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Spin evolution in a two-dimensional electron gas after laser excitation
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The femtosecond laser excitation of the spin configuration in a low-dimensional magnetic semiconductor
is investigated. An atomistic Schrödinger model is developed in which trapped electrons and ionic impurities
are coupled via exchange interactions. By defining a suitable set of non-Hermitian operators, the microscopic
Schrödinger description of the particles is combined with the more phenomenological Landau-Bloch relaxation
mechanism. Differing from the standard approaches, in this model the statistical widths of the wave functions
become time-dependent. This enables the study of decoherence effects where the evolution of the system,
from an initial pure state to a final mixed state, is induced by the spin interaction. Simulations reproduce
the out-of-equilibrium spin evolution observed in ZnCdSe devices. The effects of quantum confinement and
multimode excitation are discussed.
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I. INTRODUCTION

In the past few decades, an increasing effort has been de-
voted to designing new electronic nanodevices in which mag-
netic and electronic quantum structures coexist. The knowhow
of band-gap engineering on semiconductor heterostructures
has been widely exploited to devise some electrical control of
the magnetic properties for these new materials.1 Magnetism
strongly influences the optical and transport properties of
the confined electrons in these devices. The integration of
magnetic and electronic quantum structures in a single device
offers the interesting opportunity to obtain new physical
insights into the spin transport and scattering in magnetic
quantum semiconductors. Typically, microscopic control of
the spin direction is achieved by confining particles or high-
spin atoms into a small volume where an inhomogeneous
magnetic field is present. This can be tailored by electrical
control or by magnetic gates. The effect of magnetism on the
confined electronic states emerges from temporally resolved
magneto-optical spectroscopy, as well as magnetophotolu-
minescence, quantum magnetotransport, and the Kerr effect.
Photodetection techniques that make use of a short laser pulse
in thin-film samples are a well-established framework in which
direct experimental access to the microscopic spin evolution
in a micromagnet can be obtained.2

The spin coherence of electronic states is one of the
key features involved in numerous concepts for spintron-
ics devices (see, e.g., Ref. 3). Long spin lifetimes are a
primary characteristic that a semiconductor should possess
when the interest is focused on developing devices in which
some efficient mechanisms for controlling the spin could be
achieved. The spin coherence is often considerably longer
compared with the coherence of the electronic wave function,
which typically decays on the picosecond time scale. Many
experimental studies are concentrated on n-type GaAs, where
the spin-relaxation time is nearly 100 ns for the bulk and 10 ns
for low-density GaAs quantum wells.4,5 In any case, other
materials such as CdTe- or InP-based quantum structures have
lately received a great deal of attention.6,7 They are being
widely tested, and new information is available concerning
the physical processes that limit the electron-spin coherence
time.

The typical signal that can be extracted by magneto-optical
spectroscopy is the evolution of the total magnetization of the
sample after photoexcitation. In the case of wide channels
(where the confining effect can be discarded), this signal can
usually be fitted with a single damped sinusoidal oscillation.
The spin precession is characterized only by the Larmor
frequency and by the exponential decay. In some cases, the
system shows a more various and interesting scenario in
which quantum beat and multimode oscillations appear. These
effects are typically induced by the presence of a spatially
nonuniform magnetic field inside the device. In particular, the
study of quantum beats (which were observed, for example,
in some quantum-confined semiconductor nanostructures by
Gerlovin’s group in Ref. 7) is useful for detecting the fine
structure of the energy states and for identifying the main
mechanisms responsible for the decay of the spin coherence.8

However, the explanation of the latter mechanism is
somehow controversial. For example, in the case of GaAs
quantum wells doped with magnetic Mn acceptors, it is still
not clear if the long spin memory should be attributed either
to the spin dynamics of the ions or to the confined electron
gas.9,10 Other open questions also concern the influence of the
Bir-Aronov-Pikus mechanism on the spin dynamics of bound
electrons.11

When a confined system is considered, the exchange
interaction between electrons and ions is modulated by the
shape of the charge distribution. Consequently, each ion is
exposed to a slightly different total magnetic field (and thus
a Larmor precession). As a result, a nonconstant value of the
mean precession frequency can be observed. The presence
of a time-dependent Larmor frequency in some cases leads
to a considerable increase of the Mn precession frequency.12

Theoretical studies need to be done to clarify the origin
of the observed dumping and multimode precession of the
magnetization.

