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Due to strong geometric frustration and quantum fluctuation, the S = 1/2 quantum Heisenberg antiferromagnet
on the kagome lattice has long been considered as an ideal platform to realize a spin liquid (SL), a phase
exhibiting fractionalized excitations without any symmetry breaking. A recent numerical study (Yan et al.,
e-print arXiv:1011.6114) of the Heisenberg S = 1/2, kagome lattice model (HKLM) shows, in contrast to earlier
results, that the ground state is a singlet-gapped SL with signatures of Z2 topological order. Motivated by
this numerical discovery, we use the projective symmetry group to classify all 20 possible Schwinger fermion
mean-field states of Z2 SLs on the kagome lattice. Among them we found only one gapped Z2 SL (which we call
the Z2[0,π ]β state) in the neighborhood of the U(1) Dirac SL state. Since its parent state, i.e., the U(1) Dirac SL,
was found [Ran et al., Phys. Rev. Lett. 98, 117205 (2007)] to be the lowest among many other candidate U(1)
SLs, including the uniform resonating-valence-bond states, we propose this Z2[0,π ]β state to be the numerically
discovered SL ground state of the HKLM.
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I. INTRODUCTION

At zero temperature, all degrees of freedom tend to freeze,
and usually a variety of different orders, such as supercon-
ductivity and magnetism, will develop in different materials.
However, in a quantum system with a large zero-point energy,
one may expect a liquidlike ground state to exist even at
T = 0. In a system consisting of localized quantum magnets,
we call such a quantum-fluctuation-driven disordered ground
state a quantum spin liquid (SL).1 It is an exotic phase with
“fractionalized” excitations carrying only a fraction of the
electron quantum number, e.g., spinons, which carry spin but
no charge. The internal structures of these SLs are so rich
that they are beyond the description of Landau’s symmetry-
breaking theory2 of conventional ordered phases. Instead
they are characterized by long-range quantum entanglement3,4

encoded in the ground state, which is called “topological
order”5,6 in contrast to the conventional symmetry-breaking
order.

Geometric frustration in a system of quantum magnets
would lead to a huge degeneracy of classical ground-state
configurations. The quantum tunneling among these classical
ground states provides a mechanism to realize quantum SLs.
The quest for quantum SLs in frustrated magnets (for a
recent review, see Ref. 7) has been pursued for decades.
Among them the Heisenberg S = 1/2 kagome lattice model
(HKLM)

HHKLM = J
∑
〈i,j〉

Si · Sj (1)

has long been thought a promising candidate. Here 〈i,j 〉
denotes i,j being a nearest-neighbor pair. Experimental
evidence8–11 of SLs has been observed in ZnCu3(OH)6Cl2
(called herbertsmithite), a spin-1/2 antiferromagnet on the
kagome lattice. Theoretically, lacking an exact solution of
the two-dimensional (2D) quantum Hamiltonian (1) in the

thermodynamic limit, in previous studies either a honeycomb
valence-bond crystal12–16 (HVBC) with an enlarged (6 × 6)-
site unit cell, or a gapless SL (Ref. 17) were proposed as
the ground state of the HKLM. However, recently an exten-
sive density-matrix-renormalization-group (DMRG) study18

on the HKLM revealed the ground state of the HKLM
as a gapped SL, which substantially lowers the energy
compared to the HVBC. In addition, the authors also observed
numerical signatures of Z2 topological order in the SL
state.

Motivated by this important numerical discovery, we try
to discover the nature of this gapped Z2 SL. Different Z2

SLs on the kagome lattice have been previously studied using
the Schwinger boson representation.19,20 Here we propose
candidate states for symmetricZ2 SLs on the kagome lattice by
the Schwinger fermion mean-field approach.21–27 Following
is the summary of our results. First we use the projective
symmetry group6 (PSG) to classify all 20 possible Schwinger
fermion mean-field Ansätze of Z2 SLs which preserve all the
symmetry of the HKLM, as shown in Table I. We analyze these
20 states and rule out some obviously unfavorable ones: e.g.,
gapless states, and those states whose first-nearest-neighbor
(NN) mean-field amplitudes must vanish due to symmetry.
Then we focus on those Z2 SLs in the neighborhood of the
U(1) Dirac SL.28 In Ref. 28 it is shown that the U(1) Dirac SL
has a significantly lower energy compared with other candidate
U(1) SL states, such as the uniform resonating-valence-bond
(RVB) state (or the U(1) SL-[0,0] state in the notation of
Ref. 28). We find that there is only one gapped Z2 SL,
which we label as Z2[0,π ]β, in the neighborhood of (or
continuously connected to) the U(1) Dirac SL. Therefore
we propose this Z2[0,π ]β state as a promising candidate
for the ground state of the HKLM. The mean-field ansatz
of Z2[0,π ]β state is shown in Fig. 1(b). Our work also
provides guidelines for choosing variational states in future
numeric studies of the SL ground state on the kagome
lattice.

224413-11098-0121/2011/83(22)/224413(11) ©2011 American Physical Society

http://arXiv.org/abs/1011.6114
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevB.83.224413


YUAN-MING LU, YING RAN, AND PATRICK A. LEE PHYSICAL REVIEW B 83, 224413 (2011)

TABLE I. Mean-field Ansätze of 20 possibleZ2 SLs on a kagome
lattice. In our notation of mean-field amplitudes 〈x,y,s|0,0,u〉 ≡
[x,y,s], this table summarizes all symmetry-allowed mean-field
bonds up to third nearest neighbor, i.e., first-nearest-neighbor
bond uα = [0,0,v], second-nearest-neighbor bond uβ = [0,1,w],
and third-nearest-neighbor bonds uγ = [1,0,u] and ũγ = [1, − 1,u]
as shown in Fig. 1(a). �s denote the on-site chemical potential terms
which enforce the constraint (11). τ 0 is a 2 × 2 identity matrix
while τ 1,2,3 are three Pauli matrices. τ 0,3 denote hopping while τ 1,2

denote pairing terms. 0 means that the corresponding mean-field
amplitudes must vanish due to symmetry. The shortest mean-field
bonds necessary to realize a Z2 SL are shown in italic type. In
other words, the mean-field amplitudes in italics break the U(1)
gauge redundancy down to Z2 through the Higgs mechanism. So
in states nos. 3, 19, and 7–12 a Z2 SL cannot be realized with up
to thrid-NN mean-field amplitudes. Note that state no. 15 needs
only a third-nearest-neighbor bond uγ to realize a Z2 SL (ũγ is not
necessary), while state no. 20 needs only ũγ to realize a Z2 SL
(uγ is not necessary). Notice that when η12 = −1 the mean-field
Ansatz (instead of the SL itself) will break translational symmetry
and double the unit cell. There are six Z2 SLs, i.e., nos. 7–12 that
do not allow any first-NN mean-field bonds. Among the other 14 Z2

