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Josephson currents in quantum Hall devices
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We consider a simple model for a superconductor/normal-metal/superconductor Josephson junction in which
the “normal metal” is a section of a filling-factor ν = 2 integer quantum Hall edge. We provide analytic expressions
for the current/phase relations to all orders in the coupling between the superconductor and the quantum Hall
edge modes, and for all temperatures. Our conclusions are consistent with the earlier perturbative study by Ma
and Zyuzin [Europhys. Lett. 21, 941 (1993)]: The Josephson current is independent of the distance between the
superconducting leads, and the upper bound on the maximum Josephson current is inversely proportional to the
perimeter of the Hall device.

DOI: 10.1103/PhysRevB.83.224501 PACS number(s): 74.45.+c, 74.50.+r, 73.43.Jn

I. INTRODUCTION

The zero-voltage Josephson current in a superconductor/
normal-metal/superconductor (SNS) junction1 arises from
Andreev scattering2 at the SN and NS interfaces. In the ideal
case, an electron incident on one superconductor from the
normal metal will be reflected back into the normal metal as
a hole, and this hole, on striking the second superconductor,
will be reflected back toward the first superconductor as an
electron. When the relative phase of the order parameters is
such that constructive interference occurs, the back-and-forth
process continues ad infinitum and transfers two electrons from
superconductor to superconductor in each cycle.3–7 A round
trip takes time 2W/vF , where vF is the Fermi velocity and
W is the separation between the superconductors. The current
will therefore be evF /W for each open transverse channel.
In practice, the probability of Andreev reflection is less than
unity8,9 and the motion in the metal may be diffusive, but
evF /W per channel remains an upper bound on the critical
current.

An interesting question arises as to what happens when
the “normal” metal consists of the chiral fermions at the
edge of a quantum Hall (QH) bar.10 In this case the holes
move in the same direction as the electrons, so conventional
Andreev retroreflection is impossible. A two-electron charge
transfer requires a (phase coherent) passage around the entire
perimeter of the Hall bar, and this lengthy excursion suggests
that the small “W” of the conventional junction be replaced
by the much larger perimeter L of the Hall bar. A perturbative
study of a S-QH-S system in Ref. 11 supports this conclusion
and estimates that the maximum Josephson current will be
very small—in the order of 1 nA for millimeter scale devices.
In view of ongoing experiments on quantum Hall Josephson
junctions, however, it seems worth revisiting the problem to
see if devices might be engineered to provide larger critical
currents.

In this paper we introduce a model of an S-QH-S junction
that is simple enough that it can be studied nonperturbatively.
We obtain analytic expressions for the Josephson current/phase
relation to all orders in the S-QH coupling and at all
temperatures. Despite our greater control over the model, the
key conclusions of the perturbative studies in Ref. 11 (see
also Ref. 12) are unchanged: At filling fraction ν = 2 an
upper bound for the critical Josephson current is given by

2evd/L, where vd is the edge-mode drift velocity and L is the
perimeter of the Hall device. Further, the temperature scale at
which the Jospehson current is washed out by thermal effects
is set by the edge-mode level spacing En+1 − En = 2πh̄vd/L.
Thus, if we wish to see Josephson-junction physics in quantum
Hall devices, we should construct the junctions by coupling
superconducting probes to mesoscale Hall dots.

In Sec. II we introduce the model and solve the associated
Bogoliubov–de Gennes equation. In Sec. III we introduce
an analytic regularization scheme to handle the otherwise
ill-defined sums that appear in the current/phase relation. In
Sec. IV we demonstrate that our regularization scheme is
consistent with conventional perturbation theory at both zero
and nonzero temperatures. We finish with a brief discussion
of effects that we have not taken into account and that may or
may not be significant.

II. THE MODEL

We consider a ν = 2 quantum Hall edge (two spins
therefore) in an interaction with superconducting (SC) leads
Fig. 1. We model the system by a linear-dispersion edge-mode
Hamiltonian,

H =
∮

{−ivdψ
†
↑(∂x − ieA)ψ↑ − ivdψ

†
↓(∂x − ieA)ψ↓

+ |�(x)|eiθ(x)ψ
†
↑ψ

†
↓ + |�(x)|e−iθ(x)ψ↓ψ↑}dx. (1)

Here vd is the edge-mode drift velocity that is proportional
to the gradient of the confining potential. The terms with
�(x) are nonzero only where the edge state lies under the
superconducting leads. They account for the Andreev coupling
arising from the two-dimensional electron gas (2DEG) wave
functions reaching up to touch the superconductor as they
drift under the electrodes (see Fig. 2). In contrast to the usual
proximity effect, the topological protection of the QH edge
modes means that this interaction cannot open a gap-but it
may, for example, convert a charge-(e) right-going spin-up
electron into a charge-(−e) right-going spin-up hole, and in
the process transfer a spin-singlet pair of charge-(e) electrons
from the Hall bar to the superconductor where they merge with
the S-wave condensate.