In particular, in Ref. 13, some experimental studies of spin
dynamics were performed on a set of devices denoted “digital
magnetic heterostructures.” Based on the molecular-beam-
epitaxy technique, they are composed of a series of equispaced
MnSe layers grown in a ZnCdSe buffer, sandwiched between
two ZnSe barriers. In these devices, the localized magnetic
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spin of the Mn ions interacts strongly with the quantum-
confined electronic states. The sp-d exchange interaction
between the d electrons and the trapped electrons in ZnCdSe
is antiferromagnetic, and in the presence of an external
magnetic field, it enhances the spin splitting of the band states.
Consequently, spin-up and spin-down states are pulled apart
via the giant Zeeman effect,14 and the system displays an
overall magnetic order.

Experimental evidence suggests that the evolution of the
total magnetization in a two-dimensional (2D) magnetic device
and its macroscopic relaxation rate are strongly influenced by
the spin-spin interaction between sp and d electrons.

Spatial inhomogeneity of the magnetic field, with particular
attention given to the multimode oscillation regimes, has
been analyzed recently in similar structures. In Ref. 12, it
is shown that the presence of inhomogeneity of the magnetic
fields in nano-ferromagnets constituted by a periodic array of
(Zn,Cd,Mn)Se/ZnSe quantum wires of thickness 5 nm and
with a channel length of the order of 0.5 μm leads to a
magnetic response that differs qualitatively from the simple
damped sinusoidal oscillation. In this system, as a result
of the superposition of individual precessions with different
frequencies about different axes, a temporal variation of the
ensemble precession frequency is clearly observed, and the
spin dephasing time is strongly reduced.15 The coexistence
of different collective spin-precession modes of the ionic spin
is explained in terms of a semiclassical model. The mixed
electron-ion spin modes are described within the mean-field
approximation and represent the collective precession of the
electron and ion spins either with the same or with opposite
phases.16

Furthermore, the inhomogeneity of the magnetic field has
also been considered by various groups as a new available
degree of freedom that can be exploited to enhance some
useful characteristics of the devices. For example, in this way,
some coherent single-electron spin control can be achieved in
a quantum dot17 and a spin-selective trap for carriers in diluted
magnetic semiconductors was proposed.18

Different approaches, including Green’s functions19,20 and
some semiphenomenological formulations,2 have been pro-
posed to simulate the spin evolution in a magnetic device
by applying an external source of perturbation. Most of
the theoretical investigations of the magnetization dynamics
are based on a micromagnetic approach that considers the
magnetization of a particle in terms of a classical-type vector
of a fixed length subjected to the phenomenological Landau
equation. Within this context, quantum confinement cannot be
reproduced, and the effect of an electric field is included at the
classical level.

In this paper, we propose a model for the coupled evolution
of magnetic ions and trapped particles in which the effects
of the confining potential are reproduced in a full quantum
context. We apply our model to study the spin evolution in
ZnCdSe devices driven out-of-equilibrium by laser excitation.

II. MODEL

We consider an electron gas trapped in a Mn-doped
heterostructure in the presence of an external magnetic field
B. When the spatial confinement of the charge carriers is

discarded, the atomistic models provide a valuable approach
to reproduce the particle spin evolution in the presence of a
magnetic field, external or mediated by exchange interaction.
In this context, the statistical mixture of spin particles is
described by a vector S, whose length is proportional to the
spin polarization of the particle gas. Based on very general
assumptions, with Ref. 21, we consider the following equation
for the spin density s = nhS (where nh denotes the density of
particles):

ds
dt

= −s ∧
(

BS − nhα(s)
s ∧ BS

|s|2
)

− �

(
1 − s · BS

|BS ||seq|
)

s,

(1)

where

BS =
(

Jpd

2
m + gμB

h̄
B

)
. (2)

Here, Jpd denotes the exchange constant, α and � are the
Landau damping parameters, g stands for the Landé g factor,
and μB denotes the Bohr magneton. seq is the equilibrium spin
distribution whose explicit form is derived in Eq. (B3). We used
m = m(r,t) to indicate the local Mn-moment magnetization.
Equation (1) includes energy dissipation and the alignment of
the electron spin toward BS (see Ref. 21 for a discussion of
this term). We refer to this equation of motion as the Landau-
Lifshitz-Bloch (LBB) equation.

