order parameter value |m| is maximal outside the
vortex core. Details of this issue will be reported elsewhere.31

VI. SUMMARY AND CONCLUDING REMARKS

The phase diagrams shown in Fig. 10 are comparable
with that following from a recent experiment.28 In the NMR
measurement in Ref. 28, the presence of both the AFM order
and the normal state region has been detected in the HFLT
phase of CeCoIn5 at 50 mK in H⊥c, and the square-root field
dependence of the quasiparticle number consistent with that
of the FFLO order parameter, i.e., qLO ∝ √

H − H2(T ), has
been found, where H2(T ) is the field at which the second-order
transition to the ordinary vortex lattice phase (the uniform
SC phase in the present Fig. 10) occurs. Another crucial
observation in Ref. 28 is that, in contrast to the picture in
Ref. 41, the observed AFM order is extended spatially without
being localized in a narrow spatial region. It appears that the
in-phase structure in Fig. 11(2), i.e., the coexistence of the
AFM and SC orders induced by PPB, is the consistent picture
with this experimental fact.

In Sec. IV, we have examined the direction of the modula-
tion wave vector Q of the stable AFM order originating from
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the PPB-induced mechanism and have found that, including
its incommensurate component q, Q can take the orientation
parallel to the direction of the gap node irrespective of the H
direction in the a-b plane. To the best of our knowledge, this is
the first study giving a consistent calculation result on q with
the data15,16 in the HFLT phase of CeCoIn5. In relation to this,
we note that we could not find a diagonal q vector in terms of
the more familiar tight-binding electronic Hamiltonian48 with
no t3 term in the range of the values we have assumed for the
parameters t1, t2, and μ. In any case, it should be stressed that
this Q direction is highly sensitive to the details of the starting
electronic model.

Recent neutron scattering experiments49 on CeCoIn5 in the
field directions tilted from the a-b plane have shown that
just 17◦ tilt of the applied field results in disappearance of
the AFM order present in H⊥c. Note that the focus of this
experiment is the AFM order and not the tilt direction signaling
the disappearance of the HFLT phase, i.e., of the FFLO order. It
is interesting to note that, according to another observation50

resulting from the field tilt, the HFLT phase survives up to
20◦, suggestive of the presence of the FFLO state with no
AFM order in a narrow high-angle region. In relation to this,
we point out that such an AFM order disappearing separately
from the FFLO order due to the field tilt is not surprising
from the viewpoint of the present theory because, as is seen by
comparing Fig. 3 with Fig. 4, the PPB-induced AFM ordering
in H‖c is much weaker than that in H⊥c as far as has assumed
throughout this paper, n̂ is locked to the c axis. A further
theoretical study on this issue may be useful for confirming
the genuine picture on the HFLT phase.

In relation to this disappearance of the AFM order due to the
field tilt, a mechanism of AFM ordering of CeCoIn5 below Hc2

has been argued in Ref. 51 where it results from the fourfold
symmetric enhancement of the density of states in the vortex
lattice. However, the Fermi surfaces assumed there51 to support
the AFM order are the nearly cylindrical band 15-electron
ones, in the notation of Ref. 40, with a smaller density of
states, while the origin of the d-wave superconductivity and
the FFLO state in H‖c39 is the noncylindrical (3D-like)26

band 14-electron Fermi surface40 corresponding to that of
Fig. 7 (see the text of Sec. IV). It is unreasonable for the
Fermi surface relevant to superconductivity to change with
tilting the magnetic field. While preparing the final version
of our manuscript, we were aware of another proposal52 on
the AFM ordering in H⊥c below Hc2 in which attention

is paid to the Zeeman-splitted nodal quasiparticles as the
origin of the AFM order. Judging from the similarity on
the starting model, the contribution mentioned in Ref. 52 to
the AFM ordering should be already included in the present
theory with no limitation on the quasiparticles close to the gap
nodes. However, we remark that focusing52 on the Zeeman-
splitted nodal quasiparticles would result in a remarkable field
dependence of the incommensurate component q of the AFM
wave vector Q, in contrast to our result in Fig. 8 consistent with
the observation.16 Further, we stress here that the argument in
Ref. 21, given in relation to Fig. 2 there, is also applicable
to any picture51,52 identifying the experimental second-order
transition with a pure AFM transition and thus that the doping
effect19,20 leading to an extremely dramatic suppression of the
transition with no notable change of the transition point to the
HFLT phase is incompatible with such purely AFM scenarios
on the second order transition (see also Sec. I).

