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Underdoped cuprates as fractionalized Fermi liquids: Transition to superconductivity
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We model the underdoped cuprates using fermions moving in a background with local antiferromagnetic
order. The antiferromagnetic order fluctuates in orientation, but not in magnitude, so that there is no long-
range antiferromagnetism, but a “topological” order survives. The normal state is described as a fractionalized
Fermi liquid (FL*), with electronlike quasiparticles coupled to the fractionalized excitations of the fluctuating
antiferromagnet. The electronic quasiparticles reside near pocket Fermi surfaces enclosing total area x (the dopant
density), centered away from the magnetic Brillouin zone boundary. The violation of the conventional Luttinger
theorem is linked to a “species doubling” of these quasiparticles. We describe phenomenological theories of
the pairing of these quasiparticles, and show that a large class of mean-field theories generically displays a
nodal-antinodal “dichotomy”: The interplay of local antiferromagnetism and pairing leads to a small gap near
the nodes of the d-wave pairing along the Brillouin zone diagonals, and a large gap in the antinodal region.
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I. INTRODUCTION

The nature of the ground state in the underdoped regime of
the hole-doped cuprate superconductors remains a central open
issue. Angle-resolved photoemission spectroscopy (ARPES)
and scanning tunneling microscopy (STM) have been the main
tools to explore such a regime. In both probes, an unexpected
angular dependence of the electron spectral gap function has
been revealed: a “dichotomy” between the nodal and antinodal
regions of the Brillouin zone in the superconducting state.1–5

Specifically, this dichotomy is realized by deviations in the
angular dependence of the gap from that of a short-range
d-wave pairing amplitude ∼(cos kx − cos ky).

This paper will describe the superconducting instabilities
of a recently developed model6 of the normal state of the
underdoped cuprates based upon a theory of fluctuating local
antiferromagnetic order.7–10 A related normal-state model of
fluctuating antiferromagnets has been discussed by Khodas
and Tsvelik,11 who obtained results on the influence of
spin-wave fluctuations about the ordered state similar to
ours.6 These results have been found to agree well with
ARPES observations.12–15 Another approach using fluctuating
antiferromagnetism to model the underdoped cuprates has
been discussed recently by Sedrakyan and Chubukov.16 We
will also connect with the scenario emerging from recent
dynamical mean-field theory (DMFT) studies.17–20

The theory of Ref. 6 describes the normal state in the
underdoped regime as a fractionalized Fermi liquid (FFL or
FL*), although this identification was not explicitly made in
that paper. So we begin our discussion by describing the the
structure of the FL* phase.

The FL* phase is most naturally constructed21,22 using a
Kondo lattice model describing a band of conduction electrons
coupled to lattice of localized spins arising from a half-filled d

(or f ) band. The key characteristics of the FL* are (i) a “small”
Fermi surface whose volume is determined by the density of
conduction electrons alone, and (ii) the presence of gauge and
fractionalized neutral spinon excitations of a spin liquid. In the
simplest picture, the FL* can be viewed in terms of two nearly
decoupled components, a small Fermi surface of conduction
electrons and a spin liquid of the half-filled d band. The FL*

should be contrasted from the conventional Fermi liquid, in
which there is a “large” Fermi surface whose volume counts
both the conduction and d electrons: Such a heavy Fermi-liquid
phase has been observed in many “heavy fermion” rare-earth
intermetallics. Recent experiments on YbRh2(Si0.95Ge0.05)2

have presented evidence23 for an unconventional phase, which
could possibly be a FL*.

A concept related to the FL* is that of a “orbital-selective
Mott transition”24 (OSMT), as discussed in the review by
Vojta.25 For the latter, we begin with a multiband model, such
as the lattice Anderson model of conduction and d electrons,
and have a Mott transition to an insulating state on only a
subset of the bands (such as the d band in the Anderson
model). The OSMT has been described so far using DMFT,
which has an oversimplified treatment of the Mott insulator.
In finite dimensions, any such Mott insulator must not break
lattice symmetries which increase the size of a unit cell, for
otherwise the state reached by the OSMT is indistinguishable
from a conventionally ordered state. Thus the Mott insulator
must be realized as a fractionalized spin liquid with collective
gauge excitations; such gauge excitations are not present in
the DMFT treatment. With a Mott insulating spin liquid, the
phase reached by the OSMT becomes a FL*.

Returning our discussion to the cuprates, there is strong
ARPES evidence for only a single band of electrons, with
a conventional Luttinger volume of 1 + x holes at optimal
doping and higher (here x is the density of holes doped into the
half-filled insulator). Consequently, the idea of an OSMT does
not seem directly applicable. However, Ferrero et al.18 argued
that an OSMT could occur in momentum space within the
context of a single-band model. They separated the Brillouin
zone into the “nodal” and “antinodal” regions, and represented
the physics using a two-site DMFT solution. Then in the
underdoped region, the antinodal region underwent a Mott
transition into an insulator, while the nodal regions remained
metallic. A similar transition was seen by Sordi et al. in studies
with a four-site cluster.19 While these works offers useful hints
on the structure of the intermediate energy physics, ultimately
the DMFT method does not allow full characterization of
the different low-energy quasiparticles or the nature of any
collective gauge excitations.
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We turn then to the work of Ref. 6, who considered a
single-band model of a fluctuating antiferromagnet. Their
results amount to a demonstration that a FL* state can be
constructed also in a single-band model, and this FL* state
will form the basis of the analysis of the present paper.
The basic idea is that the large Fermi surface is broken
apart into pockets by local antiferromagnetic Néel order.
We allow quantum fluctuations in the orientations of the
Néel order so that there is no global, long-range Néel order.
However, space-time “hedgehog” defects in the Néel order
are suppressed, so that a spin liquid with bosonic spinons and
a U(1) gauge-boson excitation is realized.26,27 Alternatively,
the Néel order could develop spiral spin correlations, and
suppressing Z2 vortices in the spiral order realizes a Z2

spin liquid with bosonic spinons.28,29 The Fermi pockets
also fractionalize in this process, and we are left with Fermi
pockets of spinless fermions; the resulting phase was called
the algebraic charge liquid8–10 (ACL). Depending upon the
nature of the gauge excitations of the spin liquid, the ACL can
have different varieties: the U(1)-ACL and SU(2)-ACL were
described in Ref. 10, and Z2-ACL descends from these by a
Higgs transition involving a scalar with U(1) charge 2, as in the
insulator.28,29

