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Strain-mediated magnetoelectric coupling in magnetostrictive/piezoelectric heterostructures
and resulting high-frequency effects
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Magnetoelectric coupling terms are derived in piezoelectric/magnetostrictive (multiferroic) thin film
heterostructures using Landau-Ginzburg free energy expansions in terms of three order parameters: strain,
magnetization, and electric polarization. Strain is eliminated using a particular set of interface boundary
conditions. Then, a general effective medium method is used to calculate the ferromagnetic resonance frequency
in a BaTiO3/NiFe2O4 superlattice. This method differs from existing methods for treating magnetoelectric
heterostructures since the magnetic and electric dipolar fields are not assumed constant but vary from one film
to another. The ferromagnetic resonance frequency shift is calculated as a function of applied electric field and
is compared to some experimental results.
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I. INTRODUCTION

Today there is much interest in magnetoelectric heterostruc-
tures due to the possibility of creating multifunctional devices
where magnetic properties can be controlled with an electric
field or vice versa.1 For example, an applied electric field
has been shown to shift ferromagnetic resonance (FMR)
frequencies.2 This has potential application in fast microwave
signal processing devices with lower energy consumption
than current devices. The most promising magnetoelectric
heterostructures are those containing magnetostrictive and
piezoelectric phases because an interface strain-mediated
magnetoelectric (ME) coupling can occur that is orders of
magnitude bigger than in single-phase multiferroic materials
(for a review, see Ref. 1).

Recently, we presented an effective medium method
(EMM) for calculating susceptibilities and resonant frequen-
cies in a heterostructure comprising alternating multiferroic
(ferroelectric and antiferromagnet) and ferromagnetic thin
films.3 This EMM is based on previous work on dielectric4

and magnetic5,6 heterostructures respectively in the long wave-
length electrostatic/magnetostatic limit. Only dipolar coupling
was considered between the films. Since strain-mediated ME
coupling in heterostructures appears to be very important, in
this paper we present a theory to calculate the strain-mediated
coupling so that the EMM can be applied and FMR frequency
shifts can be predicted as a function of applied electric field.

Existing methods to calculate the high-frequency magnetic
and ME susceptibility of thin film ME composites have
focused on using a simplified EMM and solving magnetization
equations of motion with a phenomenological ME coupling
term.2 The coupling term takes the form of an energy density

EME = BiknEiMkMn + bijknEiEjMkMn, (1)

where E is the applied electric field that is assumed constant
throughout the heterostructure and M is the magnetization
in the magnetostrictive phase. The ME coupling constants
Bikn and bijkn can be expressed as a combination of elastic,
piezoelectric, and magnetostrictive constants of the individual
phases and are derived by considering the strain boundary
conditions at the interfaces and by considering the symmetries

of the individual phases.7 Bichurin et al. have also solved
simultaneous magnetization and elastic equations of motion
and found enhanced ME effects near mechanical resonances.8

Our EMM differs from that of Bichurin et al. in several
ways. First, both magnetization and dielectric equations of
motion can be written and so the magnetic, ME and electric
susceptibility may all be solved for, as shown in Ref. 3.
Second, our EMM takes into account the interface boundary
conditions for the dipolar magnetic and electric fields and these
fields are not assumed constant through the heterostructure, as
done in other works.2,7,9 This means that demagnetizing and
depolarizing effects are included in our method and different
resonant frequencies will be calculated as compared with
simplified EMMs, as discussed in Ref. 3.

Interface strain-mediated ME terms like Eq. (1) can be
added to the magnetic and dielectric energy densities of the
heterostructure and dipolar boundary conditions together with
equations of motion can be solved to find the susceptibility
tensor. However, by writing the ME energy in terms of
electric field E rather than electric polarization P , electric
fields can drive magnetization but magnetic fields cannot
drive electric polarization. We therefore aim first in Sec. II
to write a strain-mediated ME energy density in terms of M
and P . Writing an energy density is not strictly valid since
magnetization and electric polarization are defined in different
phases of the heterostructure. However, the EMM works by
averaging the properties of the films so both the magnetization
and the polarization may be thought of as belonging to a single
effective material; therefore, this formalism does not present a
problem.

Previously, studies have used one of two methods to derive
ME coupling in heterostructures. Either linear constituent
equations are considered that relate strains to magnetic and
electric fields7,10,11 or Landau free energy expansions are
made in terms of magnetization, polarization, and strain order
parameters.12–14 In Sec. II the latter method will be used to
derive the ME coupling. The full free energy expansions for
both films will be made, which leads to very complicated
equations for the ME coupling once strain is eliminated
from the equations. This is in contrast to previous works
that have considered the Landau expansion for only the
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piezoelectric film, with a misfit strain that comes from the
attached magnetostrictive film,12,14 or that have considered the
expansion for only the magnetostrictive film, with a misfit
strain from the piezoelectric.13 The calculation in Sec. II
therefore represents an extension of these works.

In Sec. III it is then shown how the derived strain-mediated
ME coupling alters the FMR frequency and also may dynam-
ically couple magnetic and electric excitations. This is done
by calculating just the zz component of the high-frequency
magnetic susceptibility using the EMM presented in Ref. 3.
The FMR frequency shifts are compared to some existing
experimental results.

It is hoped that the general methods presented in this
work will enable experimentalists to estimate the resonant
frequencies or the strain-mediated ME coupling strength in
piezoelectric/magnetostrictive heterostructures.

