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Period-doubling bifurcation readout for a Josephson qubit
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We propose a threshold detector with an operating principle based on a parametric period-doubling bifurcation
in an externally pumped nonlinear resonance circuit. The ac-driven resonance circuit includes a dc-current–biased
Josephson junction ensuring parametric frequency conversion (period-doubling bifurcation) due to its quadratic
nonlinearity. A sharp onset of oscillations at the half-frequency of the drive allows for the detection of small
variations of an effective inductance and, therefore, the readout of the quantum state of a coupled Josephson qubit.
The bifurcation characteristics of this circuit are compared with those of the conventional Josephson bifurcation
amplifier, and its possible advantages are discussed.
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I. INTRODUCTION

The problem of an efficient readout of solid state quantum
systems including Josephson qubits (see, e.g., Ref. 1) is of
high importance from both theoretical and practical points
of view. The dispersive readout techniques based on the
radio-frequency measurement of reactive electrical parameters
(for example, the Josephson inductance2,3 or quantum Bloch
capacitance4,5) received significant recognition since they
allow one to minimize the backaction of the readout circuit
on a Josephson qubit. Recently, particular interest has been
focused on such systems operating in the nonlinear resonance
regime (Duffing oscillator), which was possible due to a
cubic nonlinearity of the supercurrent in a zero-phase biased
Josephson junction.6–9 In this regime, under the action of
a weak signal and/or fluctuations, the circuit undergoes a
bifurcation, that is, a transition between two stable oscillatory
states.10 The successful idea of the application of such a
Josephson bifurcation amplifier (JBA) for the measurements
of a qubit was first proposed by Siddiqi et al.11 and developed
in further works.12,13 This success story has served for us as a
motivation for the development of a readout based on another
type of bifurcation in superconducting nonlinear circuits.

In this paper we propose a readout circuit whose oper-
ating principle is based on the excitation of half-harmonic
oscillations, that is, a period doubling bifurcation (PDB).
This striking phenomenon is a precursor of chaotic regime
(manifesting itself in a cascade of PDBs) and may occur
in an oscillating system like a force-driven pendulum or an
ac-driven Josephson junction.14 With only odd nonlinearity
in the corresponding Duffing equation, PDB is suppressed.15

However, additional even nonlinear terms, which arise for
example when the Josephson junction is current biased below
the critical value, makes double-period solutions possible and
particularly suitable for detection. Physically the quadratic
nonlinearity of reactance ensures parametric conversion of the
drive down to the half-frequency (a parametric oscillator of the
second kind according to classification given in Ref. 16). This
is a complementary case to the parametrically driven system

(parametric oscillator of the first kind16) where the pumping
signal periodically modulates the (nonlinear) reactance17 and
can also cause the PDB effect. Technically this case can
be realized, for example, by a periodic modulation of the
critical current Ic of the zero–dc-biased Josephson element
in a dc-SQUID configuration by using an alternating magnetic
flux driving. This was recently done by Wilson et al. in the
experiment on photon generation in a coplanar waveguide
cavity incorporating such a parametrically pumped SQUID.18

In our paper we focus, however, on a force-driven parametric
oscillator of the second kind with quadratic Josephson nonlin-
earity, which enables PDB-based detection of small variations
in the effective inductance, induced by a coupled circuit, for
example, a Josephson qubit.

The essential difference of the PDB from the JBA regime
consists of the parametric nature of the PDB resonance
manifesting itself in abrupt switching from the zero-oscillation
state to the dynamic state with a double period and an
appreciable amplitude of the oscillations.16 This regime may
be favorable for an output-stage preamplifier receiving, in the
case of the PDB, a signal with zero background. Moreover,
as we shall show below, the switching characteristics of our
circuits are somewhat different from those of conventional
JBA; in particular, we find that in addition to better contrast
between two possible stationary states of the PDBA, it may
have a narrower switching region.