In the problem with which we are concerned, the system is
represented by a two-dimensional (2D) electron gas trapped in
a quantum-well heterostructure with Mn doping. Under these
assumptions, the quantum effects induced by the confining
potential cannot be discarded, and a more fundamental
approach than Eq. (1) has to be considered. From a microscopic
point of view, the quantum-mechanical mixed state is defined
by a set of wave functions ψi with statistical width pi , and the
evolution of the spin density is described by the Schrödinger
equation. The mean spin density s of the system is

s =
∑

i

piSi , (3)

Si = 1
2 〈ψi |σ |ψi〉, (4)

where σ is the Pauli vector matrix.
We state the following result: given a set of wave functions

ψi(r,t) and statistical width pi(t), which are solutions of the
system (see Appendix A for the definition of pi)

∂ψi

∂t
= 1

h̄
(−i H · σ + Gi · σ + G̃i σ0)ψi, (5)

∂pi

∂t
= (pi − pi)

1

2

∫
G(s,r)|ψi |2 dr , (6)

where σ0 is the 2 × 2 identity matrix and

Gi(r) = h̄

|ψi |2 G(s,r)Si , (7)

G̃i = − h̄

2‖ψi‖2

∫
G(s,r)|ψi |2 dr , (8)
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the mean spin density, defined in Eq. (3), satisfies the following
macroscopic equation:

ds
dt

= 1

h̄
s ∧ H + G(s,r)s (9)

with initial conditions

s(t0) = 1

2

∑
i

pi(t0)〈ψi(t0)|σ |ψi(t0)〉 . (10)

Here, the vector field H and the functional G are given.
Moreover, the usual conservation of ψ norm and the total
mass of the system hold true,

d

dt
‖ψi(t)‖ = 0, (11)

dN

dt
=

N∑
i

dpi

dt
= 0. (12)

Details of the derivation of Eqs. (5) and (6) are given in
Appendix A.

We consider the system of Eqs. (5) and (6) as a convenient
tool for modeling the spin evolution of a magnetic device,
where the microscopic Schrödinger framework can be com-
bined with the more phenomenological atomistic approach. In
particular, we exploit Eqs. (5) and (6) to include the Landau-
Bloch spin relaxation mechanism, in the usual equation of
motion for the electron spin.

The main idea of the previous result was to define two
non-Hermitian operators Gi(r), G̃i such that Eq. (1) is satisfied
and, at the same time, the conservation of the ψ norm
and the total mass of the system is ensured. Usually, when
the Schrödinger formalism is applied to open systems, the
statistical width are a priori fixed and are chosen independently
of the wave evolution equation (for example, they are obtained
by estimating the influx or diffusion of particles entering
in the device through the boundaries, or are related to
the mean value of some observable). In our approach, we
compensate the overall loss of mass induced by the presence
of the non-Hermitian operators Gi(r), G̃i , by letting the
statistical widths pi have some time dependence. One of
the improvements provided by the present extension to the
standard ballistic Schrödinger approach is the possibility of
studying decoherence effects in which some interactions (spin
interaction in our case) lead the system to evolve from an initial
pure state to a final mixed state.

Finally, a straightforward extension of the Schrödinger-like
Eq. (5) allows us to include in a unique equation both the
effects of the lattice Hamiltonian Hh and the LBB Eq. (1). We
have

ih̄
∂ψi

∂t
=

[
Hh −

(
BS−nhα

s ∧ BS

|s|2 +iGi

)
· σ+iG̃iσ0

]
ψi,

(13)

BS =
(

Jpd

2
m + gμB

h̄
B

)
,

where Gi(r), G̃i are given by Eqs. (7) and (8) with

G = −�

(
1 − s · BS

|seq| |BS |
)

. (14)

The time evolution Eq. (6) is unchanged,

∂pi

∂t
= (pi − pi)

1

2

∫
G|ψi |2 dr . (15)

We include in our model also the evolution of the ion
magnetization m by means of the following Landau equation:

dm
dt

= −m ∧ BM (16)

with

BM = Jpd

2
s + gμB

h̄
B. (17)

We remark that, motivated by the experimental finding of
Ref. 13, in this contribution we do not include any ion spin
relaxation mechanism that acts directly on m. In these optical
experiments, spin relaxation and coherent spin transport
in undoped magnetic semiconductors are probed, revealing
relaxation times for the ion spin of the order of nanoseconds
(that can be considered negligible in the time scale in which
the total magnetization evolves).