II. STRAIN-MEDIATED MAGNETOELECTRIC
COUPLING FOR A CUBIC SYSTEM

The calculation for the ME coupling in the piezoelectric/
magnetostrictive heterostructure proceeds as follows. Landau-
Ginzburg expansions for the free energy are written in terms of
the order parameters: electric polarization Pi , magnetization
Mi , and strains in the respective phases, u

(p)
ij and u

(m)
ij

(where i,j = x,y,z). Then strain boundary conditions are
imposed between the phases, the free energy is minimized
with respect to strain, and finally an effective ME coupling
is derived for the heterostructure. Note that all the order
parameters are considered constant within a phase. This is
a good approximation for sufficiently thin films. So-called
“entire-cell” EMMs15,16 are better adapted to treating thicker
films where this assumption breaks down.

Both the magnetostrictive (denoted with a superscript m)
and piezoelectric (p) free energies are written assuming
that a cubic symmetry exists. While cubic symmetry often
exists in the paramagnetic or paraelectric phases of these
materials, usually the transition to magnetic/electric order is
accompanied by a lowering of the crystal symmetry. Therefore,
this treatment may at first seem like a crude approximation
below the Curie temperature. In fact, this is not the case and
the lowering of the crystal symmetry falls out naturally in
the subsequent calculation of the strains. For example, it can
be shown that assuming the electric polarization P is along
the (111) direction in a bulk piezoelectric material, then the
strains minimizing the free energy correspond to an elongation
of the cubic cell along (111), in other words, a rhombohedral
distortion or a transformation to space group R3c. (See Ref. 17
for a more detailed discussion.) The situation is more complex
for thin films that are mechanically coupled to other materials;
very different distortions may correspond to the ground state
as compared with bulk crystals (see, for example, Ref. 18).

A. Landau free energy expansions

We start by quoting the parts of the free-energy expansions
for the magnetostrictive and piezoelectric phases that do not
depend on strain. The magnetic part of the free-energy density

for the cubic magnetostrictive phase is given up to fourth order,
for simplicity, by19

FFM(ai) = K
(
a2

xa
2
y + a2

ya
2
z + a2

z a
2
x

) − μ0M0 H · a, (2)

where K is the anisotropy constant, M0 is the saturation
magnetization, H is the applied magnetic field, and a =
M/M0 is the magnetization vector normalized to unity or
the magnetization direction cosines. The magnitude of the
magnetization does not vary (at constant temperature) and
therefore terms such as a2

i and a4
i are ignored here. The

exchange energy is ignored as the magnetization is assumed to
be all aligned within a film. Any dynamic motion (considered
in Sec. III) involves the magnetization in the whole film
moving coherently.

In Eq. (2) the demagnetizing free energy is not included.
For a thin film it is equal to 1

2μ0M
2
0 a2

z but for a heterostructure
it is typically less than this value and takes a nonanalytic
form.3 Here it is noted that, for the material parameters used
in Sec. II E, the demagnetizing energy does not alter the
equilibrium magnetization direction, as discussed later. The
EMM, which will be used in Sec. III to find the resonant
frequencies, calculates the dipolar energy in an implicit and
elegant way, without recourse to a computationally intensive
method such as a dipole sums method, and obtains very
accurate results.16 Therefore, the demagnetizing effects will
be considered properly in Sec. III.

Most piezoelectric materials (for example, BaTiO3, PZT,
and BiFeO3) undergo a first-order phase transition and there-
fore the free energy must have terms at least up to sixth order
in Pi . Also, the magnitude of the electric polarization can
vary strongly as a function of applied field E. The electric
part of the free energy density for the cubic piezoelectric
phase is20

FFE(Pi) = α1
(
P 2

x + P 2
y + P 2

z

) + α11
(
P 4

x + P 4
y + P 4

z

)
+α12

(
P 2

x P 2
y + P 2

y P 2
z + P 2

z P 2
x

)
+α111

(
P 6

x + P 6
y + P 6

z

) + α123P
2
x P 2

y P 2
z

+α112
[
P 2

x

(
P 4

y + P 4
z

) + P 2
y

(
P 4

z + P 4
x

)
+P 2

z

(
P 4

x + P 4
y

)] − E · P, (3)

where the α’s are dielectric stiffness coefficients, measured
at constant strain. A recent paper suggests that terms up to
P 8

i are required in order to accurately model phase transitions
in BaTiO3.21 However, in the present work the temperature
dependence of the polarization is not being studied and, in
fact, terms of higher order than P 2

i have little affect on the ME
coupling. Therefore, for simplicity we stick to the P 6

i theory.
As in the magnetic case, the depolarizing energy (equal

to 1
2ε−1

0 P 2
z for a thin ferroelectric film but less than this

value for a heterostructure) is ignored in Eq. (3). It will be
commented on later. Also, the gradient energy is ignored as
the electric polarization is assumed to be aligned within each
film. In reality, the polarization may be greatly changed near
an interface but these more complicated effects are ignored
here.
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The elastic energy density for both cubic phases is given
for simplicity by an expansion in strain up to second-order
terms22:

Fel
(
u

(ρ)
ik

) = 1
2C

(ρ)
11

(
u

(ρ)2
xx + u

(ρ)2
yy + u

(ρ)2
zz

)
+ 1

2C
(ρ)
44

(
u

(ρ)2
xy + u

(ρ)2
yz + u

(ρ)2
zx

)
+ C

(ρ)
12

(
u(ρ)

xx u(ρ)
yy + u(ρ)

yy u(ρ)
zz + u(ρ)

zz u(ρ)
xx

)
, (4)

where ρ = m,p denotes the two phases and u
(ρ)
ij are the strains.