We have not included a Zeeman-energy term to split the
energy between the spin-up and spin-down edge modes. Such
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FIG. 1. (Color online) A Hall bar with superconducting probes
passing a current I through the edge modes. The circled numbers
label the regions (1) “outside the leads,” and (2) “between the leads.”

a term adds only a multiple of the identity matrix to the
Bogoliubov–de Gennes (BdG) operator, and so has no effect on
the subsequent analysis. Further, we assume that the energy
scales of relevance are smaller than the energy gap of the
superconducting leads. We therefore regard the parameters
|�| as being externally imposed, and do not depend on the
energy of the Hall-bar electrons or on the temperature.

We can rewrite H in the BdG form

H =
∫

dx

{
( ψ

†
↑,ψ↓ )

×
[−ivd (∂x − ieA) |�(x)|eiθ(x)

|�(x)|e−iθ(x) −ivd (∂x + ieA)

] (
ψ↑
ψ

†
↓

)}

+ const. (2)

Here we have used an integration by parts together with the
anticommutation property of the Fermi fields to write∫

{ψ†
↓[−ivd (∂x − ieA)]ψ↓}dx

=
∫

{ψ↓[−ivd (∂x + ieA)]ψ†
↓}dx + const. (3)

This rewriting is essentially a charge-conjugation transforma-
tion that makes manifest the particle-hole symmetry of the
linearized edge spectrum. In particular, it reveals that the
charge-(−e) spin-up holes created by ψ↓ move in the same

SC x
Vd

2DEG

FIG. 2. (Color online) The wave function for an electron in a
2DEG is confined in the vertical direction, but there is some amplitude
for the vertically oscillating electron to touch the superconductor.
As a slowly drifting Landau-level wave packet passes under the
superconducting lead, there will be many opportunities for Andreev
reflection to turn the electron into a hole.

direction as the charge-(e) spin-up electrons created by ψ
†
↑. The

“constant” contains the truly constant ground-state energy of
the spin-down electrons, but also the term −vde

∫
δ(0)A(x)dx

that subtracts a background electric charge. This charge
gets discarded as we switch to the charge-conjugate picture
in which charge-(−e) holes occupy the states that are not
occupied by electrons. Keeping track of the constant restores
the physical charge when needed.

The vector potential A acts as a chemical potential and
controls the location of the Fermi energy. In much of our
discussion we will assume that when � = 0 the Fermi energy
lies midway between two edge-mode energy levels. This
assumption is for illustrative purposes only. Indeed the detailed
current/phase relation will depend sensitively on the exact
location of the Fermi energy relative to the edge modes because
varying θ can make a level cross the Fermi energy, change its
occupation, and cause a jump in the Josephson current. The
sensitivity will manifest itself as Bohm-Aharonov oscillations
in the Josephson current as a function of the magnetic flux
through the Hall bar.11

For our midspaced EF we can make a gauge transformation
to set A → 0 at the expense of changing periodic boundary
conditions to antiperiodic ones, and simultaneously redefining
θ (x). We assume that we have done this. The BdG equation
for the eigenmodes is therefore[

− ivd

∂

∂x
+ |�(x)|eiσ3θ(x)σ1

](
u

v

)
= E

(
u

v

)
. (4)

Equation (4) has a path-ordered exponential solution(
u(x)

v(x)

)
= eiEx/vd P exp

{
− i

∫ x

0
K(ξ ) dξ

}(
u(0)

v(0)

)
, (5)

where K(x) = |�(x)|eiσ3θ(x)σ1/vd is a Hermitian matrix. Note
that, in distinction to the usual BdG case, we did not double
the number of degrees of freedom when we constructed the
BdG operator, so all the BdG eigenmodes are needed.

Only a part � (the union of the two regions under the SC
electrodes) of the perimeter of the Hall bar is in contact with
the superconductor, and we set

U = P exp

{
− i

∫
�

K(ξ ) dξ

}
∈ SU(2). (6)

As the perimeter of the Hall bar forms a closed loop, it was
reasonable to impose periodic boundary conditions, but recall
that these were changed to antiperiodic boundary conditions by
the gauge transformation that removed A(x). The eigenmodes
of the BdG operator Hamiltonian are therefore determined
from the eigenvalues of U by requiring that(

un

vn

)
= −eiEnL/vd U

(
un

vn

)
. (7)

Here L is the length of the Hall-bar perimeter. Now the
eigenvalues of U will be of the form e±iφ and so the energy
eigenvalues are given by the requirement that (EnL/vd ) ± φ =
π (2n + 1) or

En = vd

L
[π (2n + 1) ∓ φ]. (8)
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Note that if (u,v)T is an eigenvector of U with eigenvalue
eiφ , then −iσ2(u∗,v∗) = (−v∗,u∗) is an eigenvector of U

with eigenvalue e−iφ . Consequently, if (un(x),vn(x))T is an
eigenfunction of the BdG operator corresponding to eigenvalue
En, then ( − v∗

n(x),u∗
n(x))T is an eigenfunction corresponding

to energy −En. These facts follow from

(iσ2)σi(−iσ2) = −σ ∗
i =⇒ (iσ2)U ∗(−iσ2) = U (9)

and give rise to the usual antilinear S-wave BdG particle-
hole symmetry “C” with C2 = −Id. This symmetry must be
distinguished from the approximate particle-hole symmetry
arising from our linearization of the quantum Hall edge-mode
spectrum.

