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Spin gap of the three-leg S = 3
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The ground-state properties of the three-leg S = 3
2 straight Heisenberg tube are studied using the density-matrix

renormalization group method. We find that the spin-excitation gap associated with a spontaneous dimerization
opens for the whole coupling regime, as seen in the three-leg S = 1

2 straight Heisenberg tube. However, in
contrast to the case of the S = 1

2 straight tube, the gap increases very slowly with increasing the rung coupling,
and its size is only a few percent or less of the leg exchange interaction in the weak- and intermediate-coupling
regimes. We thus argue that, unless the rung coupling is substantially larger than the leg coupling, the gap may
be quite hard to be observed experimentally. We also calculate the quantized Berry phase to show that there exist
three kinds of valence-bond-solid states depending on the ratio of leg and rung couplings.
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I. INTRODUCTION

For a long time, the exotic phenomena that have emerged
from geometrical frustration have been fascinating but
challenging subjects of research in condensed matter physics.1

The peculiar dilemma of frustrated systems generally comes
from a highly degenerate ground state in the classical sense.
Here, we know that to resolve it comes essentially back to
how the degeneracy is removed or how the frustration is
minimized by taking the quantum fluctuations into account.
The simplest example for the spin frustration may be the 120◦
structure of an antiferromagnetic triangle. In the context of
a triangular-lattice S = 1

2 antiferromagnet a spin-liquid state
was proposed by Anderson.2 As a related issue, the nine-leg
“straight” spin tube system Na2V3O7 (Ref. 3) has attracted
much attention in the last few years. One could say that odd-leg
straight spin ladders belong to the same universality class as a
single chain does; thus, the ground state is comprehended as
a gapless spin liquid or a Tomonaga-Luttinger (TL) liquid.4

However, if the periodic boundary conditions (PBCs) are
applied in the rung direction, i.e., a straight tube is shaped, the
spin states are dramatically changed due to spin frustration in
the polygonal ring with an odd number of rungs. In this sense,
the three-leg “twisted” tube compound [(CuCl2 tachH)3Cl]Cl2
(Ref. 5) is also an intriguing system because it is regarded as
a simple S = 3

2 spin chain and no frustration occurs,6 which
is in contrast to the straight tube system Na2V3O7.

Quite recently the hexagonal compound CsCrF4 (Ref. 7),
which is an ideal three-leg straight spin tube system formed by
Cr3+ ions, has been reexamined experimentally from the point
of view of spin frustration.8 Since the magnetic moment comes
from the e2

g state of Cr3+ ion, the magnitude of spin on each site
is S = 3

2 . By performing magnetic susceptibility, heat capacity
C(T ), and electron spin resonance measurements, it was
reported that no magnetic long-range order is observed down
to T = 1.3 K. In particular, a gapless spin-liquid state (or a TL
liquid state) is indicated from the finite T -linear component of
C(T ); this result raises a more absorbing question because a
gapped ground state is expected in an odd-leg spin-half-integer

straight spin tube system.9 The need for an investigation of
odd-leg straight spin tube systems with S = 3

2 is therefore
obvious in order to figure out this puzzle.

II. MODEL AND METHOD

In this paper, we thus consider a three-leg S = 3
2 straight

Heisenberg tube. The Hamiltonian is given as

H = J‖
3∑

α=1

∑
i

�Sα,i · �Sα,i+1 + J⊥
∑

i

∑
α(�=α′)

�Sα,i · �Sα′,i , (1)

where �Sα,i is a spin- 3
2 operator at leg α(= 1,2,3) and rung i.

J‖ and J⊥ are the nearest-neighbor exchange interactions in
the leg and rung directions, respectively (see Fig. 1). We take
J‖ = 1 as the unit of energy hereafter. In order to investigate the
ground-state properties of the system (1), the density-matrix
renormalization group (DMRG) technique10 is employed. As
necessary, the PBCs or the open-end boundary conditions
(OBCs) are chosen in the leg direction. Using the OBCs
(PBCs), we study the tubes with several kinds of length L = 12
to 48 (L = 8 to 24) keeping m = 1200 to 2600 (m = 1600
to 3200) density-matrix eigenstates in the renormalization
procedure; in this way, the typical truncation error, i.e., the
discarded weight, is 2 × 10−6 − 1 × 10−5 (3 × 10−5 − 7 ×
10−5). We note that the system length must be even and
is better to be kept in L = 4l or 4l + 2 with l = an integer
for systematic extrapolation of calculated quantities into the
thermodynamic limit. Moreover, an extrapolation to m → ∞
for each calculation is necessary because the DMRG trial wave
function slowly approaches the exact one with increasing m

due to the large degrees of freedom ∼43L and strong spin
frustration in our system. All the calculated quantities in this
paper are extrapolated to the limit m → ∞; thus, for example,
the maximum error in the ground-state energy is estimated to
be less than 1 × 10−3.