Although these ACLs are potentially stable phases of
matter, they are generically susceptible to transformation into
FL* phases. As was already noted in Ref. 8, there is a strong
tendency for the spinless fermions to found bound states
with the bosonic spinons, leading to pocket Fermi surfaces
of quasiparticles of spin S = 1/2 and charge ±e. Also, as we
will review below, there is a “species doubling” of these bound
states,7,8,30 and this is crucial in issues related to the Luttinger
theorem, and to our description of the superconducting state
in the present paper. When the binding of spinless fermions
to spinons is carried to completion, so that Fermi surfaces of
spinless fermions has been completely depleted, we are left
with Fermi pockets of electron and/or holelike quasiparticles
which enclose a total volume of precisely x holes.6 The result-
ing phase then has all the key characteristics of the FL* noted
above, and so we identify it here as a FL*. The U(1)-ACL and
Z2-ACL above lead to the conducting U(1)-FL* and Z2-FL*
states, respectively. Reference 6 presented a phenomenological
Hamiltonian to describe the band structure of these FL*
phases. Thus this is an explicit route to the appearance of
an OSMT in a single-band, doped antiferromagnet: It is the
local antiferromagnetic order which differentiates regions of
the Brillouin zone, and then drives a Mott transition into a
spin-liquid state, leaving behind Fermi pockets of holes and/or
electrons with a total volume of x holes.

We should note here that the U(1)-FL* state with a U(1)
spin liquid is ultimately unstable to the appearance of valence
bond solid (VBS) order at long scales.31 However, the Z2-FL*
is expected to describe a stable quantum ground state. The
analysis of the fermion spectrum below remains the same for
the two cases.

Phases closely related to the U(1)-FL* and Z2-FL* ap-
peared already in the work of Ref. 7. This paper examined
“quantum disordered” phases of the Shraiman-Siggia model,32

and found states with small Fermi pockets, but no long-range
antiferromagnetic order correlations where either collinear or
spiral, corresponding to the U(1) and Z2 cases. However,

the topological order in the sector with neutral spinful
excitations was not recognized in this work: These spin
excitations were described in terms of a O(3) vector, rather
than the SU(2) spinor description we shall use here. Indeed,
the topological order is required in such phases, and is closely
linked to the deviation from the traditional volume of the Fermi
surfaces.21,22

We also note another approach to the description of a FL*
state in a single-band model, in the work of Ribeiro, Wen, and
Ran.33–35 They obtain a small Fermi surface of electronlike
“dopons” moving in the spin-liquid background. However,
unlike our approach with gapped bosonic spinons (and
associated connections with magnetically ordered phases),
their spinons are fermionic and have gapless Dirac excitation
spectra centered at (±π/2, ± π/2).

We will take the U(1)-FL* or Z2-FL* state with bosonic
spinon spin liquid as our model for the underdoped cuprates
in the present paper. We will investigate its pairing properties
using a simple phenomenological model of d-wave pairing.
Our strategy will be to use the simplest possible model with
nearest-neighbor pairing with a d-wave structure, constrained
by the requirement that the full square lattice translational
symmetry and spin-rotation symmetry be preserved. Even
within this simple context, we will find that our mean-field
theories of the FL* state allows us to easily obtain the
“dichotomy” in the pairing amplitude over a very broad range
of parameters. We also note that the pocket Fermi surfaces of
the FL* state will exhibit quantum oscillations in an applied
magnetic field with a Zeeman splitting of free spins, and this
may be relevant to recent observations.36

We mention here our previous work37–39 on pairing in
the parent ACL phase. These papers considered pairing of
spinless fermions, while the spin sector was fully gapped:
This therefore led to an exotic superconductor in which the
Bogoliubov quasiparticles did not carry spin. In contrast, our
analysis here will be on the pairing instability of the FL* state,
where we assume that the fermions have already bound into
electronlike quasiparticles, as discussed above and in more
detail in Ref. 6. The resulting Bogoliubov quasiparticles then
have the conventional quantum numbers.

Our primary results are illustrated in Fig. 1. We also show a
comparison to a conventional state with coexisting spin density
wave (SDW) and d-wave pairing, and to recent experiments.
The left-hand panels illustrate Fermi-surface structures in
the normal state. The right-hand panels show the angular
dependence of the electron gap in the superconducting states:
For each angle θ , we determine the minimum electron spectral
gap along that direction in the Brillouin zone, and plot the
result as a function of θ .

The results of the traditional Hartree-Fock–BCS theory
on SDW order and d-wave pairing appear in Figs. 1(a) and
1(b). The SDW order has wave vector K = (π,π ), and the
d-wave pairing is the conventional (cos kx − cos ky) form.
In the normal state, the Fermi pocket is centered at the
magnetic Brillouin zone boundary, as shown in Fig. 1(a). An
important feature of this simple theory is that the state with
coexisting SDW and d-wave pairing has its maximum gap at
an intermediate angle, as shown in Fig. 1(b): This reflects the
“hot spots” which are points on the Fermi surface linked by the
SDW ordering wave vector K. To the best of our knowledge,
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FIG. 1. (Color online) Our results for the FL* phase (second
row), compared with the Hartree-Fock–BCS theory (top row) and
experiments (bottom row). The left-hand panels illustrate Fermi-
surface structures in the normal state. The right-hand panels shows the
angular dependence of the electron gap in the superconducting states.
(a) Spectral weight of the electron in the normal state with SDW
order at wave vector K = (π,π ). Here we simply apply a potential
which oscillates at (π,π ) to the large Fermi surface in the overdoped
region. (b) Minimum electron gap as a function of azimuthal angle
in the Brillouin zone. The full (red) line is the result with a pairing
amplitude ∼(cos kx − cos ky) coexisting with SDW order, while the
dashed (black) line is the normal SDW state. (c) Spectral weight
of the electron in the FL* state, with parameters as in Fig. 3; note
that the pocket is no longer centered at (π/2,π/2). (d) Spectral gap
functions in the superconducting [full (red) line] and normal [dashed
(black) line] states of Fig. 3. (e) The Fermi pocket from a ARPES
experiment (Ref. 15); related observations appear in Refs. 12 and 13.
(f) The dichotomy of the spectral gap function from the observations
of Ref. 3. See the text for more details.

no experiment has yet seen such a maximum at an intermediate
angle.