II. DYNAMICS OF THE CIRCUIT

The PDB circuit (see Fig. 1) comprises a dc-current–biased
Josephson junction with the critical current Ic, capacitance C

including the self-capacitance of the junction with, possibly,
a contribution of an external capacitance, the linear shunting
conductance G, as well as an attached qubit, presented here as
a charge-phase qubit.2,19 The circuit is driven by a harmonic
signal Iac = IA cos 2ωt at a frequency close to the double
frequency of small-amplitude plasma oscillations ωp, that is,
ω ≈ ωp.
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FIG. 1. Electric circuit diagram of the period-doubling–
bifurcation detector with microwave-based readout. The resonator
is formed by the inductance of a nonlinear Josephson junction
(large crossed box), biased at a nonzero phase value ϕ0, and the
capacitance C. The linear losses are accounted for by the conductance
G, which in a practical circuit is dominated by the matched microwave
load. The resonator is coupled to a charge-phase qubit formed by a
superconducting single-electron transistor with capacitive gate (left)
and attached to the Josephson junction. The qubit operation at the
optimal point for an arbitrary bias I0 is ensured by a proper value of
the external magnetic control flux �c, applied to the qubit loop, and
the gate charge Qg on the qubit island.

Neglecting fluctuations, the dynamics of the bare system
(excluding the qubit, whose quantum state only slightly
changes the plasma frequency of the entire circuit, ωp → ω̃p)
is governed by the model of a resistively shunted junction20:

h̄C

2e

d2ϕ

dt2
+ h̄G

2e

dϕ

dt
+ Ic sin ϕ = I0 + Iac, (1)

where the finite current bias I0 < Ic ensures a dc phase drop
ϕ0 = arcsin(I0/Ic) across the Josephson junction. The small-
ac-signal expansion (x � 1) of the Josephson supercurrent
term includes the following components: sin ϕ = sin(ϕ0 +
x) ≈ sin ϕ0(1 − x2/2 + x4/24) + cos ϕ0(x − x3/6). The an-
gular frequency of small oscillations of ϕ around ϕ0 is
ωp = (cos ϕ0)1/2ωp0, where the bare plasma frequency is
ωp0 = (2eIc/h̄C)1/2.

Using the dot to denote derivatives with respect to the
dimensionless time τ = ωt , we write the equation of motion
for x in the following form:

ẍ + x = ξx − 2θẋ + βx2 + γ x3 − μx4 + 3P cos 2τ, (2)

cf. the equation for a parametric oscillator of the first kind,16,17

which includes the drive term xP ′ cos 2τ . The dimensionless
coefficients in Eq. (2) are

ξ = 1 − κ, |ξ | � 1, θ = G/2ωC ≡ 1/2Q � 1, (3)

β = 12μ = (κ tan ϕ0)/2, γ = κ/6, 3P = κIA/Ic, (4)

where κ = (ωp/ω)2 ≈ 1 and Q is the quality factor. The
quadratic nonlinear term (∝ β) in Eq. (2) ensures parametric
down-conversion from the drive frequency 2ω.

The leading terms in the solution of Eq. (2) have the
form x ≡ y − P cos 2τ , where y(τ ) denotes oscillations at the
frequency ≈ω, and the second term is the forced oscillation
at the drive frequency 2ω; x(τ ) also contains other harmonics
at multiple frequencies, which strongly influence its dynamics
and stationary states,21 cf. Eqs. (11) and (12) below. We apply
the method of slowly varying amplitudes by introducing slow
variables16:

y = A cos(τ − α) , ẏ ≈ −A sin(τ − α) . (5)

The variables A(τ ) and α(τ ) present the amplitude and phase
(relative to the drive) of the oscillation at the half-frequency of
the drive; they vary weakly over the period of these oscillations
(with dimensionless rates �1). Accordingly,

u = A cos α, v = A sin α (6)

are two quadratures of these oscillations, u2 + v2 = A2. The
dynamics of the slow variables is governed by the equations(

Ȧ

Aα̇

)
= −

∫ τ+2π

τ

dτ

2π
εF (x,ẋ,τ )

(
sin(τ − α)
cos(τ − α)