The first thing we think of when considering the system
(1) might be the topological similarity to the other odd-leg
half-integer-spin straight Heisenberg tubes. The simplest case,
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FIG. 1. Lattice structure of three-leg straight Heisenberg tube.

i.e., a three-leg S = 1
2 straight Heisenberg tube, has been well

studied, and the ground state is known to be gapped where
the system is spontaneously dimerized in the leg direction to
relax the intrarung spin frustration.9,11–13 This can be naturally
understood by analogy with the gap-opening mechanism in the
one-dimensional (1D) S = 1

2 spin-Peierls Heisenberg model.14

Hence, in the case of S = 3
2 as well, it would be best to

start with a bond-alternated single chain problem, namely, the
1D S = 3

2 spin-Peierls Heisenberg model. The Hamiltonian

is written as H = ∑L−1
i=1 [1 − (−1)iδ]�Si · �Si+1 where �Si is a

spin- 3
2 operator at site i and δ(> 0) is the strength of bond

alternation. The low-energy physics of this system has been
fundamentally elucidated:15–17 Across the critical point δ ≈
0.42, two kinds of valence-bond-solid (VBS) phases appear
in the ground state; for the larger alternation (δ > 0.42), the
VBS state is essentially written as a direct product of “simple”
spin-Peierls singlet bonds [Fig. 2(II)], whereas for the smaller
alternation (δ < 0.42), it is expressed as a combined state
of the spin-Peierls singlet and S = 1 Haldane-like-gapped
configurations [Fig. 2(I)], and the ground state is always
gapped except at the critical point. Now, therefore, getting
back to our system (1), if the spontaneous dimerization occurs
as in the three-leg S = 1

2 straight Heisenberg tube, it is likely
that a gapped ground state is also obtained here. In fact,
the 1D S = 3

2 Heisenberg model with next-nearest-neighbor
interactions, which is a similar model to our system (1), shows
a spontaneous dimerized state when the frustration is strong.18

III. RESULTS

A. Dimerization order parameter

Then, we will simply evaluate a dimerization-order pa-
rameter to check the presence or absence of long-ranged
spin-Peierls ordering in our system. Since a spin-Peierls state is
characterized as an alternating formation of spin-singlet pairs
in the leg direction, we focus on the nearest-neighbor spin-spin
correlations,

S(i) = −〈�Sα,i · �Sα,i+1〉, (2)

where 〈· · ·〉 denotes an expectation value in the ground state.
Note that this quantity is independent of α. With applying the
OBCs, the translational symmetry is broken due to the Friedel
oscillation, and the spin-Peierls state is directly observable as
a ground state. In general, the Friedel oscillation in the center

(II)(I)

(IV)

(V)

( )III

FIG. 2. Schematic pictures of the VBS configurations. Each small
solid circle and connection with a line denote a spin- 1

2 variable and
a singlet pair, respectively. The large open circle represents a spin- 3

2
operation that symmetrizes three spin- 1

2 variables. The configurations
(I) and (II) are VBS states in small and large bond-alternation regimes
of the 1D S = 3

2 Heisenberg model, respectively. The configurations
(III)–(V) are possible candidates for VBS states in the three-leg S = 3

2
straight Heisenberg tube (details are given in the text and Fig. 5).

of the system decays as a function of the system length. If the
amplitude at the center of the system

D(L) = |S(L/2) − S(L/2 + 1)| (3)

persists for an arbitrarily long system length, it corresponds
to a long-range dimerization order, which indicates the spin-
Peierls ground state. The order parameter is thus defined as an
extrapolated value into the thermodynamic limit,

D = lim
L→∞

D(L). (4)

In Fig. 3(a) we show the system-size dependence of the
amplitude D(L) for several J⊥ values. We see that the values
of D(L) can be smoothly extrapolated to the thermodynamic
limit 1/L → 0.