If the phase of the order parameter is constant in segments
�1,2 (the superconducting leads) then U = U2U1, where

Ua =
[

cos Da −ieiθa sin Da

−ie−iθa sin Da cos Da

]
, a = 1,2. (10)

Here Da = |�|wa/vd , where wa is the width of lead a. The
eigenvalues of U are e±iφ , and by taking the trace of U , we
see that φ is given by the spherical cosine rule:

cos φ = cos D1 cos D2 − cos θ sin D1 sin D2. (11)

The spherical triangle (see Fig. 3) arises because the matrices
U1 and U2 are the spinor representations of successive SO(3)
rotations through angles 2D1 and 2D2 about axes separated by
the angle θ . It is shown in Ref. 13 that such rotations can be
combined through the use of mirrors that form the geodesic
sides of the triangle.

From now on we understand by “φ,’ the solution of Eq. (11)
that lies in the range 0 � φ � π , and by the vector (u,v)T the
corresponding eigenvector of U . We similarly take “En” to
mean the combination

En = vd

L
[2π (n + 1/2) − φ]. (12)

Now we make the Bogoliubov transformation(
ψ↑(x)

ψ
†
↓(x)

)
=

∞∑
n=−∞

{
bn↑

(
un(x)

vn(x)

)
+ b

†
n↓

( −v∗
n(x)

u∗
n(x)

)}
.

(13)

In order not to overcount, we ensure that the modes are
those that, after passing the superconductor, take the form
(un(x),vn(x)) = ei(Enx/vd+φ)(u,v) and ( − v∗

n(x),u∗
n(x)) =

e−i(Enx/vd+φ)(−v∗,u∗). The Fermionic anticommutation

θ

φ

D21D

FIG. 3. (Color online) The spherical triangle that relates the
eigenphase φ to the order-parameter phase difference θ = θ2 − θ1.
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FIG. 4. (Color online) A plot of η(φ) showing the 2π periodicity.

relations coupled with the BdG eigenfunction completeness
relations then require that

{bn↓,bm↓} = {bn↑,bm↑} = {bn↓,bm↑} = {b†n↓,b
†
m↑} = 0 (14)

and

{b†n↓,bm↓} = {b†n↑,bm↑} = δnm. (15)

The Bogoliubov transformation simplifies H to

H =
∞∑

n=−∞
En(b†n↑bn↑ − bn↓b

†
n↓) + const, (16)

the constant being the same one that was introduced earlier.
It is not really a constant as it depends on the gauge field A,
but it is independent of θ (x). Recall that the A dependence
accounts for the total charge of the spin-down Fermi sea that
was discarded when we made the particle-hole interchange for
this spin component. The minimum-energy state is defined by
the properties

bn↑|0〉 = 0, En > 0,

b
†
n↑|0〉 = 0, En < 0,

bn↓|0〉 = 0, En > 0,

b
†
n↓|0〉 = 0, En < 0. (17)

Using these, we compute the ground-state energy to be

Eground =
∑
En<0

En −
∑
En>0

En. (18)

The quantity Eground is formally divergent, but the physics
resides entirely in the variation of Eground with the phase
difference θ = θ2 − θ1. Now as we vary θ , all En move in the
same direction. The energy dependence on θ largely cancels
between the two sums. In order to extract the small, but
nonzero, residuum we will have to regulate the sums in a
controlled manner. This we do in the next section.

III. COMPUTING THE CURRENT

Given a Dirac-like spectrum of energy levels −∞ < En <

∞, the associated ground-state charge and current can often be
expressed in terms of the spectral asymmetry.14 This quantity
is defined15,16 to be the regulated sum

η = lim
s→0

{
−

∞∑
n=−∞

sgn(En)e−s|En|
}
. (19)
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For energies of our form, En = α [2π (n + 1/2) − φ] (where
α = vd/L), a direct calculation shows that for −π < φ < π ,
we have {

−
∞∑

n=−∞
sgn(En)e−s|En|

}

= −φ

π
− 1

6π
(φ3 − φπ2)(αs)2 + O(s4). (20)

Thus

η(φ) = −φ

π
, − π < φ < π (21)

and extends with 2π periodicity in φ (see Fig. 4).
We may similarly define and compute an analytically

regulated version of the ground-state energy (18):

(Eground)reg = lim
s→0

{
−

∞∑
n=−∞

sgn(En)Ene
−s|En| + 1

παs2

}

= α

(
φ2

2π
− π

6

)
, − π < φ < π.