)
, (7)

with averaging over a 2π period of the oscillations at frequency
ω (1 in dimensionless units), where the function in the
integrand

εF (x,ẋ,τ ) = ξx − 2θẋ + βx2 + γ x3 − μx4 (8)

includes small terms at frequency ω and large terms at the
drive frequency 2ω and its higher harmonics. The averaging
over the period of oscillations in Eq. (7) yields a pair of reduced
equations for the amplitude and the phase:

Ȧ = −θA − 1
2A sin 2α(β̃P − μ̃PA2), (9)

α̇ = ξ̃

2
− β̃P

2
cos 2α + 3

8
γ̃ A2 + μ̃PA2 cos 2α. (10)

The coefficients ξ̃ (P ), β̃(P ), γ̃ (P ), μ̃(P ) to the leading order
in P 2 are given by21

ξ̃ = ξ, β̃ = β, γ̃ = γ + 10
9 β2, (11)

μ̃ = μ − 15
16βγ + 7

24β3 , (12)

which implies that γ̃ ≈ (3 + 5 tan2 ϕ0)/18 and μ̃ ≈ (7/192)
tan ϕ0(tan2 ϕ0 − 1). Corrections of order P 2 to these coeffi-
cients do not change further analysis qualitatively, but only
slightly modify the results quantitatively.

III. STATIONARY SOLUTIONS, STABILITY,
AND BIFURCATIONS

Equation (9) always has a trivial solution A = 0. In the limit
of weak pumping (P � 1) and small resulting oscillations
(A2 � 1), the last terms (∝μ̃P ) on the right-hand side of Eqs.
(9) and (10) can be neglected, and the oscillation amplitude of
the nonzero stationary solutions (Ȧ = α̇ = 0, A �= 0) may be
found explicitly16:

A2
± = 4

3γ̃
[−ξ̃ ±

√
(β̃P )2 − 4θ2]. (13)

For the pumping amplitude exceeding the threshold set by
dissipation |β̃P | > 2θ , the values

ξ̃± = ±
√

(β̃P )2 − 4θ2 (14)

yield the range of frequency detunings, ξ− < ξ < ξ+, within
which the zero solution is unstable. In this range the system
switches into the oscillating state with a finite amplitude A+
given by Eq. (13). For ξ < ξ− the parametric resonance curve
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FIG. 2. (Color online) Intensity A2 of oscillations of the Joseph-
son phase at frequency ω versus frequency detuning ξ for two
amplitudes of the pumping signal (at frequency 2ω). Dashed lines
show unstable states. When the detuning approaches a bifurcation
point [(i) or (ii)] PDB occurs (vertical arrows from or to the zero
state, respectively). For comparison, a typical resonance curve of a
JBA is sketched in the inset.

is multivalued with the stable trivial A = 0 and nontrivial
A+ solutions, while the solution A− is unstable. Taking into
account higher (e.g., ∝μ̃) terms in Eqs. (9) and (10) ensures
that A+(ξ ) and A−(ξ ) merge, limiting both the amplitude A+
and the the range of bistability in ξ ; for a stronger drive
even higher nonlinearities become important. The shape of
the resonance curve, calculated numerically from Eqs. (9)
and (10), is shown in Fig. 2 for several values of the drive
amplitude 3P just above the excitation threshold. However,
for further considerations of the threshold behavior the higher
nonlinearities are not crucial, and below we neglect the μ̃

terms.
The stability diagram of the system in the space of the

control parameters, the detuning ξ̃ and the driving amplitude
P is shown in Fig. 3. The parameter plane is divided
into three regions, with the following stable-state amplitudes
[cf. Eq. (13)]: A = 0 in the lower region, A+ in the upper
region, and both 0 and A+ in the “bistable” sector (this region
is limited by two solid lines). The bifurcation lines are given
by the relations A+ = A− (lower left horizontal solid line),
A− = 0 [i.e., ξ = ξ−(P ), upper solid curve], and A+ = 0
[i.e., ξ = ξ+(P ), dashed curve]. The coordinates of the triple
point are ξ = 0 and P = 2θ/β̃ ≈ 2/(Q tan ϕ0).