C
(ρ)
ij are components of the elastic compliance tensor for each

material.
The magnetostrictive energy density coupling the strains

and magnetization in a cubic material is given by19,23,24

FFM-el
(
ai,u

(m)
kl

) = B1

[
(ax)2u(m)

xx + (ay)2u(m)
yy + (az)

2u(m)
zz

]
+B2

(
axayu

(m)
xy + ayazu

(m)
yz + azaxu

(m)
zx

)
,

(5)

where B1 and B2, following the notation of Kittel, are the
magnetoelastic constants with units J m−3 and can be related to
measured magnetostriction constants λ100 and λ111 (Ref. 19).

The energy density coupling strains and electric polariza-
tion is given similarly by25

FFE-el
(
Pi,u

(p)
kl

)
= q11

[
(Px)2u(p)

xx + (Py)2u(p)
yy + (Pz)

2u(p)
zz

]
+ q12

[
uxx

(
P 2

y +P 2
z

)+uyy

(
P 2

x +P 2
z

) + uzz

(
P 2

x + P 2
y

)]
+ q44

(
PxPyu

(p)
xy + PyPzu

(p)
yz + PzPxu

(p)
zx

)
, (6)

where P is the electric polarization and q11, q12, and q44 are
the coupling coefficients with units J m C−2.

The total elastic contribution to the energy density of the
effective medium can be found by adding together the correctly
weighted energy densities, Eqs. (4)–(6):

Ftot.el
(
ai,Pj ,u

(m)
kl ,u(p)

pq

)
= 1

dm + dp

{
dm

[
FFM-el

(
ai,u

(m)
kl

) + Fel
(
u

(m)
ik

)]
+ dp

[
FFE-el

(
Pi,u

(p)
kl

) + Fel
(
u

(p)
ik

)]}
. (7)

The thicknesses of the magnetostrictive and piezoelectric films
are given by dm and dp.

B. Strain boundary conditions

In order to find an approximate ME coupling, we impose
boundary conditions on the strains in the two respective
phases and then minimize Eq. (7) in order to eliminate
strain from the expression. The problem then is which
boundary conditions to use. Harshé et al. considered four
different cases of strain boundary conditions when deriving
ME coupling between magnetic and electric fields, H and E,
in magnetostrictive/piezoelectric thin film composites.10 Here
only one set of boundary conditions will be considered.

It is assumed that the heterostructure is mechanically
clamped in the z direction, perpendicular to the plane of each
interface. This is illustrated in Fig. 1(a). Therefore, the total

FIG. 1. (Color online) Panel (a) shows a schematic of the
heterostructure geometry. The structure is clamped, with no friction,
in the z direction. The magnetostrictive (m) and piezoelectric (p)
phases are mechanically bonded. This geometry corresponds to
Case IV in Ref. 10. Two repeats only are drawn for simplicity. Infinite
repeats of the magnetostrictive/piezoelectric thin films are considered
in the effective medium calculation in the next section. In panel (b), a
schematic drawing shows how the shear strains uyz may be different
in different films.

distortion along the z direction must be zero and the boundary
condition is10

dmu(m)
zz + dpu(p)

zz = 0. (8)

Furthermore, it is assumed that each interface has perfect
mechanical bonding and therefore any distortion in the
transverse directions will be equal in both phases:

u(m)
xx = u(p)

xx , (9)

u(m)
yy = u(p)

yy . (10)

This ignores any mismatch strain between the two materials
due to different unit cell sizes. This can be accounted for using
methods used previously for piezoelectric films18 and would
merely alter the boundary conditions by a constant while still
ultimately giving rise to a ME coupling.

The shear strains correspond to a change in the angle
between the unstrained Cartesian coordinates. Therefore, the
shear in the x-y plane must be equal in both films due to
the perfect mechanical bonding:

u(m)
xy = u(p)

xy . (11)

However, the shears in the x-z and y-z planes have no
restrictions. It is possible for a shear in the magnetostrictive
material to be different than the shear in the piezoelectric
material, as long as the height of the heterostructure in the
z direction is conserved. This is illustrated schematically in
Fig. 1(b).

C. Solutions for the strains

Substituting Eqs. (8)–(11) into Eq. (7), u
(p)
xx , u

(p)
yy , u

(p)
zz , and

u
(p)
xy can be eliminated. Then solving ∂F

∂u
(m)
ij

= 0 (i,j = x,y,z)

and ∂F

∂u
(p)
xz

= 0 and ∂F

∂u
(p)
yz

= 0, the strains that minimize the free
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energy are found. The simplest strain components to derive
(since they are uncoupled from the other strains) are the shear
components:

uxy = −dmB2axay + dpq44PxPy

dmC
(m)
44 + dpC

(p)
44

, (12)

u(m)
xz = −B2axaz

C
(m)
44

, (13)

u(p)
xz = −q44PxPz

C
(p)
44

, (14)

u(m)
yz = −B2ayaz

C
(m)
44

, (15)

u(p)
yz = −q44PyPz

C
(p)
44

. (16)