One set of our typical results for the FL* theory are shown
in Figs. 1(c) and 1(d). As it was shown in the previous
work,6 the normal state in Fig. 1(c) shows a Fermi pocket
which is clearly not centered the magnetic zone boundary

[at (±π/2, ± π/2)]; furthermore, its spectral weight is not the
same along the Fermi surface, and has an arclike character.
At the same time, Fig. 1(d) shows the angular dependence
of the electron gap in the superconducting state; unlike the
SDW theory, this FL* state has a pairing amplitude which
is a monotonic function of angle and has its maximum at
the antinodal point. It also shows the “dichotomy” in the gap
amplitude between the nodal and antinodal regions. For the
purpose of comparison, we illustrate two experimental results
in Figs. 1(e) and 1(f). Clearly, our mean-field theory can
provide reasonable explanation for the experimental data in
both the normal and superconducting states, and we believe it
is a candidate for the underdoped cuprate materials.

The structure of this paper is following. In Sec. II, we
introduce the normal-state Hamiltonian for the fermions, and
investigate the symmetry transformations of possible pairings.
We classify possible pairings which preserve full square
lattice symmetry, and introduce a low-energy effective pairing
Hamiltonian. In Sec. III, spectral gap functions for various
cases are illustrated assuming dx2−y2 wave pairing. It is shown
that our model can reproduce the dichotomy behavior, and
we compare our theory with the YRZ model proposed by
Yang, Rice, and Zhang,40–44 and the related analyses by
Wen and Lee.45,46 For completeness, it is shown that U(1)
gauge fluctuation can mediate the needed d wave pairing in
Appendix C.

II. EFFECTIVE HAMILTONIAN

The basic setup of the FL* state has been reviewed in some
detail in Refs. 6 and 10, and so we will be very brief here. The
starting point7,30,32,47–50 is to transform from the underlying
electrons ciα to a rotating reference frame determined by a
matrix R acting on spinless fermions ψp,

ciα = Ri
αpψp. (1)

Rαp is a SU(2) matrix with α =↑ , ↓ for the spin index, p = ±
for the gauge index, and we parametrize

Ri =
(

zi↑ −z∗
i↓

zi↓ z∗
i↑

)
(2)

with |zi |2 = 1. In the ACL state, the bosonic zα and the
fermionic ψp are assumed to be the independent quasiparticle
excitations carrying spin and charge, respectively. Then we
examined the formation of bound states between these excita-
tions. A key result was that was a “doubling” of electronlike
quasiparticles, with the availability of two gauge neutral
combinations,

Fiα ∼ ziαψi+, Giα ∼ εαβz∗
iβψi−. (3)

This doubling is a reflection of the “topological order” in the
underlying U(1) or Z2 spin liquid; it would not be present,
e.g., in a SU(2) spin liquid.10 It is easy to see one linear
combination of the F and G particles becomes the original
electron particle when the spinon is condensed. The Fiα and
the Giα will be the key actors in our theory of the FL* phase
here. Their effective Hamiltonian is strongly constrained by
their nontrivial transformations under the space group of the
Hamiltonian, which are listed in Table I.
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TABLE I. Transformations of the lattice fields under square lattice
symmetry operations. Tx : translation by one lattice spacing along the
x direction; Rdual

π/2 : 90◦ rotation about a dual lattice site on the plaquette
center (x → y,y → −x); I dual

x : reflection about the dual lattice y axis
(x → −x,y → y); T : time reversal, defined as a symmetry (similar
to parity) of the imaginary time path integral. Note that such a T
operation is not antilinear (Ref. 6).

Tx Rdual
π/2 I dual

x T

Fα Gα Gα Gα εαβF
†
β

Gα Fα Fα Fα εαβG
†
β

Cα Cα Cα Cα εαβC
†
β

Dα Dα Dα Dα εαβD
†
β

From these symmetry transformations, we can write down
the following effective Hamiltonian6

Htot = H0 + Hint,

H0 = −
∑
ij

tij (F †
iαFjα + G

†
iαGjα) + λ

∑
i

(−1)ix+iy

×(F †
iαFiα − G

†
iαGiα) −

∑
i<j

t̃ij (F †
iαGjα + G

†
iαFjα).

(4)

Here tij is taken to be similar to the bare electron dispersion,
characterizing the Fermi surface in the overdoped region; λ

is a potential due to the local antiferromagnetic order; and t̃ij
is the analog of the Shraimain-Siggia term32 which couples
the two species of electronlike quasiparticles F and G to each
other; it is this term which is responsible for shifting the center
of the pocket Fermi surfaces in the normal state away from the
magnetic Brillouin zone boundary. Hint is the invariant interac-
tion Hamiltonian: There could be many interaction channels,
which induces superconductivity of the (F,G) particles, such
as negative contact interaction, interaction with other order
parameters, and the gauge field fluctuation. In this paper, we do
not specify particular interaction and we assume that pairings
are induced. Then we focus on studying properties of possible
pairings and their consequences on physical quantities such
as spectral gaps. In Appendix C, we illustrate one possible
channel to achieve such superconductivity.