SLs with nonvanishing first-NN mean-field bonds, only five Z2 SL
states, i.e., nos. 1, 2, 5, 13, and 15, have gapped spinon spectra. No.
2 (in bold type) or the Z2[0,π ]β state in the neighborhood of the
U(1) Dirac SL is the most promising candidate of the Z2 SLs for the
HKLM ground state.

No. η12 �s uα uβ uγ ũγ Label Gapped?

1 +1 τ 2,τ 3 τ 2,τ 3 τ 2,τ 3 τ 2,τ 3 τ 2,τ 3 Z2[0,0]A Yes
2 −1 τ 2,τ 3 τ 2,τ 3 τ 2,τ 3 τ 2,τ 3 0 Z2[0,π ]β Yes
3 +1 0 τ 2,τ 3 0 0 0 Z2[π,π ]A No
4 −1 0 τ 2,τ 3 0 0 τ 2,τ 3 Z2[π,0]A No
5 +1 τ 3 τ 2,τ 3 τ 3 τ 3 τ 3 Z2[0,0]B Yes
6 −1 τ 3 τ 2,τ 3 τ 3 τ 3 τ 2 Z2[0,π ]α No
7 +1 0 0 τ 2,τ 3 0 0 – –
8 −1 0 0 τ 2,τ 3 0 0 – –
9 +1 0 0 0 τ 2,τ 3 0 – –
10 −1 0 0 0 τ 2,τ 3 0 – –
11 +1 0 0 τ 2 τ 2 0 – –
12 −1 0 0 τ 2 τ 2 0 – –
13 +1 τ 3 τ 3 τ 2,τ 3 τ 3 τ 3 Z2[0,0]D Yes
14 −1 τ 3 τ 3 τ 2,τ 3 τ 3 0 Z2[0,π ]γ No
15 +1 τ 3 τ 3 τ 3 τ 2,τ 3 τ 3 Z2[0,0]C Yes
16 −1 τ 3 τ 3 τ 3 τ 2,τ 3 0 Z2[0,π ]δ No
17 +1 0 τ 2 τ 3 0 0 Z2[π,π ]B No
18 −1 0 τ 2 τ 3 0 τ 3 Z2[π,0]B No
19 +1 0 τ 2 0 τ 2 0 Z2[π,π ]C No
20 −1 0 τ 2 0 τ 2 τ 3 Z2[π,0]C No

II. SCHWINGER FERMION CONSTRUCTION OF SPIN
LIQUIDS AND PROJECTIVE SYMMETRY GROUP

A. Schwinger fermion construction of symmetric spin liquids

In the Schwinger fermion construction,21–26 we represent
a spin-1/2 operator at site i by fermionic spinons {fiα,α =
↑,↓}:

�Si = 1
2f

†
iα �σαβfiβ . (2)

(b)(a)

FIG. 1. (Color online) (a) Kagome lattice and the elements of
its symmetry group. �a1,2 are the translation unit vectors, C6 denotes
π/3 rotation around the honeycomb center, and σ represents mirror
reflection along the dashed blue line. Here uα and uβ denote first- and
second-nearest-neighbor (NN) mean-field bonds while uγ and
ũγ represent two kinds of independent third-NN mean-field
bonds. (b) Mean-field ansatz of the Z2[0,π ]β state up to sec-
ond nearest neighbor. Colors in general denote the sign struc-
ture of the mean-field bonds. Dashed lines denote first-NN real
hopping terms χ1

∑
〈i,j 〉α(νij f

†
iαfjα + H.c.): red ones have νij =

1 and bold black ones have νij = −1. Solid lines stand for
second-NN hopping χ2

∑
〈〈ij 〉〉α νij (f †

iαfjα + H.c.) and singlet pairing∑
〈〈ij 〉〉αβ εαβνij (�2f

†
iαf

†
jβ + H.c.): again red ones have νij = 1 and

bold blue ones have νij = −1. Here χ1,2 and �2 are real parameters
after choice of a proper gauge.

The Heisenberg Hamiltonian H = ∑
〈ij〉 Jij

�Si · �Sj is repre-

sented as H = ∑
〈ij〉 − 1

2Jij (f †
iαfjαf

†
jβfjβ + 1

2f
†
iαfiαf

†
jβfjβ).

This construction enlarges the Hilbert space of the original
spin system. To obtain the physical spin state from a mean-
field state of f spinons, we need to enforce the following
one-f -spinon-per-site constraint:

f
†
iαfiα = 1, fiαfiβεαβ = 0. (3)

The mean-field parameters of symmetric SLs are �ij εαβ =
−2〈fiαfjβ〉, χij δαβ = 2〈f †

iαfjβ〉, where εαβ is the completely
antisymmetric tensor. Both terms are invariant under global
SU(2) spin rotations. After a Hubbard-Stratonovich transfor-
mation, the Lagrangian of the spin system can be written as

L =
∑

i

ψ
†
i ∂τψi +

∑
〈ij〉

3

8
Jij

[
1

2
Tr(U †

ijUij )

− (ψ†
i Uijψj + H.c.)