III. NUMERICAL RESULTS

Equations (13)–(16) have been solved numerically (we
apply a second-order Crank-Nicolson scheme) with the aim of
studying the role of the quantum confinement on the dynamics
of the magnetization after laser irradiation. We consider a
sample composed of a 12 nm Zn0.77Cd0.23Se/ZnSe single quan-
tum well, containing uniform concentrations of Mn2+ ions.
An external magnetic field B is applied along the confining
direction (z axis). At equilibrium, the sample displays a net
magnetization directed along B. This results from the strong
antiferromagnetic coupling between ions and sp electrons
that overcomes the d-d superexchange interaction between
the d electrons of the magnetic ions (at low temperature, the
presence of an external field is not strictly necessary to generate
an ordered ferromagnetic configuration, but mainly to avoid
the formation of magnetic walls). Hence, the magnetism is
mediated by the presence of the particles (typically a small
concentration) trapped in the quantum well, and enhances the
spin splitting of the band states when an external magnetic
field is applied (giant Zeeman effect). In Fig. 1 (left panel), we
report the stationary distribution of electrons before the laser
heating, evaluated by using the mean-field Zener model,14 for
a particle density nh = 1011 cm−2, 5% Mn-ion concentration,
at a temperature T = 4.5 K and for |B| = 0.1 T. In the right
panel of Fig. 1, the self-consistent hole band edge profile is
represented (the Coulomb repulsion between the electrons is
taken into account by using the standard mean-field Hartree
approximation). The horizontal line denotes the position of
the chemical potential and the crosses represent the energies
of the resonant levels.

The spin dynamics is triggered by ultrashort laser exci-
tation. Concerning the setup of the irradiation, we consider a
Voigt geometry, for which the direction of the light propagation
(x axis) is orthogonal to the magnetic field (z axis). At
t = 0, a femtosecond circularly polarized optical pulse impacts
the device creating a hot quasithermal distribution nex of
spin-polarized particles in the quantum well. In particular, by
varying the light polarization, many different spin excitations
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FIG. 1. (Color online) (Left panel) Stationary distribution of the
charge (continuous blue line) and doping profile (dashed green line)
in the 12 nm Zn0.77Cd0.23Se/ZnSe quantum well. (Right panel) spin-
up (continuous blue line) and spin-down self-consistent potential
(dashed green line). Crosses and circles mark the resonant states
inside the well. The temperature is 4.5 K.

are possible. In our simulation, we assume that the initial
spin polarization of the photocreated particle is directed along
the x axis. Since the electron spin is quantized along the
magnetic field, photoinjecting electrons with definite spin
direction corresponds to pumping a coherent superposition of
the spin-split electron states. Consistent with the experimental
finding presented by the Awschalom group,22 Figs. 2 and 3
show that the out-of-plane components of the ions spin, precess
with a period of the order of 300 fs, and decay within 2 ps.
We stress that despite the fact that no relaxation mechanism
is directly inserted in the evolution of the ion spin [see
Eq. (16)], our model predicts the correct damping ratio of the
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FIG. 2. (Color online) Time evolution of the total spin polariza-
tion of the trapped particles s. Continuous blue line, sx ; dashed green
line, sy ; dot-dashed red line, sz.
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FIG. 3. (Color online) Left plot: continuous blue line (dashed
green line): time evolution of the x (y) component of the total spin
polarization of ions m. Right plot: δmz ≡ mz(t) − mz(t0). The initial
magnetization mz(t0) is equal to 49.89 nm−2.