This quantity also extends periodically outside the range −π <

φ < π (see Fig. 5). The subtraction needed for the existence of
the limit is independent of φ, and the constant −απ/6 is the
same as would be obtained by ζ -function regularization.17 Let
us also compute(

dEground

dφ

)
reg

def= lim
s→0

{
−

∞∑
n=−∞

sgn(En)

(
dEn

dφ

)
e−s|En|

}

= lim
s→0

{
α

∞∑
n=−∞

sgn(En)e−s|En|
}

= α
φ

π

and observe that the regulated energy possesses the comforting
property that

d

dφ
(Eground)reg =

(
dEground

dφ

)
reg

. (22)

We will relate these energy derivatives to the ground-state
expectation value of the divergence of the current operator.

6 4 2 2 4 6

0.5

0.5

1.0

FIG. 5. (Color online) A plot of α−1(Eground(φ))reg showing the
2π periodicity.
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FIG. 6. (Color online) A plot of the eigenphase φ against θ

for the case D1 = D2 = π/2 − 0.2. We are enforcing the condition
0 � φ � π that is required by our Bogoliubov transformation.

The current operator is

j (x)= − δH

δA(x)
. (23)

If we include the contribution from the A-dependent constant
when taking the functional derivative, then the ground-state
current is

〈j (x)〉 = evd〈0|ψ†
↑(x)ψ↑(x) + ψ

†
↓(x)ψ↓(x)|0〉

= 2evd

( ∑
En<0

|un(x)|2 +
∑
En>0

|vn(x)|2
)

. (24)

If we ignore the constant, the current becomes

〈j (x)〉 = evd〈0|ψ†
↑(x)ψ↑(x) − ψ↓(x)ψ†

↓(x)|0〉
= evd

∑
En<0

[|un(x)|2 − |vn(x)|2]

− evd

∑
En>0

[|un(x)|2 − |vn(x)|2]. (25)

These two currents differ only by the subtraction of∑
n[|un(x)|2 + |vn(x)|2] in the second case. This divergent

sum is “δ(0)” and independent of x by eigenvector com-
pleteness. Therefore, when it comes to computing the current
flowing in and out at the leads, we can use either expression.
The second expression is the most convenient, and so we
define

〈j (x)〉reg = lim
s→0

{
− evd

∞∑
n=−∞

sgn(En)[|un(x)|2

−|vn(x)|2]e−s|En|
}
. (26)

In our simple model |un|2(x) and |vn|2(x) are independent of n,
but do depend on whether x lies between the superconducting
leads or not. This means that the edge-current differs in the
two regions, and the difference is due to the Josephson current
flowing in and out via the SC leads. We could compute |un|2
and |vn|2 in the two regions by diagonalizing the matrix U , but
it is simpler, and more revealing, to relate the difference in the
currents to the variation of the ground-state energy with θ .
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To do this we observe that[
eiχ/2 0

0 e−iχ/2

] [−ivd (∂x − ieA) |�|eiθ

|�|e−iθ −ivd (∂x + ieA)

]

×
[
e−iχ/2 0

0 e+iχ/2

]

=
[−ivd [∂x − i(eA + χ ′/2)] |�|ei(θ+χ)

|�|e−i(θ+χ) −ivd [∂x + i(eA + χ ′/2)]

]
.

As the similarity transformation does not change the eigenval-
ues of the BdG operator, we see that

En[θ,A] = En[θ + χ,eA + χ ′/2]. (27)

The effect on the energy eigenvalue of changing θ (x) →
θ (x) + δθ (x) is therefore identical to changing eA → eA −
(δθ )′/2. By first-order perturbation theory we compute the
latter effect to give

δEn = 〈n|δH |n〉
= −vd

∫
dx[|un(x)|2 − |vn(x)|2]δA

= 1

2
vd

∫
dx[|un(x)|2 − |vn(x)|2]

∂

∂x
δθ (x)

(28)

= −1

2
vd

∫
dx

{
∂

∂x
[|un(x)|2 − |vn(x)|2]

}
δθ (x).

Now, on combining this last result with Eqs. (22) and (25), we
find that

δ(Eground)reg = − 1

2e

∫
〈∇ · j 〉regδθ (x) dx

= 1

2e
IJosephson(δθ2 − δθ1). (29)

Thus we see that the general result

IJosephson =
(

2e

h̄

)
dEground

dθ
(30)

is consistent with our regularization scheme.
From

Eground = vd

L

(
φ2

2π
− π

6

)
, 0 � φ � π, (31)

we have

IJosephson = 2e
d

dθ
(Eground)reg = 2e

d

dφ
(Eground)reg

dφ

dθ
. (32)
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0.5

1.0
dφ dθ

FIG. 7. (Color online) A plot of dφ/dθ for D1 = D2 = π/2 − 0.2.
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FIG. 8. (Color online) A plot of IJosephson/(2evd/L) against θ

for D1 = D2 = π/2 − 0.2. Observe how the discontinuities combine
to give a smooth result. As D1,2 approach perfect coupling at D1 =
D2 = π/2, the drops at θ = 0,2π steepen, and become level-crossing
discontinuities.