]
+

∑
i

al
0(i)ψ†

i τ
lψi, (4)

where the two-component fermion notation ψi ≡ (fi↑,f
†
i↓) is

introduced for reasons that will be explained shortly. We use
τ 0 to denote the 2 × 2 identity matrix and τ 1,2,3 are the three
Pauli matrices. Uij is a matrix of mean-field amplitudes:

Uij =
(

χ
†
ij �ij

�
†
ij −χij

)
. (5)

al
0(i) are the local Lagrangian multipliers that enforce the

constraints Eq. (3).
In terms of ψ , the Schwinger fermion representation has

an explicit SU(2) gauge redundancy: a transformation ψi →
Wiψi , Uij → WiUijW

†
j , Wi ∈ SU(2) leaves the action in-

variant. This redundancy originates from the representation
Eq. (2): this local SU(2) transformation leaves the spin
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operators invariant and does not change the physical Hilbert
space. One can try to solve Eq. (4) by a mean-field (or
saddle-point) approximation. At mean-field level, Uij and al

0
are treated as complex numbers, and al

0 must be chosen such
that the constraints (3) are satisfied at the mean-field level:
〈ψ†

i τ
lψi〉 = 0. The mean-field Ansatz can be written as

HMF = −
∑
〈ij〉

ψ
†
i 〈i|j 〉ψj +

∑
i

ψ
†
i a

l
0τ

lψi, (6)

where we defined 〈i|j 〉 ≡ 3
8JijUij . Under a local SU(2) gauge

transformation 〈i|j 〉 → Wi〈i|j 〉W †
j , but the physical spin state

described by the mean-field Ansatz {〈i|j 〉} remains the same.
By construction the mean-field Ansatz does not break spin
rotation symmetry, and the mean-field solutions describe
SL states if lattice symmetry is preserved. Different {〈i|j 〉}
Ansätze may be in different SL phases. The mathematical
language to classify different SL phases is the projective
symmetry group (PSG).6

B. Projective symmetry group classification of topological
orders in spin liquids

The PSG characterizes the topological order in Schwinger
fermion representation: SLs described by different PSGs are
different phases. It is defined as the collection of all combina-
tions of symmetry group and SU(2) gauge transformations
that leave mean-field Ansätze {〈i|j 〉} invariant (as al

0 are
determined self-consistently by {〈i|j 〉}, these transformations
also leave al

0 invariant). The invariance of a mean-field Ansatz
{〈i|j 〉} under an element of PSG GUU can be written as

GUU ({〈i|j 〉}) = {〈i|j 〉},
U ({〈i|j 〉}) ≡ { ˜〈i|j 〉 = 〈U−1(i)|U−1(j )〉}, (7)

GU ({〈i|j 〉}) ≡ { ˜〈i|j 〉 = GU (i)〈i|j 〉GU (j )†},
GU (i) ∈ SU(2).

Here U ∈ SG is an element of the symmetry group (SG) of the
corresponding SL. In our case of symmetric SLs on the kagome
lattice, we use (x,y,s) to label a site with sublattice index
s = u,v,w and x,y ∈ Z. The Bravais unit vectors are chosen
as �a1 = ax̂ and �a2 = a

2 (x̂ + √
3ŷ) as shown in Fig. 1(a). The

symmetry group is generated by the time-reversal operation
T , lattice translations T1,2 along the �a1,2 directions, a π/3
rotation C6 around the honeycomb plaquette center, and
the mirror reflection σ (for details, see Appendix A). For
example, if U = T1 is the translation along the �a1 direction
in Fig. 1(a), T1({x,y,s}) = {x + 1,y,s}. GU is the gauge
transformation associated with U such that GUU leaves {〈i|j 〉}
invariant. Notice that this condition (7) allows us to generate all
symmetry-related mean-field bonds from one by the following
relation:

〈i|j 〉 = GU (i)〈U−1(i)|U−1(j )〉G†
U (j ). (8)

There is an important subgroup of the PSG, the invariant
gauge group (IGG), which is composed of all the pure gauge
transformations in the PSG: IGG ≡ {{Wi}|Wi〈i|j 〉W †

j =
〈i|j 〉, Wi ∈ SU(2)}. In other words, Wi = Ge(i) is the pure
gauge transformation associated with the identity element
e ∈ SG of the symmetry group. One can always choose a

gauge in which the elements in IGG are site independent.
In this gauge, the IGG can be the global Z2 transforma-
tions: {Ge(i) ≡ Ge = ±τ 0}, the global U(1) transformations:
{Ge(i) ≡ e i θτ 3

,θ ∈ [0,2π ]}, or the global SU(2) transforma-
tions: {Ge(i) ≡ eiθn̂·�τ , θ ∈ (0,2π ], n̂ ∈ S2}, and we term them
the Z2, U(1), and SU(2) states, respectively.

The importance of the IGG is that it controls the low-energy
gauge fluctuations of the corresponding SL states. Beyond
the mean-field level, fluctuations of 〈i|j 〉 and al

0 need to be
considered and the mean-field state may or may not be stable.
The low-energy effective theory is described by a fermionic
spinon band structure coupled with a dynamical gauge field
of the IGG. For example, a Z2 state with gapped spinon
dispersion can be a stable phase because the low-energy Z2

dynamical gauge field can be in the deconfined phase.29,30

Notice that the condition {Ge(i) ≡ Ge = ±τ 0} for a Z2 SL
leads to a series of consistent conditions for the gauge
transformations {GU (i)|U ∈ SG}, as shown in Appendix A.
Gauge-inequivalent solutions of these conditions (A4)–(A11)
lead to different Z2 SLs. Soon we will show that there are
20 Z2 SLs on the kagome lattice that can be realized by a
Schwinger-fermion mean-field Ansatz {〈i|j 〉}.

III. Z2 SPIN LIQUIDS ON THE KAGOME LATTICE
AND Z2[0,π ]β STATE

Following previous discussions, we use the PSG to classify
all possible 20 Z2 SL states on the kagome lattice in this
section. As will be shown later, among them there is one
gapped Z2 SL labeled the Z2[0,π ]β state in the neighborhood
of the U(1) Dirac SL. This Z2[0,π ]β SL state is the most
promising candidate for the SL ground state of HKLM.