ion magnetization. Natural decay of the ion spin in the absence
of trapped electrons is found in the much higher time scale of
nanoseconds. The relaxation of ions spin is induced only by
trapped electrons via exchange mechanisms. Since (as already
analyzed in previous contributions20,23) the spin-flip exchange
mechanism between ions and electrons is particularly efficient,
the Landau relaxation process, mediated by the 2D electron
gas, becomes the dominant relaxation mechanism of the ion
spin. In our simulations, we used α = 10−3 Jpd and � = 0. In
Fig. 4, we present the long-time behavior of the ion magneti-
zation. The simulation shows that after the electron spin has
become completely aligned with the total mean magnetization
via the Landau decay, a smoother residual oscillation (whose
period is of the order of 50 ps) is still present. In this
final part of the numerical experiment, the system is in a
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FIG. 4. (Color online) Long-time behavior of my .
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FIG. 5. (Color online) Left plot, continuous blue line (dashed
green line): time evolution of the x (y) component of the total spin
polarization of ions m. Right plot: δmz ≡ mz(t) − mz(t0). The initial
magnetization mz(t0) is equal to 49.89 nm−2. Here the simulation is
performed in the absence of Landau damping.

quasiequilibrium state and the out-of-plane laser-excited mag-
netization, which is not completely damped, oscillates around
B. These results are confirmed by the experiment performed
in Ref. 22.

The form of the charge profile of the 2D trapped gas
along the confining direction has interesting effects on the
overall spin evolution of the system. In contrast to the
various mean-field methods, in our approach we combine
the full quantum microscopic description of the confining
heterostructure profile with the Landau-like spin-relaxation
effect. Nonuniform distributions of the magnetic field along
the z axis can thus be easily investigated. Despite the presence
of a uniform distribution of ions along the channel, the statical
polarization of their spin is not uniform and reflects the
sinusoidal shape of the trapped eigenstates. At equilibrium,
the ion spin polarization is given by meq(r) = BM

|BM |meq, where

meq = 5

2
B5/2

[
5

2kBT
|BM |

]
, (18)

B5/2 is the Brillouin function, kB is the Boltzmann constant,
T is the temperature, and BM is defined in Eq. (17).24 In
this formula, the dominant term is the exchange contribution,
which is proportional to the charge density inside the well.
As a consequence, the giant Zeeman splitting is not uniform,
and particles in the center of the device suffer from a major
exchange field with respect to those that are close to the
junction, where the wave function vanishes exponentially.
When the out-of-equilibrium spin distribution is excited, the
torque force acting on both spin populations (ions and trapped
electrons) is stronger where trapped particles cumulate and
increases the Larmor precession there. The overall mean spin
polarization is a mixture of spin precessing with different
angular frequencies, and will be consequently reduced by in-
terference effects between slow- and fast-rotating components
of the spin.
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FIG. 6. (Color online) Left panel: x (continuous blue line), y

(dashed green line), and z (dot-dashed red line) components of s
for t = 0.3 ps. The dot-dashed black line represents the modulus of
s. Right panel: x (continuous blue line) and y (dashed green line)
components of m for t = 0.3 ps.

To provide evidence for this aspect, in Fig. 5 we show
the evolution of the total magnetization in the absence of any
Landau spin-relaxation process (and we artificially increase
the effective electron mass from 0.16 to 1). The interference
effects give rise to a complex evolution path of the total
magnetization, where m beats in a period of 1 ps. To illustrate
the strong inhomogeneity of the magnetization along the z

axis, in Fig. 6 we display the distribution of the electron and ion
magnetization after one oscillation period of m (corresponding
to t = 0.3 ps).

In Fig. 7, we depict the evolution of the trapped electron
magnetization for different laser excitations. In the previous
simulations, we assumed a monoenergetic laser beam tuned to
the first resonant state. By letting the density of photocreated
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FIG. 7. (Color online) Time evolution of s: left panel, sx ; right
panel, sz. Continuous blue line and dashed green line refer to the first
and second resonant state excitation, respectively.
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FIG. 8. (Color online) Time evolution of s. Continuous blue line:
sx , dashed green line: sy , dot-dashed red line: sz.

particles nex = 1010 cm−2, we increase the laser frequency to
excite higher resonant states. Figure 7 shows the difference
of the oscillation frequencies between the first and second
resonant state. Since a frequency spread is always present
in a real laser excitation, a realistic modeling of the laser
pulse should consider the simultaneous excitation of more
than a single resonant state. In Figs. 8 and 9, we display
the evolution of the magnetization in the hypothesis that the
first two resonant states are excited equally. The simulation
shows that the envelope of the magnetization is modulated
by a second-harmonic frequency with a period of the order of
1.5 ps. We remark that, with respect to the evolution of the total
magnetization, the excitation of two different resonant states
is a nonlinear process, which generates multiple harmonic
mixing.
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FIG. 9. (Color online) Here, x (continuous blue line), y (dashed
green line), and z (dot-dashed red line) are the components of s for
t = 0.3 ps. The dot-dashed black line represents the modulus of s.
Left panel: t = 0.08 ps, right panel: t = 0.4 ps.