In Fig. 3(b) the extrapolated values D are plotted as
a function of J⊥. We see that it increases gradually at
J⊥ � 5, almost linearly at 5 � J⊥ � 15, and then goes into
saturation at D = 0.2764 in the large J⊥ limit. These different
behaviors could be interpreted in terms of different VBS states
for each J⊥ regime, as in the S = 1

2 straight Heisenberg
tube.12 This point will be clarified below by examining the
Berry phase. A remaining question would be whether the
order parameter remains finite for the small J⊥ regime (we
have not successfully obtained D for J⊥ < 3 due to its
smallness). We find that the order parameter develops as
D = 0.25 exp(−13.2/J⊥) from the single logarithmic plot
(see the inset of Fig. 3); it implies that the order parameter
is exponentially small but finite at 0 < J⊥ < 3. Thus, we may
expect a finite spin-excitation gap with dimerization order
for the entire region of J⊥. In this regard, it is worth noting
that the behavior of D at small J⊥ is quite different from that
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FIG. 3. (Color online) (a) Finite-size scaling of D(L) as a function
of 1/L. The lines are the polynomial fittings. (b) Dimerization-order
parameter D as a function of J⊥. Inset: Semilog plot of D vs 1/J⊥.
D saturates to 0.2764 in the large J⊥ limit. The data for small J⊥ are
fitted by a function D = α exp(−β/J⊥) with α = 0.25 and β = 13.2.

in the case of the S = 1
2 straight tube,19 which would indicate

a slower opening of the gap with increasing J⊥ in our system.

B. Spin-excitation gap

Let us then estimate the spin-excitation gap. Of particular
interest is the evolution of the gap onto the ratio between leg
and rung couplings. The gap is defined as

� = E1(L) − E0(L), � = lim
L→∞

�(L), (5)

where E0(L) and E1(L) are energies of the ground state
(S = 0) and first triplet excited state (S = 1) for the system
with length L, respectively. In Fig. 4(a) we plot the system-size
dependence of the spin-excitation gap calculated with the
OBCs in full circles. We see that the values of �(L) can be
smoothly extrapolated to the thermodynamic limit 1/L → 0.
The extrapolated values �, using a cubic polynomial extrapo-
lation for �(L), are shown in Fig. 4(b) as a function of J⊥. As
expected, J⊥ dependence of � looks rather similar to that of D;
namely, it increases slowly at J⊥ � 5, rapidly at 5 � J⊥ � 15,
and then saturates in the strong-coupling limit J⊥ = ∞. This
is because the spin-excitation gap is essentially equivalent to
a binding energy of most weakly bounded spin-singlet pair in
the system and it scales approximately with the dimerization
strength. For comparison, we obtained � = 0.6661 in the
large J⊥ limit, and it is in good agreement with a value
D = 0.624 ± 0.024 obtained from the exact-diagonalization
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FIG. 4. (Color online) (a) Finite-size scaling of �(L) as a function
of 1/L. The lines are the polynomial fittings. (b) Extrapolated values
of �(L) to the thermodynamic limit 1/L → 0. Inset: Extended figure
for 0 � J⊥ � 4. The error bars give differences between the second-
order and cubic polynomial fittings for �(L).

analysis of a strong-coupling effective model within the
first-order approximation.20

Here it is very instructive to compare the gap with that of
the S = 1

2 straight tube, which is also shown in Fig. 4(b). Two
remarks are made about the comparison: (1) Although it may
be rather natural, the gap in the strong-coupling limit seems to
scale with the magnitude of spin, �(J⊥ → ∞) ∝ S, and (2) the
gap for S = 3

2 increases much more slowly with increasing J⊥
in the weak-coupling regime. As a result, only a few percent
of the leg exchange interaction remains even at J⊥/J‖ = 5.
Hence, we argue that, unless the ratio J⊥/J‖ is sizably large, it
may be difficult to detect the gap experimentally. For CsCrF4,
the leg exchange interaction is estimated to be a few 10
to 100 K by comparing the experimental peak position of
magnetic susceptibility to numerical analysis for the 1D S = 3

2
Heisenberg chain,21 and the gap is only a few K at the outside
even for J⊥/J‖ = 5.

As described above, we obtain the gapped ground state for
the whole J⊥ region by applying the OBCs. It would mean
that our system never contains the Haldane-type VBS state
[Fig. 2(I)] in the three chains. This is because the gap cannot
open due to free edge spins created by the OBCs if the state (I)
is included. But to be sure, we shall confirm it by estimating
the gap with the PBCs. The obtained results are shown with
open squares in Fig. 4. We see that the extrapolated values
are in good agreement with those with the OBCs, and it is
confirmed that the state (I) does not exist at any VBS state in
our system. Now, it is a fair question then to ask which kind
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(III)               (IV)                  (V)

FIG. 5. Schematic “phase diagram” of the three-leg S = 3
2

straight Heisenberg tube, classified by the Berry phases on the leg
bond (γleg) and rung bond (γleg). The Roman numbers correspond to
the VBS states shown in Fig. 2.

of VBS state is formed and how it changes with varying J⊥,
which we will discuss below.