By the symmetry of the boundary conditions, the transverse
strains uxx and uyy are symmetric on exchange of subscripts
x and y, whereas u(m)

zz = −(dp/dm)u(p)
zz is different. The

transverse strains are therefore given by

uxx = dmB1f1(ai) + dpq11f2(Pj ) + dpq12f3(Pj )

c1c
2
2

, (17)

uyy = uxx(ax ↔ ay,Px ↔ Py), (18)

where functions f1, f2, and f3 are defined as

f1(ai) = −a2
x

[(
dmC

(m)
11 + dpC

(p)
11

)(
dpC

(m)
11 + dmC

(p)
11

)
+ dmdp

(
C

(m)
12 − C

(p)
12

)2]
+ a2

y

[(
dmC

(m)
12 + dpC

(p)
12

)(
dpC

(m)
11 + dmC

(p)
11

)
− dmdp

(
C

(m)
12 − C

(p)
12

)2] − a2
z dp

(
C

(p)
12 − C

(m)
12

)
c1,

(19)

f2(Pj ) = −P 2
x

[(
dmC

(m)
11 + dpC

(p)
11

)(
dpC

(m)
11 + dmC

(p)
11

)
+ dmdp

(
C

(m)
12 − C

(p)
12

)2]
+P 2

y

[(
dmC

(m)
12 + dpC

(p)
12

)(
dpC

(m)
11 + dmC

(p)
11

)
− dmdp

(
C

(m)
12 − C

(p)
12

)2] + P 2
z dm

(
C

(p)
12 − C

(m)
12

)
c1,

(20)

f3(Pj ) = P 2
x

[
dm

(
C

(p)
11 + C

(m)
12 − C

(p)
12

)([
dm − dp

]
C

(m)
12

+ 2dpC
(p)
12

) + C
(m)
11

(
dm[dp − dm]C(m)

12

+ [
d2

m + d2
p

]
C

p

12

)]
P 2

y c2
0 − P 2

z

(
dmC

(p)
11 + dpC

(m)
11

)
c1,

(21)

and

c2
0 = −d2

mC
(m)
11

(
C

(p)
11 + C

(m)
12 − C

(p)
12

) − dmdpC
(m)2
11

+ d2
pC

(m)
11 C

(p)
11 + dm

( − dpC
(p)2
11

+ [
C

(m)
12 − C

(p)
12

][ − dpC
(p)
11 + (dm + dp)C(m)

12

]
(22)

c1 = dm

(
C

(m)
11 − C

(m)
12

) + dp

(
C

(p)
11 − C

(p)
12

)
, (23)

c2
2 = (

dmC
(p)
11 + dpC

(m)
11

)[
dm

(
C

(m)
11 + C

(m)
12

)
+ dp

(
C

(p)
11 + C

(p)
12

)] − 2dmdp

(
C

(m)
12 − C

(p)
12

)2
. (24)

The zz component is given by

u(m)
zz = dp

c2
2

{−(
m2

x + m2
y

)
B1dm

(−C
(m)
12 + C

(p)
12

)−m2
zB1dpc3

+ (
P 2

x + P 2
y

)[
dpq11

(
C

(m)
12 − C

(p)
12

) + q12c3
]

−P 2
z

[
q11c3 − 2dpq12

(
C

(m)
12 − C

(p)
12

)]}
, (25)

where

c3 = dm

(
C

(m)
11 + C

(m)
12

) + dp

(
C

(p)
11 + C

(p)
12

)
. (26)

D. Resulting free energy

Substituting Eqs. (12)–(26) for the strain back into the total
strain free energy [Eq. (7)], we obtain a energy density which
takes the form

Ftot.el(ai,Pj ) = Xiia
4
i + Xija

2
i a

2
j + YiiP

4
i

+YijP
2
i P 2

j + Ziia
2
i P

2
i

+Zija
2
i P

2
j + Z∗

xyaxPxayPy, (27)

where Einstein summation over variables i,j = x,y,z is
assumed and i �= j . The X coefficients (units J m−3) represent
the effect of strain on the magnetization, the Y coefficients
(units J C−4 m5) represent the effect of strain on the electric
polarization, and the Z coefficients (units J C−2 m) give the
strength of the ME coupling. This represents many more terms
than is calculated using simpler Landau expansions, where
only the complete free energy of one of the two films is
considered.12–14

Due to the asymmetric boundary conditions, Xxx = Xyy �=
Xzz, Xxz = Xyz �= Xxy , and so on for the other coefficients.
The independent magnetic coefficients are given by

Xxx = − B2
1d2

mc2
4

2(dm + dp)c1c
2
2

, (28)

Xzz = − dmdpB2
1c3

2(dm + dp)c2
2

, (29)

Xxy = d2
m

(dm + dp)

(
B2

1c2
5

c1c
2
2

−
1
2B2

2

dmC
(m)
44 + dpC

(p)
44

)
, (30)

Xxz = −dpd2
mB2

1

(
C

(p)
12 − C

(m)
12

)
(dm + dp)c2

2

− dmB2
2

2(dm + dp)C(m)
44

, (31)

where

c2
4 = dmdpC

(m)2
11 + dmdp

[
C

(p)2
11 − (

C
(m)
12 − C

(p)
12

)2]
+ (

d2
m + d2

p

)
C

(m)
11 C

(p)
11 , (32)

c2
5 = −dmdp

(
C

(m)
12 − C

(p)
12

)2

+ (
dmC

(p)
11 + dpC

(m)
11

)(
dmCm

12 + dpC
(p)
12

)
. (33)
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The independent electric coefficients are given by

Yxx = −q2
11d

2
pc2

3 + 2q11q12d
2
pc2

6 + q2
12dpc2

7

2(dm + dp)c1c
2
2

, (34)

Yzz = −dp

[
dmq2

11c3 − 4dmdpq11q12
(
C

(p)
12 − C

(m)
12

) + 2dpq2
12

(
dmC

(p)
11 + dpC

(m)
11

)]
2(dm + dp)c2

2

, (35)

Yxy = d2
pq2

11c
2
5

(dm + dp)c1c
2
2

− d2
pq2

44

2(dm + dp)
(
dmC

(m)
44 + dpC

(p)
44

)
+ dpq2

12c
3
8

(dm + dp)c1c
2
2

+ d2
pq11q12c

2
9

(dm + dp)c1c
2
2

, (36)