For some of our computations, it is more convenient to use
an alternative basis for the fermion operators

Ci,α = 1√
2

(Fi,α + Gi,α), Di,α = (−1)ix+iy
1√
2

(Fi,α − Gi,α).

(5)

The C and D fermions have the same space-group transforma-
tion properties as the physical electrons. Then, the Hamiltonian
becomes

H0 =
∑
k,α

(
Ck,α

Dk,α

)† (
εc(k) λ

λ εd (k)

) (
Ck,α

Dk,α
.

)
(6)

We chose the energy dispersion’s forms following the previous
work,6 with ε(k) a Fourier transform of tij and ε̃(k) a Fourier
transform of t̃ij , and K = (π,π ):

ε(k) = −2t1(cos kx + cos ky) + 8t2 cos kx cos ky

−2t3(cos 2kx + cos 2ky),

ε̃(k) = −t̃0 − 2t̃1(cos kx + cos ky) + 8t̃2 cos kx cos ky

−2t̃3(cos 2kx + cos 2ky),

εc(k) = ε(k) + ε̃(k) − μ,

εd (k) = ε(k + K) − ε̃(k + K) − μ. (7)

The C and D particles have spin and electric charges as
electrons. Therefore, any linear combination can be a candidate
for the physical electron degree of freedom. In the previous
work,6 we matched the C particles to the electrons of large
Fermi surface state without antiferromagnetism; following
this, for simplicity we will take the C to be the physical
electron, but our results do not change substantially with other
linear combinations. So, spectral densities of the C particles
are our main concerns in this paper. Then the D particles are
emergent fermions induced by fluctuating SDW order. Note
that the C,D particles live in the full first Brillouin zone of the
square lattice, and not the magnetic Brillouin zone.

Issues related to the Luttinger theorem were discussed
in previous work.6,8,9 The total area of the Fermi pockets
described by H0 is precisely x, the dopant hole density. Here
the area is to be computed over the full first Brillouin zone
of the square lattice, as the full square lattice symmetry is
preserved by our model. Also note that our phenomenological
Hamiltonian H0 has been designed to apply only to low-
energy excitations near the Fermi surface. However, rather
than focusing on these momentum space regions alone,
considerations of symmetry are far simpler if we define the
dispersion in real space on the underlying square lattice, as we
have done here. For this somewhat artificial lattice model, as
discussed in Ref. 6, the total fermion density on each site i is

∑
α

〈C†
i,αCi,α + D

†
i,αDi,α〉 =

∑
α

〈F †
i,αFi,α + G

†
i,αGi,α〉

= 2 − x. (8)

The traditional Luttinger theorem measures electron number
modulo 2, and so it should now be clear that occupying the
independent electron states of the lattice H0 will yield a Fermi
surface with the desired area of x.

Before proceeding further, let us review the above discus-
sion. We started our theory with electrons in one band, and
considered SDW fluctuation. The strong fluctuation-induced
particle fractionalization, and bound states whose degree of
freedoms are doubled appeared. The resulting phase is nothing
but the FL* we introduced above. Therefore, the ACL phase
provides a natural way to connect the FL* with one band
theory.

To study the superconductivity of the FL* phase, let us
consider invariant pairing operators. With the (F,G) particles,
there are many possible combinations, in principle. However,
it is more convenient to work in terms of the C and D particles
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because they transform just as electrons under the symmetry
operation. So we can write down the four pairing operators as

Oc

(i,j ) = εαβCi,αCj,β, Od


(i,j ) = εαβDi,αDj,β,

Ocd

 (i,j ) = εαβCi,αDj,β, Odc


 (i,j ) = εαβDi,αCj,β . (9)

Note that we only consider even parity pairing, and there are
only three pairings, Oc,Od,Ocd + Odc (see Appendix B).

III. SPECTRAL GAP

Throughout this paper, we assume that all pairings are
d wave, more specifically, dx2−y2 . The assumption of the
d-wave pairings can be realized by the gauge fluctuation (see
Appendix C) or by other channels such as conventional SDW
fluctuations. Then, with the pairing amplitudes as in Eq. (9),
we can write down the mean-field Hamiltonian

H MF
tot = H0 + H MF




=
∑

k

⎛
⎜⎜⎝

C
†
k,↑

C−k,↓
D

†
k,↑

D−k,↓

⎞
⎟⎟⎠

⎛
⎜⎝

εc(k) −
c(k) λ −
X(k)
−
c(k)∗ −εc(k) −
X(k)∗ −λ

λ −
X(k) εd (k) −
d (k)
−
X(k)∗ −λ −
d (k)∗ −εd (k)

⎞
⎟⎠

⎛
⎜⎜⎝

Ck,↑
C

†
−k,↓

Dk,↑
D

†
−k,↓

⎞
⎟⎟⎠ , (10)

where 
c is the Fourier transform of Oc

, 
d is the Fourier

transform of Od

, and 
X is the Fourier transform of Ocd


 +
Odc


 . For their wave-vector dependence we take the forms


c(k)


c0
= 
d (k)


d0
= 
X(k)


X0
= cos kx − cos ky, (11)

where 
c0, 
d0, and 
X0 are the respective gap amplitudes.
In principle, we could determine these pairing amplitudes

from solving a set of BCS-like self-consistency equations.
However, in the absence of detailed knowledge of the pairing
interactions, we will just treat the 
c0, 
d0, and 
X0 as free
parameters. In other words, we are in the deep superconducting
phase with adjusted parameters. Then our task is to study
spectral gap behaviors with given band structures and pairings.
More technically, the Green’s function of the C particle, which
determines the electron properties, is studied focusing on the
pole of the C particles’ Green’s function. The pole basically
contains information about the electron’s dispersion relation,
and its minimum determines spectral gap properties. The latter
is defined as the minimum gap along a line from the Brillouin
zone center at an angle θ : Thus the nodal point is at θ = π/4,
and the antinodal point at θ = 0.

Although we have three free gap parameters, our results are
quite insensitive to their values. For simplicity we will mainly
work (in Secs. III A and III B) with the case with a single gap
parameter 
c0 �= 0, and others are set to zero 
d0 = 
X0 = 0.
We will briefly consider the case with multiple gap parameters
in Sec. III C, and find no significant changes from the single
gap case.