IV. CONCLUSION

The effect of laser excitation on the spin configuration
in a magnetic semiconductor is investigated by applying
an atomistic Schrödinger approach. Our model reproduces
the initial coherent rotation of the Mn2+ moments (initially
oriented along the applied B field) induced by the torque
effect of the strong exchange field generated by the excited
spin. Simulations show a terahertz spin precession of photoin-
jected electrons, accompanied by a relaxation, and provide a
simple explanation of the physical processes underlying the
picosecond precession and damping of the total magnetization
of the sample. The principal results of the present contribution
concern the study of ion-spin relaxation mediated by spin-
exchange mechanisms, the effect of the quantum confinement,
and multimode excitation.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Science
Fund, Vienna, under Contract No. P 21326 - N 16.

APPENDIX A: COMPATIBILITY BETWEEN THE LBB
EQUATION AND THE MACROSCOPIC SPIN DUMPING

FORMULA

We show the equivalence between the macroscopic formu-
lation of the mean spin density evolution given by Eq. (9) and
the Schrödinger evolution Eq. (5), by deriving Eqs. (6)–(8).
Given a set of wave functions ψi and statistical width pi , from
the definition of Si in Eq. (4) and from Eq. (5) it is easy to
verify that Eq. (9) is satisfied if

∑
i

(
∂pi

∂t
+ pi

2G̃i

h̄

)
Si +

∑
i

(
1

h̄
Gi |ψi |2 − G(s)Si

)
pi = 0.

(A1)

The second bracket vanishes if, according to Eq. (8), we fix
Gi(r) as

Gi(r) = h̄

|ψi |2 G(s)Si .

By imposing the conservation of the norm given by Eq. (11),
we obtain Eq. (7),

G̃i = − 2

‖ψi‖2

∫
Gi · Si dr = − h̄

‖ψi‖2

1

2

∫
G(s)|ψi |2 dr,

(A2)

where we used

|Si | = 1
2 |ψi |2. (A3)

Equation (A1) becomes∑
i

(
∂pi

∂t
− pi

‖ψi‖2

∫
G(s)|ψi |2 dr − ki

)
Si = 0, (A4)

where we choose a set of ki coefficients such as

N∑
i

kiSi = 0. (A5)
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The previous equation is automatically fulfilled if we assume
that to each kth state corresponds a k state such as

Si = −Si . (A6)

Equation (A5) gives

N/2∑
i

(ki − ki)Si = 0 (A7)

or ki = ki . All we have to do to is, at t = 0, to associate to each
wave function ψi(t0) a state ψi such that Eq. (A6) is satisfied.
It is easy to verify that for all the couples of functions (ψi,ψi),
Eq. (A6) remains satisfied for all t . From Eq. (A4), we have

∂pi

∂t
= pi

‖ψi‖2

∫
G(s)|ψi |2 dr + ki. (A8)

The time derivative of the total number of particles is

∂N

∂t
=

N∑
i

∂pi

∂t
=

N/2∑
i

1

‖ψi‖2

×
(

pi

∫
G(s)|ψi |2 dr + pi

∫
G(s)|ψi |2 dr

)
+ 2ki (A9)

and we have conservation ∂N
∂t

= 0 if

ki = − 1

2‖ψi‖2

(
pi

∫
G(s)|ψi |2 dr + pi

∫
G(s)|ψi |2 dr

)
,

(A10)

∂pi

∂t
= 1

2‖ψi‖2
pi

∫
G(s)|ψi |2 dr − 1

2‖ψi‖2
pi

×
∫

G(s)|ψi |2 dr, (A11)

and thus we obtain Eq. (6). Moreover, Eqs. (A6) and (A3) give

|ψi |2 = |ψi |2 . (A12)