A. PSG classification of Z2 spin liquids on a kagome lattice

Applying the condition Ge(i) ≡ Ge = ±τ 0 to the kagome
lattice with the symmetry group described in Appendix A,
we obtain a series of consistent conditions for the gauge
transformation GU (i), i.e., the conditions (A4)–(A11). Solving
these conditions, we classify all the 20 different Schwinger
fermion mean-field states of Z2 SLs on the kagome lattice, as
summarized in Table I. These 20 mean-field states correspond
to different Z2 SL phases, which cannot be continuously tuned
into each other without a phase transition.

As discussed in Appendix B 2, from PSG elements GU (i)
one can obtain all other symmetry-related mean-field bonds
from one using the symmetry condition (8). Therefore we
use uα ≡ 〈0,0,v|0,0,u〉 to represent first-nearest-neighbor
mean-field bonds. uβ ≡ 〈0,1,w|0,0,u〉 is the representative
of second-NN mean-field bonds. There are two kinds of
symmetry-unrelated third-NN mean-field bonds, represented
by uγ = 〈1,0,u|0,0,u〉 and ũγ = 〈1, − 1,u|0,0,u〉. The sym-
metry conditions for these mean-field bonds are summarized
in (B13)–(B16). In addition, the on-site chemical potential
terms �(i) [which guarantee the physical constraint (3) on the
mean-field level] also satisfy symmetry conditions (B12). We
can show that �(x,y,s) ≡ �s for these 20 Z2 SL states. The
symmetry-allowed mean-field amplitudes and bonds are also
summarized in Table I.

224413-3



YUAN-MING LU, YING RAN, AND PATRICK A. LEE PHYSICAL REVIEW B 83, 224413 (2011)

TABLE II. A summary of all 20 gauge-inequivalent PSGs with
GT (x,y,s) = iτ 1 on the kagome lattice. Notice that there is a free Z2

integer η12 = ±1 in other PSG elements (B1), (B5), and (B7). They
correspond to 20 different Z2 spin liquids on the kagome lattice.

No. η12 gσ (u) gσ (v) gσ (w) gC6 (u) gC6 (v) gC6 (w) Label

1 +1 τ 0 τ 0 τ 0 τ 0 τ 0 τ 0 Z2[0,0]A
2 −1 τ 0 τ 0 τ 0 τ 0 τ 0 τ 0 Z2[0,π ]β
3 +1 τ 0 τ 0 τ 0 τ 0 −τ 0 iτ 1 Z2[π,π ]A
4 −1 τ 0 τ 0 τ 0 τ 0 −τ 0 iτ 1 Z2[π,0]A
5 +1 τ 0 τ 0 τ 0 iτ 3 iτ 3 iτ 3 Z2[0,0]B
6 −1 τ 0 τ 0 τ 0 iτ 3 iτ 3 iτ 3 Z2[0,π ]α
7 +1 iτ 1 τ 0 −τ 0 τ 0 iτ 1 τ 0 –
8 −1 iτ 1 τ 0 −τ 0 τ 0 iτ 1 τ 0 –
9 +1 iτ 1 τ 0 −τ 0 τ 0 −iτ 1 iτ 1 –
10 −1 iτ 1 τ 0 −τ 0 τ 0 −iτ 1 iτ 1 –
11 +1 iτ 1 τ 0 −τ 0 iτ 3 −iτ 2 iτ 3 –
12 −1 iτ 1 τ 0 −τ 0 iτ 3 −iτ 2 iτ 3 –
13 +1 iτ 3 iτ 3 iτ 3 iτ 3 iτ 3 iτ 3 Z2[0,0]D
14 −1 iτ 3 iτ 3 iτ 3 iτ 3 iτ 3 iτ 3 Z2[0,π ]γ
15 +1 iτ 3 iτ 3 iτ 3 τ 0 τ 0 τ 0 Z2[0,0]C
16 −1 iτ 3 iτ 3 iτ 3 τ 0 τ 0 τ 0 Z2[0,π ]δ
17 +1 iτ 3 iτ 3 iτ 3 τ 0 τ 0 iτ 1 Z2[π,π ]B
18 −1 iτ 3 iτ 3 iτ 3 τ 0 τ 0 iτ 1 Z2[π,0]B
19 +1 iτ 3 iτ 3 iτ 3 iτ 3 −iτ 3 iτ 2 Z2[π,π ]C
20 −1 iτ 3 iτ 3 iτ 3 iτ 3 −iτ 3 iτ 2 Z2[π,0]C

From Table I we can see there are six states, i.e., nos. 7–12,
that do not allow nonzero first-NN mean-field amplitudes due
to symmetry. Moreover, they cannot realize Z2 SLs with up to
third-NN mean-field amplitudes. Therefore they are unlikely
to be the HKLM ground state. Ruling out these six Z2 SLs,
we can see that the other 14 Z2 SL states fall into four classes.
To be specific, they are continuously connected to different
parent U(1) gapless SL states on the kagome lattice. These
parent U(1) SL states in general have the following mean-field
Ansatz:

HU(1)SL = χ1

∑
〈ij〉

νij (f †
iαfjα + H.c.), (9)

where νij = ±1 characterizes the sign structure of hopping
terms with χ1 ∈ R. Different parent U(1) SL states feature the
flux of f spinon hopping phases around the basic plaquette:
honeycombs and triangles on the kagome lattice.

The simplest example is the so-called uniform RVB
state with νij ≡ +1 for all first-NN mean-field bonds. The
hopping phase around any plaquette is 1 = exp[i0], and the
corresponding flux is [0,0] for [triangle, honeycomb] motifs.
The four possible Z2 spin liquids in the neighborhood31 of
uniform RVB states [i.e., the U(1) SL [0,0] state in Ref. 28)
are classified in Appendix D. They are nos. 1, 5, 15, and 13
in Tables I and II. We label them as Z2[0,0]A, Z2[0,0]B,
Z2[0,0]C, and Z2[0,0]D states. They all have gapped spectra
of spinons.