In this paper, we have also stressed a close relation between
the Q vector of the AFM order or fluctuation enhanced close
to Hc2(0) and the nodal direction of the d-wave SC energy gap.
Thus, if a novel SC material is accompanied by such an AFM
ordering in high fields, it may become a useful method for
obtaining information on the nodal direction of the SC pairing
symmetry. We wish to stress that, in contrast to measurements
of the thermal conductivity22 and the specific heat53 in which
experiments at very low temperatures have been necessary
to determine the pairing symmetry, the present method does
not require measurements at such low-enough temperatures to
obtain knowledge of the pairing symmetry.
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APPENDIX

Here, detailed expressions of f (4)
m and f

(2,4)
�m to be used

in determining the character of the AFM transition in
the perturbative approach will be listed. As far as the
orbital pair-breaking effect is neglected in f

(2,4)
�m , they are

expressed by

f (4)
m = 1

2β

∑
εn,k,σ

[
G(σ )

εn
(k)G(σ̄ )

εn
(k + Q0)G(σ )

εn
(k)G(σ̄ )

εn
(k + Q0)

]
m4, (A1)

f
(2,4)
�m = β−1

∑
εn,k,σ

|wk|2
[[
G(σ )

εn
(k)

]3[G(σ̄ )
εn

(k + Q0)
]2G(−σ )

−εn
(−k) + σ σ̄

2

[
G(σ )

εn
(k)

]2[G(σ̄ )
εn

(k + Q0)
]2G(−σ̄ )

−εn
(−k + Q0)G(−σ )

−εn
(−k)

+ [
G(σ )

εn
(k)

]2[G(−σ )
−εn

(−k)
]2G(σ̄ )

εn
(k + Q0)G(−σ̄ )

−εn
(−k + Q0)

]
〈|�|2m4〉sp. (A2)

Their expressions to be useful in numerical analysis are given in the following equations. In n̂‖H, they are

f (4)
m = −N (0)β

32π2

∑
σ

Re

[
ψ (2)

(
1

2
+ i

Iσβ

2π
+ i

δβ

4π

)]
m4, (A3)
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f
(2,4)
�m =N (0)

∑
σ

{
1

16δ

(
β

2π

)3

Im

[
ψ (3)

(
1

2
+i

Iβσ

2π
− i

δβ

4π

)]
− 3

8δ2

(
β

2π

)2

Re

[
ψ (2)

(
1

2
+ i

Iβσ

2π
− i

δβ

4π

)]

− 3β

4πδ3
Im

[
ψ (1)

(
1

2
+ i

Iβσ

2π
− i

δβ

4π

)]
+ 3

δ4
Re

[
ψ

(
1

2
+ i

Iβσ

2π
− i

δβ

4π

)
− ψ

(
1

2
+ i

Iβσ

2π

)]}
|�|2m4, (A4)

while, in n̂⊥H, they become

f (4)
m = −N (0)

(
β

4π

)2

Re

[
ψ (2)

(
1

2
+ i

δβ

4π

)]
m4, (A5)

f
(2,4)
�m = N (0)

{
δ

8(δ2 − 4I 2)

(
β

2π

)3

Im

[
ψ (3)

(
1

2
− i

δβ

4π

)]
+ 2I 2

(4I 2 − δ2)2

(
β

2π

)2

Re

[
ψ (2)

(
1

2
+ i

Iβ

2π

)

−ψ (2)

(
1

2
− i

δβ

4π

)]}
〈|�|2m4〉sp. (A6)

Here, ψ (n)(z) is the nth polygamma function satisfying

ψ (n)(z) = (−1)n+1n!
∞∑

s=0

1

(s + z)n+1
. (A7)
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