APPENDIX B: EQUILIBRIUM HOLE SPIN DISTRIBUTION

We derive the formula that describes the equilibrium spin
distribution of the holes used in Eq. (1). The Zener model
provides a quite well established approach that reproduces
the ion-electron equilibrium state in a confined semiconductor
heterostructure with diluted magnetic doping. This model has
been applied to different host materials (see, e.g., Refs. 14,25–
27), and in the case of digital magnetic Zn/Se(Zn,Cd)Se het-
erostructures, its theoretical prediction of the value of the hole
spin-splitting energy has been experimentally confirmed.28

The model consists of a nonlinear Schrödinger problem,
where the 2D electron gas is spin-polarized by an external
magnetic field. The polarization effect is strongly enhanced
by the presence of the sp − d exchange interaction between
the holes and the magnetic ions. The latter is evaluated under
the hypothesis that the magnetic ions are also polarized by the
electron gas and behave like independent paramagnetic 5/2
spin particles. For the sake of simplicity, we consider here
only the hh band in the effective-mass approximation (see
Ref. 22 for the justification of this assumption). In this case, the

Zener model consists of the stationary Schrödinger equation
associated with Eq. (13) (without any dynamical dumping
factor),[

Hh −
(

Jpd

2
m + gμB

h̄
B

)
· σ

]
φk,i = εk,iφk,i , (B1)

where k indicates the components of the momentum parallel
to the sample and i is the subband index. We denote the spin
component of the eigenstates with φk,i = φ

↑
k,i |↑〉 + φ

↓
k,i |↓〉,

where the spin states are projected along the direction of the
external magnetic field. Under the effective-mass approxima-
tion, each eigenstate is also a spin eigenstate. We can thus
classify the solutions in terms of the indices i = (b,σ ), where
b denotes the miniband and σ the spin. The equilibrium spin
density is given by

seq =
∑

i

1

2

∫
e
− 1

kB T (μ+ε0
k,b)[e− 
εb

kB T |φ↑
k,b|2 − e


εb
kB T |φ↓

k,b|2
]

dk,

(B2)

where μ is the chemical potential. Further, we defined 2ε0
k,b =

εk,b,↑ + εk,b,↓, 2
εb = εk,b,↑ − εk,b,↓ (under the effective-
mass approximation, it is easy to see that 
εb does not depend
on k), and dropped for simplicity the lower spin index in the
wave function: φσ

k,b ≡ φσ
k,b,σ with σ =↑ , ↓.

Although it is possible in principle to use in our dynamical
model formula (B2) to estimate the equilibrium spin density,
the numerical cost required for the eigenvalue problem of
Eq. (B1) is quite high and the direct use of the Zener model
for the calculation of seq is no longer convenient for our
purposes. A look at Eq. (B2) reveals that if we assume that
for each band the shape of the eigenvectors of spin up and
spin down is similar (|φ↑

k,b|2 	 |φ↓
k,b|2), the equilibrium spin

density simplifies considerably, giving

seq 	
∑

b

nh
b

2
B1/2(
εb), (B3)

where

nh
b = [

e
− 
εb

kB T + e

εb
kB T

] ∫
e
− 1

kB T
(μ+ε0

k,b)|φk,b|2 dk (B4)

is the particle density in the bth miniband. In formula (B3),
the only relevant parameter is the spin-splitting energy 
εb.
An empirical formula that estimates 
εb and agrees with
experimental results for a quite large interval of the external
magnetic-field strength and doping concentration is provided
by22,28


εb 	 gμB |B| + c nMnJpd meq(Teff), (B5)

where meq is given by Eq. (18). Here, g is the effective g

factor, nMn is the ion concentration, c stands for the overlap
between the wave function of the hole states and the d

orbitals, and Teff = T + T0 is a modified temperature. In
Eq. (B5), T0 and c are treated as fitting parameters and the
spin splitting is constant for all the minibands. By assuming
the phenomenological law (B5), the local equilibrium hole
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spin density becomes

seq = nh

2
B1/2(
ε). (B6)

We remark that, despite its simplicity, this formula is not
completely trivial since seq depends on the instantaneous hole
spin polarization s(t) via meq.
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