A. Single gap: Case I

We consider the case with t2 = 0.15t1, t3 = −0.3t2, t̃1 =
−0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, μ = −0.6t1, and λ =
0.4t1 in Fig. 2. In Fig. 2(a), the calculated spectral weight of
the C particle is illustrated following the previous paper.6 The
shape is obviously pocketlike, but its spectral weight depends
on position on the Fermi surface. In Fig. 2(b), we illustrate
the bare energy Fermi surfaces and their eigenmode Fermi
surface. Note that the two bare energy bands [εc,d (k)] are

different from the usual SDW formations with Brillouin zone
folding. In the latter, there is only one electron band, and SDW
onset divides the Brillouin zone two pieces [ε(k),ε(k + K)].
But in our case, the two bands have different energy spectrums
of the electronlike particle (C) and the emergent particle (D).
And λ determines mixing energy scale between the C and D

particles.
In Fig. 2(c), the spectral gap function with and without a

given pairing 
c is illustrated. Near the node, it is obvious that
the pairing gap contributes to the spectral gap in a d-wave
pairing way as expected. However, between the node and
antinode, there is a huge peak. The peak position is nothing but
the mixing point between C,D particles. Therefore, the peak
exists whether there is a pairing or not. Near the antinode, the
spectral gap is bigger than the near node’s, but much smaller
than the mixing point peak. It indicates there is tendency to
make electron pockets near the antinode. For example, if we
decrease the magnitude of λ, which basically represent the
mixing energy scale, then the gap near the antinode becomes
smaller, and eventually the electronlike pockets appears near
the antinode with the preexisting hole-type pockets. (See the
Appendix A) Note that this situation is formally the same
as the pairing with the SDW fluctuation mediating pairing
case (see Fig. 1). The “hot spot” between the node and the
antinode has the largest gap magnitude, which corresponds
to our mixing point. Such a spectral gap behavior is not the
experimentally observed one. Therefore, we cannot have the
needed dichotomy near the antinode in this case; the antinodal
gap is always smaller than the one of the maximum mixing
point. Following the similar reasoning, the experimentally
observed dichotomy does not appear in the conventional SDW
theory unless additional consideration beyond mean-field
theory is included. In Fig. 2(d), we illustrate other pairing
cases (
d,X). As we can see, the role of the pairings are similar
to the conventional one (
c), and qualitatively they are the
same. Therefore, it is not possible to achieve the observed
dichotomy by considering the exotic pairings. They cannot
push the maximum peak of the normal state to the antinodal
region.
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FIG. 2. (Color online) Spectral gap functions and the Fermi
surfaces with case I (t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0,
t̃3 = 0, t̃0 = −0.3t1, μ = −0.6t1, λ = 0.4t1). (a) The spectral weight
of the electron Green function with relaxation time τ t1 = 200. (b)
Fermi surfaces of εc(k) [dashed inner (red)], εd (k) [dashed outer
(blue)], and the eigenmodes [thick (black)] of H0. The dotted line is
the magnetic zone boundary. (c) The spectral gap function with and
without 
c. The dotted (black) line is for the normal case. The thick
(red) line is for a superconducting state with 
c0 = 0.1t1. (d) The
spectral gap function with and without 
d,X . The dotted (black) line
is for the normal case. The thick (green) line is for the superconducting
state with 
X0 = 0.1t1. The dashed (blue) line is the superconducting
state with 
d0 = 0.1t1.

The message of this calculation is simple. With the band
structure we considered here, the observed dichotomy in
the spectral gap function cannot be obtained, even though
the normal state can explain experimentally observed Fermi
surface structures. Moreover, it also implies that it is difficult to
explain the observed dichotomy with the Hartree-Fock–BCS
mean-field theory of the Fermi liquid.

However, we now show how our FL* theory gets a route to
explain the dichotomy below.

B. Single gap: Case II

In Fig. 3 we illustrate the case with t2 = 0.15t1, t3 = −0.3t2,
t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, μ = −0.8t1, λ =
0.6t1. These parameters are as in Sec. III A, except that the
values of μ and λ have changed. As we discuss below, this
changes the structure of the dispersion of the “bare” C and
D particles in a manner which leaves the normal-state Fermi
surface invariant, but dramatically modifies the spectral gap in
the superconducting state.

As we can see in Fig. 3(a), the calculated spectral weight of
the C particle is qualitatively the same as that shown in Fig. 2.
The shape is obviously pocketlike, and its spectral weight also
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FIG. 3. (Color online) Spectral gap functions and the Fermi
surfaces for case II (t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0,
t̃3 = 0, t̃0 = −0.3t1, μ = −0.8t1, λ = 0.6t1). Note that the only
change from Fig. 2 is in the values of μ and λ. (a) The spectral weight
of the electron Green function with the relaxation time τ t1 = 200. (b)
Fermi surfaces of εc [dashed inner (red)], εd [dashed outer (blue)],
and the eigenmodes [thick (black)] of H0. The dotted line is the
magnetic zone boundary. (c) The spectral gap function with and
without 
c. The dotted (black) line is for the normal case with 
c = 0.
The thick (red) line is the superconducting state with 
c0 = 0.1t1.
(d) The spectral gap function with and without 
d,X . The dotted
(black) line is for the normal case. The thick (green) line has

X0 = 0.1t1. The dashed (blue) line has 
d0 = 0.1t1.

depends on position of the Fermi surface similarly. Therefore,
in the normal state, there is no way to distinguish the two
cases because the low-energy theory are all determined by
the Fermi pocket structures. However, in Fig. 3(b), the bare
energy Fermi surfaces of εc(k) and εd (k) are clearly different
from the previous one’s. Even though the bare Fermi surfaces
look unfamiliar, they are irrelevant for the observed Fermi
surface which is determined by the eigenmodes of H0 (black
line), and which is qualitatively the same as case I.