Yxz = dp

(dm + dp)c2
2

{
dmdpq2

11

(
C

(p)
12 − C

(m)
12

)
− dpq2

12

[
dm

(
C

(p)
11 + 2C

(m)
12 − 2C

(p)
12

) + dpC
(m)
11

]
− q11q12

[(
C

(m)
11 + C

(m)
12

)
d2

m + (
2C

(p)
11 + C

(m)
12

)
dmdp

+C
(m)
11 d2

p)
]} − dpq

(p)2
44

2C
(p)
44 (dm + dp)

, (37)

where in Eq. (34) we have constants

c2
6 = d2

m

[(
C

(m)
12 − C

(m)
11

)(
C

(m)
12 − C

(p)
12

) + C
(p)
11 C

(m)
12

]
+ dmdp

[
C

(m)
12

(
3C

(p)
12 − C

(p)
11

) + 2C
(p)
12

(
C

(p)
11 − C

(p)
12

)
+C

(m)
12

(
C

(m)
11 − C

(m)
12

)] + d2
pC

(p)
12 C

(m)
11 , (38)

c2
7 = dpd2

m

[
C

(m)
11

(
2C

(p)
12 − 3C

(p)
11

) + C
(m)
12

(
2C

(m)
12 − 2C

(m)
11

)]
+ dm

(
d2

m + d2
p

)(
C

(m)2
12 − C

(m)2
11

) − d3
pC

(m)
11 C

(p)
11

− 2dmd2
pC

(p)
11

(
C

(p)
11 + C

(m)
12 − C

(p)
12

)
. (39)

The ME coefficients, which are of most interest, are given
by

Zxx = −dmdpB1
(
q11c

2
4 − q12c

2
6

)
(dm + dp)c1c

2
2

= Zyy, (40)

Zzz = dmdpB1
[
q11c3 + 2q12dp

(
C

(m)
12 − C

(p)
12

)]
(dm + dp)c2

2

, (41)

Zxy = dmdpB1
(
q11c

2
5 + q12c

2
0

)
(dm + dp)c1c

2
2

, (42)

Zxz

= −dmdpB1
[
q11dm

(
C

(m)
12 − C

(p)
12

) + q12
(
dmC

(p)
11 + dpC

(m)
11

)]
(dm + dp)c2

2

= Zyz, (43)

Zzx = dmdpB1
[
q11dp

(
C

(m)
12 − C

(p)
12

) + q12c3

]
(dm + dp)c2

2

= Zzy, (44)

Z∗
xy = − dmdpq44B2

(dm + dp)
(
dmC

(m)
44 + dpC

(p)
44

) . (45)

Notice that if the thickness of either films vanishes (dm/p → 0),
then the ME coupling vanishes. There is also an optimum ratio
dm/dp such that the ME coupling is maximized, as will be
shown in Sec. III.

Now that strain has been eliminated, the effective free
energy due to strain [Ftot.el, Eq. (27)] can be added to the
unstrained free energies of the piezoelectric and magnetostric-
tive phases [FFM + FFE, Eqs. (2) and (3)]. Before calculating
the ferromagnetic resonant frequency of such a system in
Sec. III, we first estimate how the strain alters the magnetic and
piezoelectric constants (K and α) and estimate the strength of
the ME coupling for a BaTiO3/NiFe2O4 heterostructure.

E. BaTiO3/NiFe2O4 coupling strength

A heterostructure comprising equal thickness films (dm =
dp) of piezoelectric BaTiO3 and magnetostrictive NiFe2O4

is considered. The ferroelectric parameters for BaTiO3 in
Eq. (3) are taken from Ref. 20 and are: α1 = −2.772 ×
107 J m C−2, α11 = −6.476 × 108 J m5 C−4, α12 = 3.230 ×
108 J m5 C−4, α111 = 8.004 × 109 J m9 C−6, α112 = 4.470 ×
109 J m9 C−6, and α123 = 4.910 × 109 J m9 C−6. The
piezoelectric and elastic compliance parameters are also
taken from Ref. 20: q11 = −14.20 × 109 J m C−2, q12 =
0.74 × 109 J m C−2, q44 = −3.14 × 109 J m C−2, C

(p)
11 =

27.50 × 1010 J m−3, C
(p)
12 = 17.90 × 1010 J m−3, and C

(p)
44 =

5.43 × 1010 J m−3.
The parameters for NiFe2O4 are taken from Ref. 7:

C
(m)
11 = 21.99 × 1010 N m−2, C

(m)
12 = 10.94 × 1010 N m−2,

C
(m)
44 = 8.12 × 1010 N m−2, and μ0M0 = 0.32 T (4πM0 =

3200 G in CGS). The demagnetizing energy density is then
8.2 × 104 J m−3. For the anisotropy constant the value found
by Weisz26 is used, namely, K = 4 × 103 J m−3. An applied
field μ0 H = 0.1 T x̂ is also applied to ensure that a preferred
direction of magnetization exists and later the equations of
motion will be well defined.

With these material parameters, the equilibrium magneti-
zation and electric polarization can be found by calculating
the free energy minima for each possible direction of the order
parameters.18 The equilibrium corresponds to the state with the
lowest energy minima. The spontaneous electric polarization
and magnetization are found to both lie along the x axis (see
Fig. 1), that is,

a = (1,ay,az), (46)

P = (P + px,py,pz), (47)

where the lower-case symbols ay , az � 1, and pi � P

(i = x,y,z) represent small dynamic quantities that will be
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TABLE I. Values of the strain-mediated magnetic (Xij ), electric
(Yij ) and ME (Zij ) coefficients for a BaTiO3/NiFe2O4 thin-film
heterostructure with dm = dp , derived from Eqs. (28)–(45). Yij

coefficients are multiplied by P 4 = 0.2864 C4 m−8 and Zij coeffi-
cients are multiplied by P 2 so that all values are in units J m−3.