The Ansätze of two other parent U(1) SLs are shown in
Fig. 2. They both have π flux piercing through a triangle basic
plaquette. Following the above notations of the hopping phase
in [triangle,honeycomb] motifs, with either π or 0 flux through
the honeycomb plaquette, they are called the U(1) SL [π,π ]

(a) (b)

FIG. 2. (Color online) Mean-field Ansätze of (a) U(1) SL [π,π ]
state and (b) U(1) SL [π,0] state, with first-NN real hopping terms
HMF = χ1

∑
〈ij 〉α(νij f

†
iαfjα + H.c.). Colors again denote the sign

structure of mean-field bonds: red dashed lines have νij = +1 and
black dashed lines have νij = −1.

state and the U(1) SL [π,0] state. There are three Z2 SLs in
the neighborhood of both U(1) SL states, i.e., nos. 3, 17, and
19 around the U(1) SL [π,π ] state and nos. 4, 18, and 20
around the U(1) SL [π,0] state. All these six Z2 SLs have
gapless spinon spectra, inherited from the two parent gapless
U(1) SLs. To be precise, the spinon band structures of these
six Z2 SL states feature a doubly degenerate flatband and a
Dirac cone at the Brillouin-zone center. This is in contrast to
the numerically observed gap in the two-spinon spectrum;18

thus we can also rule out these six Z2 SLs for the HKLM
ground state.

Another U(1) SL state is the so-called U(1) Dirac SL or
U(1) SL [0,π ] state. Its mean-field Ansatz is shown by the
first-NN bonds in Fig. 1(b). Clearly π flux pierces through
certain triangle plaquettes with no flux through the honeycomb
plaquette. According to variational Monte Carlo studies,28,32

this U(1) Dirac SLs have substantially lower energy compared
to many other competing phases, including the uniform RVB
state. Therefore we shall focus on those Z2 SLs in the
neighborhood of the U(1) Dirac SL in our search for the HKLM
ground state. We need to mention that, although it is unlikely,
the four Z2 SLs in the neighborhood of the uniform RVB state
or the U (1) SL [0,0] state might potentially be the HKLM
ground state.

In a previous study using the PSG in Schwinger boson
representation,20 it was shown that there are eight different
Schwinger boson mean-field Ansätze ofZ2 SLs on the kagome
lattice which preserve all lattice symmetry. However, these
eightZ2 SLs may or may not preserve time-reversal symmetry.
One can show that requiring all lattice symmetry and time-
reversal symmetry, there are 16 different Schwinger-boson
Z2 SLs on the kagome lattice. The relation between the
20 Z2 SLs in Schwinger fermion representation (see Table I)
and the 16 Z2 SLs in Schwinger boson representation is not
clear. To clarify the relation between SL states in these two
different representations, one can compare the neighboring
(ordered) phases of the SLs, e.g., by computing the vison
quantum numbers34 of SL states.

B. Z2[0,π ]β state as a promising candidate for the HKLM
ground state

How can we find those Z2 SLs in the neighborhood of
(or continuously connected to) the U(1) Dirac SL? Naively,
we expect that the mean-field Ansätze of these Z2 SLs can
be obtained from that of the U(1) Dirac SL by adding
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an infinitesimal perturbation. To be specific, we require an
infinitesimal spinon pairing term on top of the U(1) Dirac SL
mean-field Ansatz (9) or (C1) to break the IGG from U(1) to
Z2 through the Higgs mechanism. Mathematically, we need to
find those Z2 SL states whose PSG is a subgroup of the U(1)
Dirac SL’s PSG.31 Such Z2 SL states are defined to be in the
neighborhood of the U(1) Dirac SL. A similar criterion applies
to the neighboring Z2 SL states of any parent U(1) or SU(2)
SL state.

We find all four Z2 SLs in the neighborhood of U(1)
Dirac SLs in Appendix C. They are states nos. 6, 2, 14, and
16 in Table I, labeled the Z2[0,π ]α, Z2[0,π ]β, Z2[0,π ]γ ,
and Z2[0,π ]δ states, respectively. Since the effective theory
of a U(1) Dirac SL is an eight-component Dirac fermion
coupled with a dynamical U(1) gauge field,28,33 we can find all
symmetry-allowed mass terms that can open up a gap in the
Dirac-like spinon spectrum. Following detailed calculations in
Appendix C, we can see that among the four Z2 SLs around
the U(1) Dirac SL, only one state, i.e., Z2[0,π ]β (state 2 in
Tables I and II), can generate a mass gap in the spinon spec-
trum. In the other three states the Dirac cone in the spinon spec-
trum is protected by symmetry. The mean-field Ansatz of the
Z2[0,π ]β SL state up to the second NN is shown in Fig. 1(b):

HMF =
∑

i

(
λ3

∑
α

f
†
iαfiα + λ1f

†
i↑f

†
i↓ + H.c.

)

+χ1

∑
〈ij〉α

νij (f †
iαfjα + H.c.) +

∑
〈〈ij〉〉

νij

(
χ2

∑
α

f
†
iαfjα

+�2

∑
αβ

εαβf
†
iαf

†
jβ + h.c.

)
, (10)

where εαβ is the completely antisymmetric tensor. We only list
up to second-NN mean-field amplitudes because, as shown in
Table I (see also Appendix C), this Z2[0,π ]β state needs only
second-NN pairing terms to realize a Z2 SL. We can always
choose a proper gauge so that the mean-field parameters χ1,2

and �2 are all real. The sign structure of νij = ±1 is shown
in Fig. 1(b), with red denoting νij = +1 and other colors with
bold lines representing νij = −1. As discussed in Appendix C,
the second-NN singlet-pairing term �2 �= 0 not only breaks
the U(1) gauge symmetry down toZ2, but also opens up a mass
gap in the spinon spectrum. The on-site chemical potentials
λ1,3 are self-consistently determined by the following
constraint: ∑

i

〈f †
i↑f

†
i↓〉 =

∑
i

〈fi↑fi↓〉 = 0,

(11)∑
i

⎛
⎝ ∑

α=↑,↓
f

†
iαfiα − 1

⎞
⎠ = 0.

For further NN mean-field ansatz see discussions in
Appendix C.