Figures 6–8 show how theses ingredients assemble to give the
current/phase relation.

To gain further insight, consider the case of “perfect
coupling,” where sin Da = 1 and φ = ±(θ2 − θ1 + π ). In this
case

U =
[

0 −ieiθ2

−ie−iθ2 0

] [
0 −ieiθ1

−ie−iθ1 0

]

=
[−ei(θ2−θ1) 0

0 −e−i(θ2−θ1)

]
, (33)

and so φ = (θ2 − θ1) + π . In the absence of relaxation, each
2π turn of θ would put another particle into both the spin-up
and spin-down sea. In equilibrium, however, the state ceases
to be occupied as soon at its energy becomes positive. This
change in occupation leads to a jump in the Josephson current
as the state crosses the Fermi energy and its contribution is
lost. The maximum possible current occurs just before or after
the jump and has Imax = ±2evd/L. For vd ∼ 106 m/s and
a perimeter of about 1 mm we get an upper bound on the
Josephson current of about 1 nA. This is consistent with the
estimate of Ma and Zyuzin.11

A physical picture for this upper bound is as follows: At
the phase difference corresponding to the “jump,” we have a
spin-up/spin-down pair of levels lying exactly at the Fermi
energy. At perfect coupling, the extreme equilibrium currents
correspond to two possible cases: (i) between the leads both
zero-energy levels are empty, while outside they are occupied
and (ii) between the leads both zero-energy levels are occupied
and outside they are empty. Levels in the Dirac sea that are not
at the Fermi energy cannot be left empty by a passage under a
lead, as this would lead to the energy being different in different
regions and this is not possible in an energy eigenstate. Only
the topmost energy level can contribute to the equilibrium
Josephson current therefore, and this is the reason why the
Josephson current is so small. To estimate its magnitude we
note that in case (i), in each passage around the perimeter of
the Hall bar, a pair of electrons passes from the Hall bar to
the first lead and is returned to the Hall bar from the second
lead. In case (ii) in each orbit a pair of electrons passes from
the first lead to the Hall bar and is collected from the Hall bar
at the second lead. This physical picture shows that the two
possible Josephson currents are equal and opposite and have
magnitude |Imax| = 2evd/L. (Because it is easy to get confused
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by Bogoliubov transformations, we provide, in Appendix A,
a more detailed description of what happens to the particle
content of the many-body eigenstates as they pass under the
superconducting leads.)

IV. COMPARISON WITH PERTURBATION THEORY

The analytic regularization method used in the compu-
tations in the previous sections is standard in relativistic
field theory,14 but is perhaps less familiar in superconducting
applications. As a check on its validity it is worthwhile (and
nontrivial) to compare our all-orders in D1 and D2 calculations
with conventional perturbation theory.

In the weak-coupling regime, where D1 and D2 are small,
the spherical cosine rule reduces to

φ2 = D2
1 + D2

2 + 2D1D2 cos θ + O(D3). (34)

In this limit the ground-state energy and zero-temperature and
Josephson current become

Eground(θ ) = vd

L

1

2π

(
D2

1 + D2
2 + 2D1D2 cos θ

)
, (35)

and hence

IJosephson = −2evd

πL
D1D2 sin θ. (36)

We begin by verifying that Eq. (35) is correctly reproduced by
the perturbation expansion.

The Euclidean chiral propagator for zero-temperature and
antiperiodic spatial boundary conditions is

〈0|T ψ†
a (z1)ψb(z2)|0〉

= δabG(z1 − z2) = 1

2iL

δab

sin[π (z1 − z2)/L]
, (37)

where a,b =↑ , ↓ and z = x + ivdτ . The change in the � = 0
ground-state energy due to the interaction

Hint =
∫

|�(x)|[eiθ(x)ψ
†
↑(x)ψ†

↓(x) + e−iθ(x)ψ↓(x)ψ↑(x)]dx

(38)

occurs at second order in |�| and is

δEground = −
∫

dx1

∫
dx2

∫ ∞

−∞
dτ |�(x1)||�(x2)|eθ(x1)

× e−iθ(x2)〈0|T ψ
†
↑(z1)ψ†

↓(z1)ψ↓(z2)ψ↑(z2)|0〉.
(39)

Here τ = τ2 − τ1 is the Euclidean time interval between z2

and z1. Now

〈0|T ψ
†
↑(z1)ψ†

↓(z1)ψ↓(z2)ψ↑(z2)|0〉 = [G(z1 − z2)]2 (40)

by Wick’s theorem, and

1

4L2

∫ ∞

−∞

1

(sin[π (x1 − x2 + ivdτ )/L])2
dτ

=
(

1

2πLvd

)
(41)

is independent of the separation x1 − x2 unless x1 − x2 = 0
(mod L). The perturbation integral has four contributing
regions: (i) both x1 and x2 in lead 1, (ii) both x1 and x2 in

lead 2, (iii) x1 in lead 1, x2 in lead 2, and (iv) x1 in lead 2, x2 in
lead 1. Recalling that Da = |�|wa/vd , these combine to give

δEground = v2
d

(
D2

1 + D2
2 + 2D1D2 cos θ

) 1

2πLvd

= vd

2πL

(
D2

1 + D2
2 + 2D1D2 cos θ

)
. (42)

This expression coincides with the weak-coupling limit of the
all-orders calculation.