Xxx Xzz Xxy Xxz

−9.86 −6.64 −39.7 −86.4

YxxP
4 YzzP

4 YxyP
4 YxzP

4

−1.11 × 106 −7.14 × 105 1.27 × 106 −6.88 ×104

ZxxP
2 ZzzP

2 ZxyP
2 ZxzP

2

6.61 × 103 −4.35 × 103 −3.99 × 103 −524
ZzxP

2 Z∗
xyP

2

587 4.99 × 103

relevant in Sec. III. This result is obtained whether we consider
the demagnetizing and depolarizing energy to be that of a
thin film or that of bulk. In reality, the demagnetizing and
depolarizing energy is somewhere between these two limits
for the heterostructure and therefore the result holds for this
geometry also. Then, by ignoring at first the contribution to
the free energy due to strain [Eq. (27)] and only considering
Eq. (3), the polarization in zero applied field is17

P =
−α11 ±

√
α2

11 − 3α1α111

3α111

= 0.265 C m−2. (48)

Now it is possible to estimate the effect that the strains have
on the magnetic and electric systems. First, the strains alter
α11 by over 10%: αx

11 → (α11 + Yxx) and αz
11 → (α11 + Yzz),

where Yxx = −1.66 × 108 J C−4 m5 and Yzz = −1.03 × 108

J C−4 m5, using Eqs. (34) and (35). This in turn alters the value
of the polarization calculated without strains in Eq. (48) by 8%
(P = 0.286 C m−2).

All of the strain-mediated magnetic, electric, and ME
coefficients are listed in Table I for the material parameters
listed above. The electric coefficients are multiplied by
P 4 = 0.2864 and the ME coefficients are multiplied by P 2 =
0.2862 so that every term has units of energy density and their
strengths can be compared.

Strain has a large effect on the ferroelectric parameters,
as illustrated by the 8% change in P , but a very small effect
on the magnetic parameters. This is perhaps not surprising
since lattice displacements (strains) are intimately related to
ferroelectricity but are not necessary for magnetic ordering.
For example, the magnetic coefficients Xii are all on the order
of 1–80 J m−3 (see Table I) and so strain changes the anisotropy
energy by under 1%. From now on we therefore ignore the
effect of the Xii .

The fact that strain has a large effect on the piezoelectric
phase and a relatively small effect on the magnetostrictive
phase leads to a strain-mediated ME coupling which has
an intermediate strength. It is proportional to a product
of magnetostrictive/piezoelectric coefficients, such as B1q11.
For example, ZxxP

2 = 6.61 × 103 J m−3. While this value
represents less than 0.3% of the ferroelectric energy density
contributions (characterized by α1), it is larger than the
magnetic anisotropy energy in an unstrained system. There-

fore, we can expect in our subsequent calculation for the
high-frequency susceptibility that the FMR frequency will be
shifted by an electric field while the affect of a magnetic field
on the electric modes will be negligible.

III. HIGH-FREQUENCY EFFECTS OF
MAGNETOELECTRIC COUPLING

To calculate the high-frequency susceptibility χ̂ of the
heterostructure, the EMM presented in Ref. 3 is used. Unlike
in Ref. 3, the full 6 × 6 susceptibility is not solved for. Instead,
only χm

zz ≡ meff
z /heff

z is solved for to demonstrate the action of
the ME coupling on the FMR frequency. In Sec. II the number
of repeats of the thin films is considered finite, as illustrated
in Fig. 1. However, the EMM considers the number of repeats
to be infinite. The results for the frequency should be accurate
for a large number of unit cell repeats and will be qualitatively
correct for a small number of repeats.

A. Equations for the resonant frequencies

The calculation involves solving the linearized magnetiza-
tion and electric polarization equations of motion together with
Maxwell’s boundary conditions for the dipolar fields. The total
energy density F = FFM + FFE + Ftot.el, the sum of Eqs. (2),
(3), and (27), is substituted into the equations of motion (in SI
units):

da
dt

= γ a ×
(

− 1

M

δF

δa

)
, (49)

d2 P
dt2

= −ε0f
δF

δ P
, (50)

where γ is the gyromagnetic ratio (γ = 2π2.89 × 1010 rad
Hz T−1) and f is the effective mass term [f = (2π )21.5 ×
1026 Hz2]. Then the equations are linearized using Eqs. (46)
and (47) and small oscillatory solutions are assumed (ay/z ∝
e−iωt and pi ∝ e−iωt ). The resulting equations of motion for
the magnetization in the magnetostrictive phase are

− iω

γ
ay = az[BK + B0 − Bxx(P ) − Bxz(P )] − μ0h

(m)
z ,

(51)

− iω

γ
az = −ay[Bk + B0 − Bxx(P ) + Bxy(P )]

−Z∗
xyP

M
py + μ0h

(m)
y , (52)

where B0 = μ0 H0 represents the static magnetic field along
the +x direction, BK = 2K

M
is the effective anisotropy field,

Bij (P ) = 2Zij P
2

M
is the effective magnetic field due to magne-

toelectric coupling and h(m)
z and h(m)

x are components of the
dipolar magnetic field in the magnetostrictive material.