We illustrate our spectral gap behavior with and without
the pairing 
c in Fig. 3(c), which was already shown in the
Introduction. Without the given pairing, the normal state has
the finite gapless region where the pockets exist, and there
is a stable spectral gap in the antinode. It is easy to check
the antinodal gap depends on the mixing term λ between the
C and D particles. With the pairing, the Fermi pockets are
gapped and only the node remains gapless. The spectral gap
function has expected d-wave-type gap near the node, and the
observed dichotomy is clearly shown. Therefore, the origin
of the two gaps are manifest; the nodal gap is obviously from
the C particle pairing and the antinodal gap is originated from
the mixing term, which is inherited from the spin-fermion
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interaction term. In Fig. 3(d), we illustrate other exotic pairings
(
d,X). As we can see, the roles of the pairings are similar to
the conventional pairing (
c), and qualitatively they are the
same. So, there is no way to distinguish what pairings are
dominant only by studying spectral gaps.

Now let us compare our results to the ones of the YRZ
model.40–44 In the YRZ model, based on a specific spin-liquid
model, the pseudogap behavior is preassumed by putting an
explicit dx2−y2 gap function in the spectrum, which means the
characteristic of the antinodal gap is another input parameter.
With the two d-wave gaps (pairing and pseudogap), the
experimental results were fitted.

In our FL* theory, the antinodal gap behavior is determined
by the interplay between λ and the bare spectrum εc,d (k).
Indeed, the pseudogap corresponding term λ is s-wave type
in terms of YRZ terminology. The λ term represents local
antiferromagnetism, and this “competing” order which plays
a significant role in the antinodal gap. The parameter λ is just
an input for making the Fermi pockets in the normal state with
other dispersion parameters. As mentioned before, it explains
the distinct origins of the nodal and antinodal gaps. Also,
although our theory contains other pairings 
d,X, we did not
need that freedom to obtain consistency with experimental
observations.

Of course, nonlocal terms of λ could be considered. And it is
easy to show that the dx2−y2 -like terms are not allowed because
of the rotational symmetry breaking. We do not consider the
nonlocal λ term because it is a secondary effect.

C. Multiple gaps

So far, we have only considered the cases with one
pairing gap. Of course, multiple gaps are possible and we
illustrate possible two cases in Fig. 4, which contain 
c,d with
the two normal band structures. Here, we choose the same
phase in both pairings. The spectral gap behaviors are not
self-destructive, which means the magnitude of the spectral
gap with two pairings is bigger than the one with the single
pairing. One comment is that even multiple gaps do not change
the qualitative behavior of the spectral gap functions, which
means that case I could not have the observed dichotomy even
with the multiple gaps.
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FIG. 5. (Color online) Multiple gaps with the relative phase
difference. Details are the same as Fig. 3. The red (solid) line is
for two superconducting gaps with the same sign gaps, 
d0 = 0.1t1
and 
c0 = 0.1t1. And the green (dashed) line is for the opposite sign
gaps, 
d0 = −0.1t1 and 
c0 = 0.1t1.

In Fig. 5, two pairings with the opposite sign are illustrated.
Clearly, we can see the self-destructive pattern with the same
gap magnitudes. Even a node appears beyond the nodal
point. Therefore, it is clear that the relative phase between
two pairings plays an important role in determining the gap
spectrum.

IV. CONCLUSIONS

This paper has presented a simple phenomenological model
for pairing in the underdoped cuprates, starting from the FL*
normal state described in Ref. 6. This is an exotic normal
state in which the Cu spins are assumed to form a spin liquid,
and the dopants then occupy states with electronlike quantum
numbers. A key feature of this procedure8 is that there is
a “doubling” of the electronlike species8 available for the
dopants to occupy: This appears to be a generic property of
such doped FL* states.

Our previous work6 showed how this model could easily
capture the Fermi-surface structure of the underdoped normal
state. In particular, a mixing between the doubled fermion
F and G species from the analog of the “Shraiman-Siggia”
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FIG. 4. (Color online) Multiple gaps. The left-hand panel is the same as the Fig. 2 with two superconducting gaps 
d0 = 0.3t1 and

c0 = 0.1t1. The right-hand panel is the same as the Fig. 3 with 
d0 = 0.3t1 and 
c0 = 0.1t1. In both, the dashed (green) line is with the two
gaps. And the plain and dotted lines are the same as the previous plots.
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term32 led to Fermi pockets which were centered away from
the antiferromagnetic Brillouin zone boundary.

Here we considered the paired electron theory, assuming
a generic d-wave gap pairing of the cos kx − cos ky variety.
Despite this simple gap structure, we found two distinct types
of electron spectral gaps in this case, illustrated in Figs. 2 and 3.
The distinction arose mainly from the strength of a parameter
λ determining the strength of the local antiferromagnetic
order.

For weaker local antiferromagnetic order, and with a
normal-state Fermi surface as in Fig. 2(a), the angular
dependence of the gap had a strong maximum near the
intermediate “hot spot” on the underlying Fermi surface.
A similar structure is seen in the traditional Hartree-Fock–
BCS theory of SDW and d-wave pairing on a normal
Fermi liquid, and this structure is incompatible with existing
experiments.

For stronger local antiferromagnetic order, we were
able to maintain the normal-state Fermi surface as in
Fig. 3(a), but then found a gap function which had the
form shown in Figs. 3(c) and 3(d), which displays the
“dichotomy” of recent observations. Thus, in this theory, it
is the fluctuating local antiferromagnetism which controls the
dichotomy.

Finally, we compare our theory with model proposed by
Yang, Rice, and Zhang,40–44 and the closely related results of
Wen and Lee.45,46 Their phenomenological form of the normal-
state electron Green’s function has qualitative similarities to
ours,6 but there are key differences in detail:

(i) The “back end” of the YRZ hole pocket is constrained
to be at (π/2,π/2), while there is no analogous pinning in our
case.