Equations for the quadrature components of the velocity
field,

v =
(

u̇

v̇

)
=

(
Ȧ cos α − Aα̇ sin α

Ȧ sin α + Aα̇ cos α

)
, (15)

where Ȧ and α̇ are given by Eqs. (9) and (10) can be represented
as Hamiltonian equations of motion with friction:

u̇ = −∂vH − θu, v̇ = ∂uH − θv , (16)

D
ri

ve
P

Detuning ξ

ξ
2

βP 2 2θ 2

βP 2θ, ξ 0

P 0
0

FIG. 3. (Color online) Stability diagram of the period-doubling–
bifurcation readout. Stationary oscillatory solutions appear and
disappear as the detuning ξ and driving amplitude P are varied. This
is indicated by the sketched potential curves which show stable (min-
ima) and unstable (maxima) states. The former include only the zero
solution in the lower region, only a pair of equal-amplitude solutions
A+, A∗

+ with a π phase shift in the upper region, and the zero and the
pair A+, A∗

+ in the left, “bistable” sector-shaped region. The equations
in the figure describe the bifurcation boundaries.

or, equivalently,

Ȧ = −θA − 1

A
∂αH, Aα̇ = ∂AH, (17)

where the Hamiltonian is given by

H = (ξ̃ − β̃P cos 2α)
A2

4
+ 3

32
γ̃ A4. (18)

This Hamiltonian for the slow variables can be obtained from
the Hamiltonian for the physical quantities.21 Figure 4 shows
a contour plot of the absolute value of the velocity |v| =
(u̇2 + v̇2)1/2 = (Ȧ2 + A2α̇2)1/2 in the case of a multivalued
stationary solution. One can see the darker S-shaped narrow

0 u

v

α0

A

s

A

A
A

FIG. 4. Contour velocity plot calculated from Eqs. (9), (10), and
(15) for the parameters corresponding to a multivalued solution. The
absolute value of velocity |v| is lower in darker areas. The curvilinear
trajectory along the valley of minimal velocity (short-dash line) is
parametrized by s (cf. the straight line trajectory, predicted17 and
observed18 in the parametrically pumped circuit). The straight dashed
line at the origin indicates the most probable direction of escape from
the zero state close to the bifurcation.
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valley, where the motion is slow along the curvilinear s axis.
The black spots in this area show the stationary solutions,
which are the stable focus at zero, A = 0, the stable foci A+
and A∗

+ corresponding to equal-amplitude oscillations with
a mutual phase shift of π , and the unstable saddles A− and
A∗

− (also with a mutual π shift). For weak dissipation these
“saddle points” are the lower points of the barriers separating
the basins of attraction of the foci in the landscape of H . Thus,
the most probable escape path from the zero state is along the
S-shaped valley.

In the vicinity of the bifurcation point ξ− within the bistable
region, the height of the energy barriers is small, and one
can show that there is a separation of time scales, which can
be used to solve the dynamics: the fast relaxation from the
exterior points toward the S-shaped valley is followed by slow
dynamics along the valley. In this region the points A− and
A∗

− are close to the origin, u = v = 0, and the slope α0 of the
valley at the origin can be found from Eq. (9):

sin 2α0 = −η−1, where η = β̃P/2θ. (19)

To describe the slow motion along the valley near the origin,
where one can use the amplitude A as a coordinate, we first
solve an equation for the fast motion in the axial α direction
(variable α relaxes fast, with a typical rate of θ ). To find the
subleading nonlinear terms in the equation of motion along the
valley, one needs to take into account the deviation of the valley
near the origin from a straight line. The resulting equation of
motion can be represented in the form of an easily solvable 1D
equation (cf. Ref. 10):

ds

dτ
= −dW (s)

ds
, (20)

(a)

(b)