In Eq. (52), it can be seen that the ME coupling energy
Z∗

xyaxayPxPy leads to a dynamic coupling between the
magnetization and the y component of the electric polarization
in the piezoelectric phase. Moreover, the other ME coupling
terms alter the effective static magnetic field felt by the system
and therefore will alter the resonant frequency.
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Since py is dynamically coupled to the magnetization
equations of motion, we also write its equation here:

− ω2

ε0f
py = −2py[α1 + (α12 + Yxy)P 2 + α112P

4]

−Z∗
xyP ay + ey, (53)

where ey is a component of the electric dipolar field.
Maxwell’s boundary conditions between the films for the

magnetic dipolar fields in the magnetostatic limit are that the
in-plane component of the magnetic field and the out-of-plane
component of the magnetic induction must be continuous,
that is,

h(m)
z + azM0 = h(p)

z = C

μ0
, (54)

h
(m)
x/y = h

(p)
x/y, (55)

where C is a constant, defined for convenience in the cal-
culation and h(p) is the magnetic dipolar field in the piezo-
electric films. The susceptibility components due to the
out-of-plane dipolar field h

(m)/(p)
z must be calculated first to

properly include the dipolar field effects due to the boundary
conditions. It is this step of including Maxwell’s boundary
conditions before solving for the equations of motion that sets
this type of EMM apart from other EMMs and which leads to
a more sophisticated model for the demagnetizing effects on
the frequencies.

The zz component of the magnetic susceptibility of the
effective medium can be calculated by setting hy = 0 = ey

and by using the weighted average:

χm
zz ≡ meff

z

heff
z

= dmazM

dmh
(m)
z + dph

(p)
z

. (56)

Equations (51)–(54) can be rearranged so that az, ay , py , h(m)
z ,

and h
(p)
z are all written in terms of the constant C, which

therefore cancels in Eq. (56). The result is

χm
zz =

dmμ0Mγ 2
(
B0 + BK − Bxx + Bxy + f ε0Z

∗2
xyP

2

M(ω2−ω2
T )

)
dm

(
ω2 − ω2

b

) + dp

(
ω2 − ω2

f

) ,

(57)

where ωb is the bulk ferromagnetic frequency under strain
given by

ω2
b

γ 2
=

(
B0 + BK − Bxx + Bxy + f ε0Z

∗2
xyP

2

M
(
ω2 − ω2

T

))
×(B0 + BK − Bxx − Bxz + μ0M), (58)

ωf is the thin-film ferromagnetic frequency under strain given
by

ω2
f

γ 2
=

(
B0 + BK − Bxx + Bxy + f ε0Z

∗2
xyP

2

M
(
ω2 − ω2

T

))
×(B0 + BK − Bxx − Bxz), (59)

and ωT is the frequency of the transverse phonon mode
associated with the ferroelectric polarization, with oscillation
in the y direction,

ω2
T = f ε02[α1 + (α12 + Yxy)P 2 + α112P

4]. (60)

It can be noticed that Eqs. (58) and (59), are implicit
equations in ω. However, it can be shown that ωb/f (typically
in the low GHz) and ωT (typically in the low THz regime)
are very widely spaced in frequency. Therefore, the magnetic
frequencies can be approximated very well by ignoring the
term proportional to Z∗

xy in Eqs. (58) and (59).
The pole of Eq. (57) is given by the positive solution to

0 = dm

(
ω2 − ω2

b

) + dp

(
ω2 − ω2

f

)
(61)

and corresponds to the FMR frequency. This equation shows
how the EMM calculates a resonant frequency for the
heterostructure which is between that of bulk ωb and that
of a thin film ωf . In Ref. 3 it was shown that the effective
medium FMR frequency reduces to the correct results in these
well-known limits.

B. Electric field shift of the FMR frequency

Since applying an electric field alters the effective magnetic
fields Bxx(P ) and Bxz(P ) in Eqs. (58) and (59), it shifts the
FMR frequency of the effective medium. This is shown in
Fig. 2. In panel (a) χm

zz [Eq. (56)] is plotted as a function of
frequency for no applied electric field (solid line) and for an
applied electric field along the +x̂ direction equal to 107 V/m
(dashed line). The pole in the susceptibility corresponds to
the FMR frequency. Since damping is not included in the
calculation, the peaks are not rounded at all, as is seen in real
experiments. The FMR frequency is plotted as a function of
electric field in panel (b).

FIG. 2. (Color online) The zz component of the magnetic suscep-
tibility as a function of frequency [panel (a)] for a BaTiO3/NiFe2O4

heterostructure, with each film of equal thickness dm = dp . A peak
occurs at the FMR frequency. The peak is shifted downward by
application of an electric field in the positive x direction (dashed
line). In panel (b) the FMR frequency is plotted as a function of
applied electric field strength.
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Although it is encouraging to see a shift in the FMR
frequency when an electric field is applied, a large field is
needed to see a 0.2 GHz shift and this appears too small
for signal-processing applications. However, it is slightly
larger than FMR shifts seen in most recent experiments on
similar systems, for example, Refs. 27 and 28. Alternatively,
experiments may apply a constant driving frequency and sweep
the applied magnetic field H and then the resonant field shift
as a function of E may be measured. At a constant driving
field of 9 GHz, our calculation gives a shift in H of 350 Oe
(μ0�H = 0.35 T) when a field E = 108 V/m is applied
compared with when there is no field. This value is higher
than measurements made, for example, by Bichurin et al.2

on ferrite/PZT samples but on the same order of magnitude
as that measured by Liu et al.29 However, even larger effects
have recently been seen when the ferrite material is replaced
with the amorphous alloy FeGaB (Refs. 30 and 31).