(ii) The electron spectral weight vanishes in the YRZ theory
at (π/2,π/2), while our theory has a small, but nonzero,
spectral weight at the back end.

(iii) Our theory allows for a state with both electron and
hole and pockets, while only hole pockets are present in the
YRZ theory.

These differences can be traced to the distinct origins of
the “pseudogap” in the two theories. Our pseudogap has
connections to local antiferromagnetism which fluctuates in
orientation while suppressing topological defects. Pairing cor-
relations also play an important role in the pseudogap, but these
are neglected in our present mean-field description: These were
examined in our previous fluctuation analyses of the ACL.37,38

The YRZ pseudogap is due to a d-wave “spinon pairing
gap” in a resonating valence bond spin liquid. All approaches
have a similar transition to superconductivity, with a d-wave
pairing gap appearing over the normal-state spectrum, and
a nodal-antinodal dichotomy: Thus any differences in the
superconducting state can be traced to those in the normal
state.

The differences between our normal-state theory with
bosonic spinons, and other work based upon fermionic
spinons33–35,40–46 become more pronounced when we consider
a transition from the normal state to a state with long-range
antiferromagnetic order. In our theory, such a transition is
naturally realized by condensation of bosonic spinons, with
universal characteristics discussed earlier.27,51 Such a natural

connection to the antiferromagnetically ordered state is not
present in the YRZ theory.
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APPENDIX A: ELECTRON POCKETS

We consider the case with t2 = 0.15t1, t3 = −0.3t2, t̃1 =
−0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, μ = −0.6t1, and λ =
0.25t1 in Fig. 6. These parameters are as in Sec. III A, except
that the value of λ has lowered. In other words, the “bare”
spectra are the same, but electron pockets near the antinode
appear due to the low mixing term.

As we can see in Fig. 6(a), the calculated spectral weight
of the C particle shows the hole and electron pockets with
different spectral weights. We illustrate our spectral gap
behavior with and without the pairing in Figs. 6(c) and 6(d).
Without pairings, the normal state has the finite gapless region

(a) (b)

(c) (d)
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FIG. 6. (Color online) Spectral gap functions and the Fermi
surfaces for case II (t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0,
t̃3 = 0, t̃0 = −0.3t1, μ = −0.6t1, λ = 0.25t1). Note that the only
change from Fig. 3 is in the value of λ. (a) The spectral weight of
the electron Green’s function with the relaxation time τ t1 = 200. (b)
Fermi surfaces of εc [dashed inner (red)], εd [dashed outer (blue)], and
the eigenmodes [thick (black)] of H0. The dotted line is the magnetic
zone boundary. (c) The spectral gap function with and without 
c.
The dotted (black) line is for the normal case with 
c = 0. The thick
(red) line is the superconducting state with 
c0 = 0.05t1. (d) The
spectral gap function with and without 
d,X . The dotted (black) line
is for the normal case. The thick (green) line has 
X0 = 0.05t1. The
dashed (blue) line has 
d0 = 0.05t1.
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FIG. 7. (Color online) Spectral gap behaviors varying with λ. The
thick (red), dotted (black), and dashed (green) lines are for λ/t1 = 0.4,
0.3, 0.25 with the same pairing magnitude, 
X = 0.05t1.

where the pockets exist, and there is an intermediate region
peak similar to the SDW case. With pairings, the Fermi pockets
are gapped and only the node remains gapless. The spectral gap
function shows similar behavior as in our case I. In Fig. 7, the
spectral gap function varying the the mixing term is illustrated
to see the evolution of the dip near the antinode.

We note that electron pockets can also appear in the YRZ
formulation, but have very different shapes.52

APPENDIX B: INVARIANT PAIRINGS

There are four combinations of invariant pairing terms of
the F and G:

OA

(i,j ) = εαβ(Fi,αFj,β + Gi,αGj,β),

OB

(i,j ) = εαβ(Fi,αGj,β + Gi,αFj,β),

(B1)
Oa


(i,j ) = εαβ (−1)jx+jy (Fi,αFj,β − Gi,αGj,β),

Ob

(i,j ) = εαβ (−1)jx+jy (Gi,αFj,β − Fi,αGj,β).

In Table II, we illustrate the transformation of various pairing
terms. The four pairings have an interesting exchange symme-
try: Obviously O

A,B

 is even under the exchange operation. If

we consider nearest-neighbor sites (i,j ), it is easy to show that
Ob


 is even and Oa

 is odd under the exchange. Therefore, for

the dx2−y2 symmetry, the Oa does not contribute to pairings.

TABLE II. Transformations of the pairing terms. We suppress
the lattice index (i,j ) before and after transformations. Note that the
time-reversal column (T ) contains (−) term and the conjugate partner
also have the (−) sign.

Tx Rdual
π/2 I dual

x T

εαβFαFβ εαβGαGβ εαβGαGβ εαβGαGβ −εαβF
†
βF †

α

εαβGαGβ εαβFαFβ εαβFαFβ εαβFαFβ −εαβG
†
βG†

α

εαβFαGβ εαβGαFβ εαβGαFβ εαβGαFβ −εαβG
†
βF †

α

εαβGαFβ εαβFαGβ εαβFαGβ εαβFαGβ −εαβF
†
βG†

α

TABLE III. Symmetry transformations of the U(1) field strength
of the CP1 model, and of the fermion field � = (FG)T .

Tx Rdual
π/2 I dual

x T

B −B −B +B −B
Ex -Ex −Ey +Ex Ex

Ey −Ey +Ex −Ey Ey

� τx� τx� τx� iσ y(�†)T

The conversion between the two representations are as
follows:

Oc

(i,j ) = εαβCi,αCj,β = 1

2

(
OA


 + OB



)
(i,j ),

Od

(i,j ) = εαβDi,αDj,β = (−1)
x+
y

2

(
OA


 − OB



)
(i,j ),

(B2)

Ocd

 (i,j ) = εαβCi,αDj,β = 1

2

(
Oa


 + Ob



)
(i,j ),

Odc

 (i,j ) = εαβDi,αCj,β = (−1)
x+
y

2

(
Oa


 − Ob



)
(i,j ),

where 
x + 
y is the coordinates’ difference between two
particles, for example, zero for the s wave and one for the d

wave.