IV. CONCLUSION

To summarize, motivated by the strong evidence of a Z2

SL as the HKLM ground state in a recent DMRG study,18 we

classify all possible Z2 SL states in the Schwinger fermion
mean-field approach using the PSG. We found 20 different
Schwinger fermion mean-field states of Z2 SLs on the kagome
lattice, among which six states are unlikely due to vanishing
first-NN mean-field amplitude. Among the other 14 Z2 SLs
only five possess a gapped spinon spectrum, which is observed
in the DMRG result.18 These five symmetric Z2 SL states
are all in the neighborhood of certain parent U(1) gapless
SLs. To be precise, four are in the neighborhood of gapless
uniform RVB [or U(1) SL [0,0]] state, while the other one,
i.e., Z2[0,π ]β, is in the neighborhood of a gapless U(1)
Dirac SL ]or U(1) SL [0,π ]] state. A previous variational
Monte Carlo study28 showed that the gapless U(1) Dirac
SL has a substantially lower energy in comparison to the
uniform RVB state. This suggests that the Z2 SLs in the
neighborhood of U(1) Dirac SLs should have lower energy
compared to those in the neighborhood of uniform RVB
states. Therefore we propose this Z2[0,π ]β state with the
mean-field Ansatz (10) shown in Fig. 1(b) as the HKLM
ground state numerically detected in Ref. 18. Our work
provides important insight for future numeric study, e.g.,
variational Monte Carlo studies of Gutzwiller-projected wave
functions.
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APPENDIX A: SYMMETRY GROUP OF THE KAGOME
LATTICE AND ALGEBRAIC CONDITIONS

FOR Z2 SPIN LIQUIDS

As shown in Fig. 1(a), we label the three lattice sites in
each unit cell with sublattice indices {s = u,v,w}. Choosing
the Bravais unit vector as �a1 = ax̂ and �a2 = a

2 (x̂ + √
3ŷ), the

positions of the three atoms in a unit cell labeled by indices
i = (x,y,s) are

�r(x,y,u) = (
x + 1

2

)�a1 + (
y + 1

2

)�a2,

�r(x,y,v) = (
x + 1

2

)�a1 + y�a2, (A1)

�r(x,y,w) = x�a1 + (
y + 1

2

)�a2.

The symmetry group of such a two-dimensional kagome lattice
is generated by the following operations:

T1: (x,y,s) → (x + 1,y,s),

T2: (x,y,s) → (x,y + 1,s),

σ : (x,y,u) → (y,x,u),

(x,y,v) → (y,x,w),

(x,y,w) → (y,x,v); (A2)

C6: (x,y,u) → (−y − 1,x + y + 1,v),

(x,y,v) → (−y,x + y,w),

(x,y,w) → (−y − 1,x + y,u),

together with time reversal T .
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The symmetry group of a kagome lattice is defined by the
following algebraic relations between its generators:

T 2 = σ 2 = (C6)6 = e,

g−1T−1gT = e, ∀ g = T1,2,σ ,C6,

T −1
2 T −1

1 T2T1 = e,

σ−1T −1
1 σT2 = e,

(A3)
σ−1T −1

2 σT1 = e,

C6
−1T −1

2 C6T1 = e,

C6
−1T −1

2 T1C6T2 = e,

σ−1C6σC6 = e,

where e stands for the identity element in the symmetry group.
Therefore the consistent conditions for a generic Z2 PSG on a
kagome lattice are written as

[GT (i)]2 = ηT τ 0, (A4)

Gσ (σ (i))Gσ (i) = ησ τ 0, (A5)

G
†
T1

(i)G†
T (i)GT1 (i)GT

(
T1

−1(i)
) = ηT1T τ 0, (A6)

G
†
T2

(i)G†
T (i)GT2 (i)GT

(
T2

−1(i)
) = ηT2T τ 0, (A7)

G
†
σ (i)G†

T (i)Gσ (i)GT (σ−1(i)) = ησ T τ 0, (A8)

G
†
C6

(i)G†
T (i)GC6 (i)GT

(
C6

−1(i)
) = ηC6T τ 0, (A9)

G
†
T2

(
T −1

1 (i)
)
G

†
T1

(i)GT2 (i)GT1

(
T −1

2 (i)
) = η12τ

0, (A10)

GC6

(
C6

−1(i)
)
GC6

(
C6

−2(i)
)
GC6

(
C3

6 (i)
)
GC6

(
C6

2(i)
)

×GC6

(
C6

2(i)
)
GC6 (C6(i))GC6 (i) = ηC6τ

0, (A11)

G
†
σ

(
T −1

2 (i)
)
G

†
T2

(i)Gσ (i)GT1 (σ (i)) = ησT1τ
0, (A12)

G
†
σ

(
T −1

1 (i)
)
G

†
T1

(i)Gσ (i)GT2 (σ (i)) = ησT2τ
0, (A13)

G
†
σ (C6(i))GC6 (C6(i))Gσ (i)GC6 (σ (i)) = ησC6τ

0, (A14)

G
†
C6

(
T −1

2 (i)
)
G

†
T2

(i)GC6 (i)GT1

(
C6

−1(i)
) = ηC6T1τ

0, (A15)

G
†
C6

(
T −1

2 T1(i)
)
G

†
T2

(T1(i))GT1 (T1(i))

×GC6 (i)GT2

(
C6

−1(i)
) = ηC6T2τ

0, (A16)

for any lattice site i = (x,y,s). Here all η’s are Z2 integers
characterizing different SLs: different (gauge-inequivalent)
choices of these Z2 integers (different Z2 PSGs) correspond
to different Z2 SLs. Notice that under a local guage trans-
formation W (i) ∈ SU(2) the PSG element GU (i) transforms
as

GU (i) → W (i)GU (i)W †(U−1(i)). (A17)

APPENDIX B: CLASSIFICATION OF ALL Z2 SPIN
LIQUIDS ON THE KAGOME LATTICE

1. Classification of Z2 algebraic PSGs on the kagome lattice

In this section we classify all possible Z2 spin liquids on
a kagome lattice. Mathematically we need to find all gauge-
inequivalent solutions of the algebraic conditions (A4)–(A15)
for Z2 PSGs.