A+A*+

A -

s

A*-

0

W

A+A*+

A-

s

A*-

0

W

FIG. 5. A sketch of the potential W (s) along the S-shaped region
(see Fig. 4) for two ultimate cases: (a) bifurcation 0 → A+ (A∗

+) (near
the upper solid line in Fig. 3) and (b) bifurcation A+ → 0 (near the
lower solid line in Fig. 3). Near the bifurcations, the dashed lines
approximate the energy barriers by a quartic and a cubic polynomial,
respectively.

where the pseudopotential is to the lowest orders a biquadratic
polynomial W = as2 − bs4, where

a = −δξ̃

4

√
η2 − 1 , b = 3

32
γ̃
√

η2 − 1 . (21)

For ξ < ξ− (δξ < 0) one finds that a > 0. Thus, when ξ

crosses ξ− from above, the zero unstable stationary solution
bifurcates and separates into a stable solution at zero and
two symmetric unstable solutions A− (Fig. 5). This property
makes it sensitive to small changes in the circuit parameters
(in particular to the qubit state via its effective Josephson
inductance, which modifies the detuning ξ ). The switching
characteristics of such a detector can be found from the
analysis of this system in the presence of noise, which
results in a finite width of the transition. To describe the
bifurcation-based readout, one needs to find the tunneling rate
out of the shallow well W (s) near the bifurcation.

IV. SWITCHING BETWEEN STATIONARY STATES

Small fluctuations due to the conductance G are taken
into account by adding a noise term δI , with the spectral
density SI (ω) = 2h̄ωG coth h̄ω

2kBT
, to the right-hand side of

Eq. (1). This gives rise to independent fluctuations of the
two quadratures. Their correlation functions are

〈δu(τ )δu(τ ′)〉 = 〈δv(τ )δv(τ ′)〉 = 2Teffδ(τ − τ ′), (22)

with 〈δu(τ )δv(τ ′)〉 = 0 or

〈δA(τ )δA(τ ′)〉=A2〈δα(τ )δα(τ ′)〉=2Teffδ(τ−τ ′), (23)

with 〈δA(τ )δα(τ ′)〉 = 0, where the effective temperature

Teff = κ2SI (ω)ω

8(Ic cos ϕ0)2

low−ω−→ κ2kBT Gω

2(Ic cos ϕ0)2
, (24)

and the latter expression holds in the low-frequency (classical)
limit h̄ω � kBT . Upon the reduction to the 1D equation (20),
this causes fluctuations with the same noise power,

〈δs(τ )δs(τ ′)〉 = 2Teffδ(τ − τ ′), (25)

which affect the motion along the s coordinate.
Adding the Langevin term δs(τ ) on the right-hand side of

Eq. (20), one can derive and then solve a 1D Fokker-Planck
equation10 [in fact, a Smoluchowski equation since the “mass”
term ∝ d2s/dτ 2 is absent in Eq. (20)] for the probability
density w(s,t) to find the system at point s at time t :

∂w

∂t
= ∂

∂s

[
∂W (s)

∂s
w

]
+ Teff

∂2w

∂s2
. (26)

The escape rate out of the zero metastable state A = 0 to
the stable state A+ or A∗

+ is given by Kramers’ formula22

reflecting the activational behavior of the system,

� = 2(ωA/2π )e−�W/Teff , (27)

where factor 2 accounts for two escape possibilities (to the
left or right wells). For the overdamped case of a zero-mass
particle, the formula for ωA is given, for example, in Ref. 23.
The prefactor ωA is determined by the geometrical mean of
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FIG. 6. (Color online) Switching curves for the period-doubling–
bifurcation readout at various temperatures. Note saturation at low T ,
governed by “quantum noise” at kBT � h̄ω. Inset: low-T saturation,
illustrated by the curves’ width δξsw [inverse slope at P = 0.5,
∝√

S(ω)] as a function of � ≡ √
kBT /h̄ω.

the curvatures of W (s) at the bottom of the central well (equal
to 2a) and at the top of the barrier (equal to 4a), that is,

ωA = 2
√

2aω = ω
|δξ |√

2

√
η2 − 1. (28)