It should be noted that there is a second, weak pole in
the plot of χm

zz as a function of frequency outside the range
shown in Fig. 2(a). This occurs at the transverse phonon mode
frequency and is due to the dynamic ME coupling discussed.
It could not be predicted in an EMM where the polarization
dynamics were ignored. Since it is an electric mode frequency,
it is highly tunable with electric fields, as illustrated in Fig. 3. A
field of E = 107 V/m shifts the frequency upward by roughly
32 GHz. Although it is highly tunable, this resonance is too
weak and too high to be useful for microwave applications.

To try to match with particular experiments, the exact ma-
terial parameters and geometry and strain boundary conditions
must be input into the model. In particular, most experiments
are performed with the poling direction out of plane, whereas
the results in this section have the polarization and applied
electric field in plane to simplify the effective medium method.
Changing the poling direction to out of plane (therefore able to
apply larger electric fields) and modeling specific experiments
represents an exciting extension to the work presented here.

Only one other set of strain boundary conditions is consid-
ered to see what effect different boundary conditions have on
the solutions demonstrated in Figs. 2 and 3. The mechanical
clamping in the z direction [Eq. (8)] is relaxed and u(m)

zz and

u
(p)
zz are decoupled. Repeating the entire calculation for the

FIG. 3. (Color online) The zz component of the magnetic
susceptibility as a function of frequency for a BaTiO3/NiFe2O4

heterostructure (dm = dp) at high frequencies. A peak occurs at
the transverse phonon resonance. The peak is shifted upward by
application of a positive electric field (dashed line). Notice that the
vertical scale is 104 times smaller than that of Fig. 2(a).

strain-mediated ME coupling and the resulting high-frequency
dynamics, it is found that the change in boundary conditions
has little effect on the FMR frequency, changing the values
calculated by under 0.01 GHz. However, the frequency of the
transverse phonon mode, ωT , is shifted down in frequency
by roughly 10 GHz. This reflects again the fact that the
piezoelectric system is sensitive to changes in the strain,
whereas the magnetic system is weakly affected. Also, for this
geometry, Zxx is the ME coupling term which most affects
the FMR frequency [see Eqs. (58) and (59)] and this term is
relatively unchanged when the uzz strains are altered. Changing
the boundary conditions for in-plane strains may therefore alter
the FMR frequency by a larger amount.

C. Thickness effects

Before concluding this section, the effect of the relative
film thicknesses will be discussed. The ratio of the thickness
of the piezoelectric versus the magnetostrictive film (dp:dm)
changes both the ME coupling strength and the magnetic
dipolar fields in the heterostructure. Therefore, the effective
medium calculation for the FMR frequency is altered through
Eq. (61). The result of these two effects is shown in Fig. 4,
where the FMR frequency is plotted as a function of the volume
fraction of magnetostrictive material. The solid line shows the
result in zero applied electric field and the dashed line shows
the result when E = 107 V/m. The dotted line at the top shows
the result of the effective medium calculation if the effect of
strains is ignored (Bij = 0).

It can be seen in Fig. 4 that the strain coupling between
the magnetostrictive and piezoelectric films changes the FMR
frequency significantly. For a volume fraction of dm/(dm +
dp) = 0.4, the FMR frequency in the strained system (solid
line) is half that for the unstrained system (dotted line). Figure 4
also reveals that a volume fraction of around 0.5 results in the
largest possible change in the FMR frequency on application
of an applied electric field, although this effect is weak. All
three frequency calculations agree in the limits dm → 0 and
dp → 0 since then the strain coupling (and electric field) have
no influence on the FMR frequency. For dm → 0 (volume
fraction is 0), the frequency of a thin magnetostrictive film is

FIG. 4. (Color online) The FMR frequency, calculated using
Eq. (61), as a function of the magnetostrictive material’s volume
fraction dm/(dm + dp). The solid line shows the result in zero applied
electric field and the dashed line shows the result when E = 107 V/m.
The dotted line shows the result if there were no strain coupling to
the piezoelectric.
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found. For dp → 0 (volume fraction is 1), the frequency of the
bulk magnetostrictive material is found. In between, it can be
seen how the EMM finds frequencies between these two limits
since the dipolar energy is between these two extremes.

IV. CONCLUSION

In conclusion, it has been shown how strain-mediated ME
coupling energies can be determined for magnetostrictive/
piezoelectric thin film heterostructures. This is done using
Landau free energy expansions in terms of the magnetization,
polarization, and strains of both thin films, and then eliminating
strain using boundary conditions.

The resulting terms are used to calculate the electric
field shift in the FMR frequency in a BaTiO3/NiFe2O4

heterostructure. A shift of 0.2 GHz is calculated for an applied
field E = 107 V/m. This is on the same order of magnitude
as some experiments. The particular geometry and strain
boundary conditions that are assumed may affect the strength
of the derived ME coupling terms and therefore affect the shift
in the FMR frequency. An analysis of different materials will

enable predictions to be made on which heterostructures are
best for possible applications.

What has not been mentioned so far in this work is the fact
that ME (ferrimagnetic/ferroelectric) heterostructures in which
there is little strain-mediated coupling between magnetic and
electric phases have also been shown to have a large ME
coupling and shifts in the FMR frequency may occur of the
same magnitude as in mechanically bonded systems.32,33 This
is due to the intrinsic hybridization of electric and magnetic
fields and is not captured in our theory since the magnetostatic
and electrostatic limit is assumed. Methods such as those
described in Refs. 32 and 34 may be used to calculate the
FMR frequency beyond the magnetostatic limit. Future work
will involve adding strain-mediated ME couplings, like those
derived in this paper, into such a theory to incorporate both the
effects of strains and hybridized fields and to determine their
relative importance.
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