APPENDIX C: PAIRING INSTABILITY

In this Appendix, we introduce one way to achieve the
d-wave instability from the gauge fluctuation. There could be
many other channels to induce the d-wave channel such as
“conventional” SDW fluctuations, so this Appendix shows the
possibility of obtaining the desired pairings.

To constrain the Hamiltonian, let us consider symmetry
transformations of the field strengths associated with the U(1)
gauge field of the CP1 model describing the zα spinons in
Table III:

B = 
xAy − 
yAx,

Ex = 
xAτ − 
τAx, (C1)

Ey = 
yAτ − 
τAy, � =
(

F

G

)
.

The Pauli matrix τ (σ ) is defined in the (F,G) (spin)
space. The only invariant coupling up to the second-order
derivatives is6

Sγ = γ

∫
τ,x

E · �†τ y(∇)�

(C2)
= −iγ

∫
τ,x

E · (F †
α∇Gα − G†

α∇Fα).

It is interesting to note that this coupling is precisely the
geometric phase coupling between the antiferromagnetic and
VBS order parameters discussed recently in Ref. 53. The
electric field is the spatial component of the skyrmion currrent
in the Néel state, and it couples here to a fermion operator
which has the same quantum numbers as the spatial gradient
of the phase of VBS order; thus Eq. (C2) corresponds to the
spatial terms in Eq. (3.8) in Ref. 53. Here we see that the
electric field couples to a “dipole moment” in the fermions.
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FIG. 8. Vertex correction of a pairing channel. The wavy line is
for the propagator of the electric fields, and the plain (dotted) line is
for the C(D) particle’s propagator. Note that the coupling with the
electric field (filled dot) contains the momentum component. Here
we represent the C particle pairing vertex renormalization.

We can also look for a coupling between the magnetic field
B and the fermions. There is no coupling up to the second-
order derivatives of fermionic fields. The main reason for the
absence is that rotation and inversion transformations have
opposite signs acting on the magnetic field. If we go beyond
the second-order derivative, we can find a coupling to the
magnetic field such as

SB = γB

∫
τ,x

B�†(∂2
x − ∂2

y

)
(∂x∂y)τ y�. (C3)

This term is also one associated with the geometric
phase between the antiferromagnetic and VBS orders,
and corresponds to the temporal term in Eq. (3.8) in
Ref. 53.

The fluctuations of the gauge field are controlled by the
action

SA = NT

2

∑
εn

∫
d2k

4π2

[
�E(k,εn)|E |2 + �B(k,εn)|B|2] ,

(C4)

where �E and �B are polarization functions from the matter
fields. Because of the nonminimal coupling between the
electric and magnetic fields and the fermions, there is no
screening, and these polarization functions are just constants
at low momenta and frequencies. Also, although the bosonic
spinons do couple minimally to the electromagnetic field, they
are gapped and also yield only a constant contribution to the
polarizations.

With the C,D representation, the coupling term to the
electric field becomes

Sγ = −γ

∫
ω,�,k,q

E(q,�) · k[D†
α(k + q + Q,ω + �)Cα(k,ω)

−C†
α(k + q,ω + �)Dα(k + Q,ω)].

It is manifest that C and D particles are only mixed with the
finite momentum Q difference.

Let us consider the pairing vertex

Vpairing =
∑

k

δc(k)C†
k,↑C

†
−k,↓ + δd (k)D†

k,↑D
†
−k,↓ + H.c. (C5)

To see the superconducting instability, we need to evaluate the
vertex correction of the pairing channel such as the diagram in
Fig. 8. The presence of the λ requires numerical evaluations.
Instead of considering numerical calculations, let us turn off
the mixing term λ and see which pairings are preferred with
approximations. We will discuss the nonzero mixing term later.

The renormalized pairing vertex of C particles is

δc(k)ren ∼ δc(k) − γ 2k2
F,dδ

d (k + Q)
Nd

�E

∫
ε,ω

1

ω2 + ε2
d

, (C6)

where 1/�E is the constant electric-field propagator. As usual,
we assume that the integration is dominant near Fermi surfaces
and the k2 becomes k2

F . Also we extract the gap function of
D particles out of the integration. The factor Nd is the density
of states of D particles. Note that the minus sign in front
of the second term is from the momentum dependence of the
interaction and the relative sign of the gap functions. Likewise,
the D particle pairing correction is

δd (k + Q)ren ∼ δd (k + Q) − γ 2k2
F,cδ

c(k)
Nc

�E

∫
ε,ω

1

ω2 + ε2
c

.

(C7)

In both equations, the last integrals show the usual BCS-
type logarithmic divergence. We can determine the momentum
dependence of the pairings with these equations. If we assume
s-wave pairings, then the corrections become negative and the
renormalized pairings become suppressed. On the other hand,
d-wave pairings can change the sign of the integration and
enhance the superconductivity. Such a momentum dependence
results from the momentum-dependent vertex term in Eq. (C2)
with a given relative pairing sign. In the gauge exchange, the
momentum dependence plays the same role as spin exchange
in the usual d-wave BCS pairing.

So far, we have fixed the relative sign between the two
pairings by hand. Our calculation indicates possibility of d-
wave pairings, but the channel of the instability can vary with
changing the relative pairing sign. There could be fully gapped
pairing with opposite signs s±.

Evaluating the vertex corrections, we have assumed no
mixing term λ at the lowest approximation. Now let us turn on
the mixing term. Then, the Fermi surfaces of the two particles
start mixing and details of the Fermi surfaces change. Of
course, (C,D) pairings can be mixed by λ. But the mixing point
is first gapped out and the Fermi surfaces become pockets. So
there is no significant pairing mixing by λ and we can treat
pairings separately. Details of the Fermi surface change, but
we can argue that pairing channels remain intact at low energy.
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