The barrier height to the lowest order in δξ = ξ − ξ− is

�W = a2/4b ∝ (ξ − ξ−)2. (29)

Typical switching curves (switching probability Psw =
1 − e−�τo during some observation time τo vs ξ ) are shown
in Fig. 6 for various temperatures for a set of typical circuit
parameters. Note that the position and the width of the
switching curve (see inset) are saturated at low temperatures.
This effect is not a manifestation of the real quantum tunneling,
but is rather linked to the fact that activation in the rotating
frame of the first harmonic [Eqs. (5) and (6)], that is, the
low-frequency noise in that frame, is given in the laboratory
frame by the noise at a finite frequency ω [cf. Eq. (24) and
above].

Equation (29) implies that the width (along the detuning
axis ξ ) of the switching curves, given by the inverse slope
(dP/dξ )−1 at P = 0.5, scales as δξsw ∝ √

T above saturation.
Thus as T → 0, it falls off slightly slower than that for
the “standard” Josephson bifurcation amplifier,11,24 where
δξsw ∝ T 2/3. This (minor) difference stems from the symmetry
of the PDBA with respect to a shift by a drive period:
α → α + π . This symmetry implies that the generic form of
the 1D potential W near the bifurcation is εs2 − as4, unlike
εs − as3 for the JBA. Here ε measures the distance from the
bifurcation and s is the relevant coordinate in phase space.
However, this symmetry can be broken, and the stronger effect
of cooling (δξsw ∝ T 2/3) restored by a weak admixture at
frequency ω to the drive signal. An alternative strategy consists
in using another bifurcation point, where A+ = A− in Fig. 2
(on lowering the detuning ξ , the system follows the solution
A+ until it merges with A−, where it switches abruptly to zero;
there is no symmetry around this point).

V. DISCUSSION

Thus we have suggested two protocols of operation of the
PDBA (with potentials shown in Fig. 5 and operation indicated
by arrows in the parametric resonance plot, Fig. 2): one of them
involves switching from the zero state to a large-amplitude
stable state A+ near the bifurcation point ξ−, and the other
involves a reverse switching from the large-amplitude state
A+ to zero near the merging point of A+ and A−. Note
that in both cases to perform a readout, that is to find out
if a switching has occurred, one needs to distinguish a zero
state from a large-amplitude state. This should be contrasted
with the JBA, where two finite-amplitude (and often, similar-
amplitude, but different-phase) states have to be distinguished.
From this viewpoint, the PDBA may be more convenient in
practical applications. Other protocols can also be discussed
(cf. Ref. 25).

The readout of a coupled qubit is based on the shift
in the plasma frequency (and thus of the switching curve)
due to different Josephson inductances in two qubit states.
The inductance values depend on the type of qubit and its
parameters. Generally the expected backaction of the PDBA
readout on a qubit is similar to that of the JBA readout,
that is, extremely low, and similar methods may be used
in order to suppress it further and to improve fidelity (cf.
Ref. 13). In both cases one source of such backaction is
the near-equilibrium noise of the resistance, mostly that
of a matched microwave load, which can be efficiently
thermalized at the lowest stage of a fridge.6 Due to the
resonance impedance of both circuits, the noise components
at the qubit Larmor frequency are suppressed, which reduces
the rate of possible energy relaxation. Furthermore, a lower
oscillation amplitude is desirable since modulation of the qubit
level splitting by the resonator may lead to level crossings
with spurious fluctuators.6 The amplitude of the Josephson
phase oscillations at the drive frequency 2ω in the PDBA is
sufficiently small, P � 2θ/β̃ ∼ Q−1, whereas oscillations at
frequency ω are either absent (in the zero state) or have an
amplitude comparable to that in the oscillating states of the
JBA. The former property may be advantageous, for example,
for QND26,27 and single-shot13 measurements of the quartic
phase qubit.28 Indeed, as was shown in Ref. 28, the effective
Josephson inductance of this qubit is negative in both ground
and excited states with the smaller absolute value in the excited
state. Therefore, in contrast to the charge qubit, a magnetically
coupled quartic qubit (see Fig. 1(a) in Ref. 28) should cause,
in the excited state, a smaller shift of the resonance toward
lower frequencies than in the ground state. In this case one can
adjust the bifurcation threshold such that only the ground state
induces the PDB, whereas at reading out of the excited state
the PDB does not occur, and the qubit experiences only very
weak oscillations of phase at frequency 2ω.