C. Quantized Berry phase

Finally, we investigate the quantized Berry phase for
determining the topological configuration of the VBS ground
state. The Berry phase is defined by

γ = −i

∫ 2π

0
A(φ)dφ, (6)

where A(φ) is the Abelian Berry connection, A(φ) =
〈ψφ|∂φψφ〉 with the ground state |ψφ〉.22 The Berry phase
is quantized as 0 or π (mod 2π ) if the system has a
spin gap during the adiabatic continuation and time-reversal
symmetry, and “undefined” if a gapless excitation exists.
We introduce a local perturbation by a local twist of the
nearest-neighbor connection, �Sα,i · �Sα′,j → 1

2 (e−iφS+
α,iS

−
α′,j +

eiφS−
α,iS

+
α′,j ) + Sz

α,iS
z
α′,j . In this paper a couple of clusters with

L = 2 and 4 are analyzed for this quantity. A dimerized pair
of triangles, including six spins, from the clusters are picked
up (it is the cluster itself for L = 2), and the Berry phases of
the leg bond (γleg) for α = α′,j = i + 1 and of the rung bond
(γrung) for α �= α′,j = i are evaluated. We call the spin-singlet
pair on the leg (rung) bond “on-leg (on-rung) pair.”

The Berry phases are obtained as follows: (γleg,γrung) =
(π,0) at 0 < J⊥ < 1 (0 < J⊥ < 0.5), (γleg,γrung) = (π,π ) at
1 < J⊥ < 15.3 (1 < J⊥ < 18), and (γleg,γrung) = (0,π ) at
J⊥ > 15.3 (J⊥ > 18) for L = 2 (L = 4) cluster. Accordingly,
we find three different VBS states depending on J⊥/J‖, as
shown in Fig. 5. The boundary between VBS states is described
by a crossover with recombination of spin-singlet bonds. In the
large-coupling regime J⊥/J‖ > O(10), we can easily imagine
that the on-rung pair is more stable than the on-leg pair and as

many pairs as possible prefer to be formed on the rung bond
[Fig. 2(V)]. The spin gap therefore scales with the binding
energy of an on-leg pair, i.e., � ∝ J‖, which is consistent with
the saturating behavior of � for J⊥ � J‖. On the other hand, in
the weak-coupling regime J⊥/J‖ < O(1), all spin-singlet pairs
are formed on the leg bond [Fig. 2(III)] because the binding
energy of the on-leg pair is much larger than that of the on-rung
pair. And, in the intermediate regime O(1) < J⊥/J‖ < O(10),
the spin-singlet pairs seem to be distributed in a balanced
manner [Fig. 2(IV)]. Here we notice an interesting relation
to the VBS-state crossover in the S = 1

2 straight tube.19 If
we ignore a spin-singlet pair on each rung in the states (IV)
and (V) of our system, the remaining degrees of freedom are
equivalent to those of the S = 1

2 straight tube. As it turns
out, the recombination of the remaining VBS bonds between
(IV) and (V) can be essentially equivalent to the VBS-state
crossover in the S = 1

2 straight tube. Then the (ignored) extra
degrees of freedom yields the additional state (III) in our S = 3

2
system.

IV. CONCLUSIONS

We study the ground-state properties of the three-leg
S = 3

2 straight Heisenberg tube with the DMRG method. It
is confirmed that a spontaneous dimerization occurs and the
spin-excitation gap opens for the whole coupling region. This
may be a common feature of odd-leg half-integer-spin straight
Heisenberg tube systems. We find that the gap for S = 3

2
increases very slowly with increasing J⊥, and it remains very
small compared with J‖ in the weak- to intermediate-coupling
regions. For CsCrF4, the gap is estimated to be only a few K
or less at normal pressures, and, for example, an additional
condition such as applying pressure might be required to
enlarge the ratio J⊥/J‖ in order to detect the gapped state.
Moreover, by calculating the quantized Berry phase, it is shown
that two VBS-state crossovers as recombination of spin-singlet
bonds occur with varying the ratio J⊥/J‖, although further
work is desirable for quantitative evaluation of the crossovers.
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