First, from condition (A10) we can always choose a proper
gauge so that

GT1 (x,y,s) = η
y

12τ
0, GT2 (x,y,s) ≡ τ 0. (B1)

From (A12) and (A13) we can see that Gσ (x,y,s) =
η

y

σT1
ηx

σT2
η

xy

12gσ (s). Condition (A5) further determines ησT1 =
ησT2 and therefore we have

Gσ (x,y,s) = η
x+y

σT1
η

xy

12gσ (s),

where the SU(2) matrices gσ (s) satisfy

gσ (w)gσ (v) = [gσ (u)]2 = ησ τ 0. (B2)

Notice that we can always choose a proper global
Z2 gauge on GT1 (x,y,s) (which does not change
the mean-field Ansatz) so that ηC6T2 = 1 in (A16).
From (A15) and (A16) it is straightforward to show
that GC6 (x,y,u/v) = η

x+y

C6T1
η

xy+x(x+1)/2
12 gC6 (u/v) and

GC6 (x,y,w) = η
x+y

C6T1
η

x+y+xy+x(x+1)/2
12 gC6 (w). It is condition

(A14) that determines ηC6T1 = ησT1η12, and finally we have

GC6 (x,y,u/v) = η
x+y

σT1
η

xy+ x(x+1)
2

12 gC6 (u/v),

GC6 (x,y,w) = (
η12ησT1

)x+y
η

xy+ x(x+1)
2

12 gC6 (w),

where the SU(2) matrices gC6 (s) satisfy[
gC6 (w)gC6 (v)gC6 (u)

]2 = η12ηC6τ
0, (B3)[

gσ (v)gC6 (w)
]2 = gσ (w)gC6 (v)gσ (u)gC6 (u) = ησησC6τ

0

(B4)

according to (A11) and (A14).
Now through a gauge transformation W (x,y,s) = η

y

σT1
we

can fix ησT1,2 = 1 and the PSG elements become

Gσ (x,y,s) = η
xy

12gσ (s), (B5)

GC6 (x,y,u/v) = η
xy+ x(x+1)

2
12 gC6 (u/v),

(B6)
GC6 (x,y,w) = η

xy+x+y+ x(x+1)
2

12 gC6 (w).

According to (A4), (A6), and (A7) we can see that
GT (x,y,s) = ηx

T1T η
y

T2T gT (s). (A9) and (A8) further determine
ηT1T = ηT2T = 1 and by choosing a proper gauge we have

GT (x,y,s) = gT (s) ≡
{
τ 0, ηT = 1,

iτ 1, ηT = −1,
(B7)

which satisfy

gσ (u)gT (u) = ησ T gT (u)gσ (u),

gσ (v)gT (w) = ησ T gT (v)gσ (v), (B8)

gσ (w)gT (v) = ησ T gT (w)gσ (w),

gC6 (u)gT (w) = ηC6T gT (u)gC6 (u),

gC6 (v)gT (u) = ηC6T gT (v)gC6 (v), (B9)

gC6 (w)gT (v) = ηC6T gT (w)gC6 (w),

according to (A9) and (A8).
In the following we find all the gauge-inequivalent solutions

of SU(2) matrices gT ,σ ,C6 (s) satisfying the above conditions.
They are summarized in Table II.
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(I) gT (s) = τ 0 and therefore ηT = ησ T = ηC6T = 1. Con-
ditions (B8) and (B9) are automatically satisfied.

(i) ησ = 1. Notice that under a global gauge transforma-
tion W (x,y,s) ≡ Ws ∈ SU(2) the PSG elements transform
as

gσ (u) → Wugσ (u)W †
u,

gσ (v) → Wvgσ (v)W †
w,

gσ (w) → Wwgσ (w)W †
v ,

gC6 (u) → WugC6 (u)W †
w,

gC6 (v) → WvgC6 (v)W †
u,

gC6 (w) → WwgC6 (w)W †
v .

Thus from (B2) and (B4) we can always have gσ (s) = τ 0

and gC6 (u) = τ 0, gC6 (v) = ησC6τ
0 by choosing a proper

gauge.
(A) ησC6 = η12ηC6 = 1. From (B3) we have gC6 (w) = τ 0.
(B) ησC6 = η12ηC6 = −1. From (B3) we have gC6 (w) = iτ 3

by gauge fixing.
(ii) ησ = −1. From (B2) we have gσ (v) = −gσ (w) = τ 0

and gσ (u) = iτ 3 by gauge fixing. Also from (B4) we can
choose a gauge so that gC6 (u) = τ 0 and gC6 (v) = −iησC6τ

3.
(A) ησC6 = −1. In this case (B4) requires gC6 (w) = τ 0 and

thus η12ηC6 = −1 according to (B3).
(B) ησC6 = 1.

(a) η12ηC6 = −1. Now from (B4) and (B3) we have
gC6 (w) = iτ 1 by gauge fixing.

(b) η12ηC6 = 1. By (B4) and (B3) we must have gC6 (w) =
iτ 3.

To summarize, there are 2 × (2 + 3) = 10 different alge-
braic PSGs with ηT = 1 and gT (s) = τ 0.

(II) gT (s) = iτ 1 and ηT = −1
(i) ησ = 1. According to (B2) and (B8), by choosing a

proper gauge we can have gσ (s) = τ 0 and ησ T = 1. From (B3)
and (B4) we also have [gC6 (w)]2 = gC6 (v)gC6 (u) = ησC6τ

0 =
η12ηC6τ

0.
(A) η12ηC6 = ησC6 = 1. From (B9), (B3), and (B4), by

choosing the gauge we have gC6 (s) = τ 0 and ηC6T = 1.
(B) η12ηC6 = ησC6 = −1.