We can extend the comparison to nonzero temperature. At
temperature T = β−1, the Josephson current can be written as

IJosephson =
(

2e

h̄

)
dF

dθ
, (43)

where F is the free energy. For a general spectral shift φ, we
use standard methods to write down the partition function

Z = exp

{
− βF [φ,β]

}

= exp

{
− βvd

L

(
φ2

2π
− π

6

)} ∞∏
N=1

(1 + wq2n−1)2

× (1 + w−1q2n−1)2 = (η(q))−2

×
[ ∞∑

n=−∞
exp

{
− vdβ

2πL

1

2
(2πn + φ)2

}]2

, (44)

where q = exp{−πβvd/L}, w = exp{−βvdφ/L}, and

η(q) = q1/12
∞∏

n=1

(1 − q2n)

is the Dedekind η function. We used the Jacobi triple-product
formula to pass from the second line to the third. The sum in the
expression for Z is squared because there are two independent
Fermi seas (spin up and spin down) and their contributions to
the partition function are symmetric under the interchange of
φ with −φ. By using the Poisson summation formula, we can
rewrite the partition function as

exp{−βF [φ,β]} = (η(q))−2 L

vdβ

×
[ ∞∑

n=−∞
exp

{
− 1

2

2πL

vdβ
n2 + inφ

}]2

= (η(q))−2 L

vdβ
[θ3(φ/2π |iL/vdβ)]2. (45)

Thus the free energy is given by

F [φ,β] = c − 2

β
ln θ3(φ/2π |iL/vdβ), (46)

where c does not depend on φ. For small spectral shifts φ, we
can Taylor expand

F [φ,β] = c − 1

β
φ2 d2

dφ2
ln θ3(φ/2π |L/vdβ) + O(φ4).

(47)

We would now like to compare expression (47) with that
obtained by perturbation theory. At finite temperature the

224501-6



JOSEPHSON CURRENTS IN QUANTUM HALL DEVICES PHYSICAL REVIEW B 83, 224501 (2011)

chiral propagator becomes

〈0|T ψ†
a (z)ψb(0)|0〉 → G(z)

= 1

2πiL

θ ′(0|ivdβ/L)

θ (z/L|ivdβ/L)

θ3(z/L|ivdβ/L)

θ3(0|ivdβ/L)
. (48)

Here we are using the θ function definitions from Ref. 18, in
which

θ (z|τ ) =
∞∑

m=−∞
exp{iπτ (m + 1/2)2

+ 2πi(m + 1/2)(z + 1/2)},

θ3(z|τ ) =
∞∑

m=−∞
exp{iπτm2 + 2πimz}. (49)

Thus θ (z|τ ) is odd under z ↔ −z, while θ3(z|τ ) is even. These
properties were the ingredients used to assemble (48), which is
specified uniquely by requiring the propagator to be analytic,
doubly anti-periodic

G(z + L) = −G(z), G(z + ivdβ) = −G(z), (50)

and for small z to obey

G(z) ∼ 1

2πi

1

z
. (51)

It is this last property that makes it a Green function.
In terms of G(z) we now have

δEground = −
∫

dx1

∫
dx2

∫ β

0
dτ |�(x1)||�(x2)|eθ(x1)

× e−iθ(x2)[G(x1 − x2 + ivdτ )]2. (52)

The xa integrals are the same as before, and, although it is little
more complicated, the integral over τ can still be evaluated
in closed form. We begin by observing that [2πiG(z)]2 is
analytic, has a double pole 1/z2 at the origin, is doubly periodic
with periods ω1 = L and ω2 = ivdβ, and (from the θ3(z|τ ) in
the numerator) has a double zero at z = 1

2 (ω1 + ω2). These
properties are sufficient to show that

[2πiG(z)]2 = ℘(z | ω1,ω2) − e3, (53)

where ℘(z | ω1,ω2) is the Weierstrass elliptic function, and

e3 ≡ ℘({ω1 + ω2}/2 | ω1,ω1). (54)

The Weierstrass ζ function is defined so that

d

dz
ζ (z | ω1,ω2) = −℘(z | ω1,ω2), (55)

together with initial condition

lim
z→0

{
ζ (z) − 1

z

}
= 0. (56)

We may therefore evaluate the τ integral in terms of tabulated
functions:∫ a+ω2

a

[2πiG(z)]2 dz = −ζ (a + ω2) + ζ (a) − ω2e3

= −2η2 − ω2e3

= 1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣∣∣∣
z=0

.