During the readout, the qubit state is encoded in the
resulting oscillations of the PDBA by tuning the control
parameters (such as the drive frequency and amplitude, i.e.,
ξ and P ) to a point with the maximum difference (contrast)
between the two switching curves. High contrast is reached
when the shift in the plasma frequency exceeds the width
of the switching curve. In an ideal arrangement this contrast
reaches 100%: Psw = 0 and 1 for two qubit states. For the
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PDBA, the contrast reaches values comparable to those for
the JBA with similar circuit parameters (for example, about
0.3% in frequency sensitivity for the parameters of Fig. 6 at
low T that is sufficient for reliable readout of the charge-phase
qubit6 shown in Fig. 1). Further optimization of the PDBA
parameters is possible.

Let us compare the switching curves for the PDBA and
JBA6 near the upper critical lines of the bistability region
(η↑ in the notations of Ref. 6). We consider the tunneling
exponents as functions of the dimensionless deviation of the
drive amplitude from the bifurcation 1 − P/P− for the PDBA,
and we use the same notation, instead of 1 − η/η↑, for the JBA.
According to Refs. 24 and 6 for the JBA∣∣∣∣1 − P

P−

∣∣∣∣ ∼
(

kBT

EJ |ξ |
)2/3

. (30)

For the PDBA we replace the difference (ξ − ξ−) in Eq. (29)
by ∂P ξ−(P− − P ). Assuming that the detuning ξ � 1 (that is,
δω � ω/Q), we find that the tunneling exponent is of the order

�W

Teff
≈ Q2 6γ̃ cos ϕ0EJ

kBT
|ξ |3

(
1 − P

P−

)2

. (31)

Thus, increasing the detuning [and the corresponding driving
amplitude P−(ξ )] can suppress the width of the relevant
switching curve (switching probability vs drive amplitude P ):∣∣∣∣1 − P

P−

∣∣∣∣ ∼
(

kBT

EJ |ξ |
1

Q2|ξ |2
1

6γ̃ cos ϕ0

)1/2

. (32)

We note that various operation protocols of the readout
device based on PDBA are possible, and one can force a
crossing of the bifurcation region and a switching between the
oscillating states by tuning various parameters. In particular,
the current bias I0, the amplitude, and frequency of the
drive can be used for engineering a metapotential of desired
shape and, therefore, optimization of the readout. In our
analysis we have focused on the noise-induced activation over
the barrier in this metapotential. As was shown [cf. above
Eq. (24)] the effective “temperature” is set by the noise level

at frequency ω and saturates on lowering the temperature
T below h̄ω/kB . This low-T regime may also be thought
of as “quantum activation.”9,25,29 One could also consider
the quantum tunneling.30 However, in similar systems the
corresponding tunneling rate is exponentially small, especially
close to the bifurcation point (cf. Refs. 25 and 29).

VI. CONCLUSION

We have suggested the use of a nonlinear Josephson
resonator—driven near its double plasma frequency—as a
sensitive quantum detector. In this regime the system may
develop a bifurcation with two possible stable states; it may
be manipulated to force it to the state, correlated with the state
of a coupled qubit. In contrast to the Josephson bifurcation
amplifier, one of these states has a zero amplitude, which
simplifies the task of resolving the two states. Furthermore,
the properties of the detector are different from those of
the JBA for similar parameters. In particular, the switching
curve may be narrower than that of a JBA, which may
result in a higher fidelity of the qubit readout. We note
also that unlike the JBA, in the case of the PDBA the
switching from the zero state is not affected by dephasing
(including noise of the drive frequency) to the leading
order.25
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