(57)

0.5 1.0 1.5 2.0 2.5 3.0
T

0.2

0.4

0.6

0.8

1.0
IJosephson T IJosephson 0

FIG. 9. (Color online) A plot of the effect of temperature on the
perturbative Josephson current. The horizontal axis is temperature in
units of h̄vd/L. We see an effect as soon as the temperature becomes
comparable with the 2πh̄vd/L level spacing of the edge energy states.

Here 2η2 ≡ ζ (a + ω2) − ζ (a) = 2ζ (ω2/2) is independent of
a. The quantities in the second line of Eq. (57) are
available in MATHEMATICA, and we use them to plot
IJosephson(T )/IJosephson(0) in Fig. 9.

It takes a little more work to obtain the logarithmic
derivative appearing in the last line of Eq. (57), and so we
relegate its derivation to Appendix B. Accepting that the
claim is correct, and putting in the dimensionful constants,
we confirm that our all-orders evaluation of the free energy
coincides with the perturbation theory calculation in the
weak-coupling regime.

V. DISCUSSION

We have shown that the maximum possible Josephson
current for a pair of spin-up/spin-down QH edge states is
rather small for typical Hall bar geometries. The bound is
small because the relevant length and energy scales are set by
the perimeter of the Hall device rather than the separation of
the superconducting probes. Also, unlike a typical Josephson
device, there is only one conduction channel per pair of edge
modes. This last observation means that nothing is to be gained
by making the superconducting leads overlay deeper into the
Hall bar.

It may seem strange that we have so far discussed
quantum Hall physics with no mention of the magnetic field
that is necessary for its existence. The field, however, has
only a few consequences for our discussion. Obviously the
superconducting leads must be constructed of materials that
remain superconducting in a field of few Tesla at temperatures
of about 1 K, but this is not hard to achieve. The leads must
also be narrow enough that the order-parameter phase does not
vary widely within the part of the lead that is actively coupled
to the 2DEG. A subtle point in this regard affects the claim
that the Josephson current is independent of the separation
of the leads. The phase difference θ that we have equated to
θ2 − θ1 should be understood as the gauge-invariant quantity
θ = θ2 − θ1 − 2e

∫ x2

x1
Adx. Now a quantum of magnetic flux

lies between each of the edge-state energy levels and if the
effective “θ” is not to vary with the energy level index n, only
a small fraction of this flux should pass between the leads. The
leads should not be spaced apart by more than a small fraction
of the perimeter. A more subtle effect is that of pair breaking
in the leads due to the magnetic field.20 Pair breaking will alter
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the Andreev-scattering phase matching between the normal
and superconducting electrons, and being field dependent may
complicate the pattern of Bohm-Aharonov oscillations.

Something that we have not considered here, and that may
well allow for larger currents, is “edge reconstruction”.21–23 A
reconstructed edge, with its alternating strips of compressible
and incompressible 2DEG can allow many more levels to
lie exactly at the Fermi energy and so have their occupation
number changed without a change in energy. These levels have
zero drift velocity, however, so it unlikely that they contribute
significantly to the Josephson current.
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APPENDIX A

The maximum possible Josephson current occurs when
we have both perfect coupling (sin D1 = sin D2 = 1) and
cos θ = 1. In this special case we have

U1 = U2 =
[

0 −i

−i 0

]
, U = U2U1 = −

[
1 0

0 1

]
. (A1)

The Bogoliubov mode expansion (13) then becomes(
ψ↑(x)

ψ
†
↓(x)

)
=

∞∑
n=−∞

{
bn↑

1√
L

(
1

0

)
e2πinx/L

+ b
†
n↓

1√
L

(
0

1

)
e−2πinx/L

}
(A2)

for x in region (1), and(
ψ↑(x)

ψ
†
↓(x)

)
=

∞∑
n=−∞

{
bn↑

1√
L

(
0

−i

)
e2πinx/L

+ b
†
n↓

1√
L

(−i

0

)
e−2πinx/L

}
(A3)

for x in region (2). (The numbering of the regions refers to
Fig. 1.)

In these mode expansions, the operators bn↑ and b
†
n↓ anni-

hilate or create quasiparticles with energy |En| = 2πvd |n|/L.
We compare these expansions with the free-particle plane-
wave expansion(

ψ↑(x)

ψ
†
↓(x)

)
=

∞∑
n=−∞

{
an↑

1√
L

(
1

0

)
e2πinx/L

+ a
†
n↓

1√
L

(
0

1

)
e−2πinx/L

}
, (A4)

where the operators an↑ and a
†
n↓ annihilate and create electrons.

We see that we can identify

bn↑ = an↑, b
†
n↑ = a

†
n↑,

bn↓ = an↓, b
†
n↓ = a

†
n↓ (A5)

in region (1), and

bn↑ = ia
†
−n↓, b

†
n↑ = −ia−n↓,

bn↓ = −ia
†
n↓, b

†
n↓ = +ia−n↑ (A6)

in region (2). We now use these identifications to examine what
happens to the particle content of the many-body eigenstates
as they drift under the superconducting leads.

We first note that a minimum-energy eigenstate must be
annihilated by bn↑ and bn↓ for n > 0, and by b

†
n↑ and b

†
n↓ for

n < 0. Let us define the eigenstate |0〉 by requiring that it is
killed by all these operators, and also by b0↓ and b0↑. Then the
states

|0〉, b
†
0↑|0〉, b

†
0↓|0〉, b

†
0↓b

†
0↑|0〉, (A7)

all have the same energy, making the ground state fourfold
degenerate.

With the operator identifications established above, we
find that

|0〉 =
−1∏

n=−∞
(a†

n↓a
†
n↑)|empty〉 (A8)

when x lies in region (1), but in region (2), where b0↑ and b0↓
are identified with a

†
0↓ and a

†
0↑, respectively, we must have

|0〉 ∝ a
†
0↓a

†
0↑

−1∏
n=−∞

(a†
n↓a

†
n↑)|empty〉, (A9)

for it still to be annihilated by b0↑ and b0↓. We see that
the occupation number of the energy levels for n < 0 are
unchanged, but |0〉 picks up a pair of n = 0 electrons from
the superconducting lead as it passes under it. Similarly the
state b

†
0↓b

†
0↑|0〉 loses a pair from the n = 0 level.

The state b
†
0↑|0〉 is annihilated by a

†
0↑ and a0↓ in region (1)

, and these become, respectively, a0↓ and a
†
0↑ in region (2).

Therefore, the particle content of this state is unaffected by
its passage under the lead. Similarly, b

†
0↓|0〉 retains its particle

content.
Now consider an excited state, for example, b†m↑b

†
0↑|0〉 with

m > 0. This state has energy E = 2πvdm/L. In region (1) it
has particle content

a
†
m↑a

†
0↑

−1∏
n=−∞

(a†
n↓a

†
n↑)|empty〉, (A10)

and so consists of a Dirac sea together with an electron in a
positive energy level. In region (2) it becomes

a−m↓a
†
0↑

−1∏
n=−∞

(a†
n↓a

†
n↑)|empty〉, (A11)

which consists of a Dirac sea which has lost an electron
from a negative energy level. Therefore, after passing the
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superconductor , the state has the same energy and spin, but
the electron has become a hole.

APPENDIX B

We wish to establish the third line of Eq. (57), which reads∫ a+ω2

a

{℘(z|ω1,ω2) − e3}dz

= 1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣∣∣∣
z=0

. (B1)

This result follows indirectly from the related integral∫ a+ω1

a

{℘(z|ω1,ω2) − e3}dz = −2η1 − ω1e3

= 1

ω1

θ ′′
3 (0|ω2/ω1)

θ3(0|ω2/ω1)

= 1

ω1

d2

dz2
ln θ3(z|ω2/ω1)

∣∣∣∣
z=0

. (B2)

Here we require Im (ω2/ω1) > 0 for the θ functions to
converge. To establish Eq. (B2) we observe that the second
line follows from the first by combining two standard formuls:

e3 = 1

ω2
1

{
1

3

θ ′′′(0|τ )

θ ′(0|τ )
− θ ′′

3 (0|τ )

θ3(0|τ )

}
(B3)

(Ref. 18, Eq. 5.2) and

2η1 = − 1

ω1

1

3

θ ′′′(0|τ )

θ ′(0|τ )
(B4)

(Ref. 19, Sec. 21.43). Here τ = ω2/ω1 with Im τ > 0. The
third line of Eq. (B2) follows from the second because
θ ′

3(0|τ ) = 0.
To derive Eq. (B1), however, we need the integral over the

ω2 = ivdβ imaginary period, and not over the ω1 = L real
period. Because of the positivity condition on the imaginary
part of τ , we cannot change the integration path by merely
interchanging ω1 ↔ ω2 in Eq. (B2). We need to be more subtle.
By changing (ω1,ω2) → (−ω2,ω1) in Eq. (B2), we obtain

− 1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣∣∣∣
z=0

=
∫ a−ω2

a

{℘(z| − ω2,ω1) − e3}dz. (B5)

This last equation is legitimate because Im(ω2/ω1) > 0 im-
plies that Im(−ω1/ω2) > 0. We now manipulate

RHS = −
∫ a+ω2

a

{℘(z| − ω2,ω1) − e3}dz

= −
∫ a+ω2

a

{℘(z| ω1,ω2) − e3}dz, (B6)

where the last line follows from the invariance of ℘(z| ω1,ω2)
under modular transformations(

ω′
1

ω′
2

)
=

(
a b

c d

)(
ω1

ω2

)
,

(
a b

c d

)
∈ SL(2,Z). (B7)

From this we immediately deduce Eq. (B1).
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