(a) ηC6T = 1. In this case we have gC6 (u) = −gC6 (v) = τ 0

and gC6 (w) = iτ 1 by choosing a proper gauge.
(b) ηC6T = −1. In this case we can have gC6 (s) = iτ 3 by

choosing a proper gauge.
(ii) ησ = −1.
(A) ησ T = 1. From (B8) and (B2) we have gσ (u) = iτ 1

and gσ (v) = −gσ (w) = τ 0 by proper gauge fixing. Also from
(B4) we know that [gC6 (w)]2 = −ησC6τ

0 and gC6 (u)gC6 (v) =
−iησC6τ

1.
(a) ησC6 = −1. From (B9), (B4), and (B3) it is clear that

ηC6T = 1, gC6 (u) = gC6 (w) = τ 0, and gC6 (v) = iτ 1 through
gauge fixing. Also we have η12ηC6 = −1.

(b) ησC6 = 1.
(b1) ηC6T = 1. In this case η12ηC6 = 1, and we can

always choose a proper gauge so that gC6 (u) = τ 0, gC6 (w) =
−gC6 (v) = iτ 1.

(b2) ηC6T = −1. In this case η12ηC6 = −1, and we can
always choose a proper gauge so that gC6 (v) = −iτ 2, gC6 (u) =
gC6 (w) = iτ 3.

(B) ησ T = −1. Conditions (B8) and (B2) assert that
gσ (s) = iτ 3 by proper choice of gauge.

(a) ησC6 = −1. In this case from (B4) we know that
gC6 (w) = iτ 3; hence ηC6T = −1. Then we can always choose
a gauge so that gC6 (u) = gC6 (v) = iτ 3 and so η12ηC6 = −1
from (B3).

(b) ησC6 = 1.
(b1) ηC6T = 1. In this case from (B8),(B4) we have

gC6 (u) = gC6 (v) = τ 0 by a proper gauge choice. Meanwhile,
conditions (B3) and (B4) become [gC6 (w)]2 = η12ηC6τ

0 and
[iτ 3gC6 (w)]2 = −τ 0.

(b.1.1) η12ηC6 = 1. Here we have gC6 (w) = τ 0.
(b.1.2) η12ηC6 = −1. Here we have gC6 (w) = iτ 1.
(b2) ηC6T = −1. In this case from (B8) and (B4) we can

always choose a proper gauge so that gC6 (u) = −gC6 (v) = iτ 3.
We also have gC6 (w) = iτ 2 and η12ηC6 = −1 from (B3).

To summarize there are 2 × (3 + 7) = 20 different alge-
braic PSGs with ηT = −1 and gT (s) = iτ 1.

So in summary we have 10 + 20 = 30 different Z2 alge-
braic PSGs satisfying conditions (A4)–(A16). Among them
there are at most 20 solutions that can be realized by a
mean-field Ansatz, since those PSGs with gT (s) = τ 0 would
require all mean-field bonds to vanish due to (B11). As a result
there are 20 different Z2 spin liquids on a kagome lattice.

A. Symmetry conditions on the mean-field Ansatz

Let us denote the mean-field bonds connecting sites
(0,0,u) and (x,y,s) as [x,y,s] ≡ 〈x,y,s|0,0,u〉. Using (8) we
can generate any other mean-field bonds through symmetry
operations (such as translations GT1,2T1,2 and mirror reflection
Gσ σ ) from [x,y,s]. However, these mean-field bonds cannot
be chosen arbitrarily since they possess symmetry relation (8):

〈i|j 〉 = GU (i)〈U−1(i)|U−1(j )〉G†
U (j ), (B10)

where U is any element in the symmetry group. Notice that
for time reversal T we have

GT (i)〈i|j 〉G†
T (j ) = −〈i|j 〉. (B11)

We summarize these symmetry conditions on the mean-field
bonds here:

(i) For s = u,

T : gT [x,y,u]g†
T = −[x,y,u],

T x
1 T −x

2 σ : [x, − x,u] → [x, − x,u]†,

T x+1
1 T

y+1
2 C3

6 : [x,y,u] → [x,y,u]†,

σ : [x,x,u] → [x,x,u].

(ii) For s = v,

T : gT [x,y,v]g†
T = [x,y,v],

T
y+1

2 σC2
6 : [0,y,v] → [0,y,v]†,

T
2−2y

1 T
y−1

2 σC−1
6 : [1 − 2y,y,v] → [1 − 2y,y,v]†.

(iii) For s = w,

T : gT [x,y,w]g†
T = [x,y,w],

T x−1
1 T 2−2x

2 σC6: [x,1 − 2x,w] → [x,1 − 2x,w]†,

T x+1
1 σC−2

6 : [x,0,w] → [x,0,w]†.
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Now let us consider several very simple examples. First,
the on-site chemical potential terms �(x,y,s) = �s satisfy
the following consistent conditions:

τ 1�sτ
1 = −�s,

gσ (u)�ug
†
σ (u) = �u,

gσ (v)�wg†
σ (v) = �v,

gσ (w)�vg
†
σ (w) = �w, (B12)

gC6 (u)�wg
†
C6

(u) = �u,

gC6 (v)�ug
†
C6

(v) = �v,

gC6 (w)�vg
†
C6

(w) = �w.

In fact in all 20 Z2 spins on a kagome lattice we have �u =
�v = �w ≡ �s with a proper gauge choice.

All the first-NN mean-field bonds can be generated from
uα ≡ [0,0,v]. For a generic Z2 spin liquid with PSG elements
GT (x,y,s) = iτ 1 and (B1), (B5), and (B7), the bond uα =
[0,0,v] satisfies the following consistent conditions:

τ 1uατ 1 = −uα,

gσ (u)gC6 (u)gC6 (w)uαg
†
C6

(v)g†
C6

(w)g†
σ (v) = u†

α. (B13)

It follows immediately that for six Z2 spin liquids, i.e.,
nos. 7–12 in Table II, all NN mean-field bonds must vanish
since uα = 0 as required by (B13). Therefore it is unlikely
that the Z2 spin liquid realized in the kagome Hubbard model
will be one of these six states. In the following we study the
remaining 14 Z2 spin liquids on the kagome lattice.

All second-NN mean-field bonds can be generated
from uβ ≡ [0,1,w], which satisfies the following symmetry
conditions:

τ 1uβτ 1 = −uβ,
(B14)

gσ (u)gC6 (u)uβg
†
C6

(v)g†
σ (w) = u

†
β.

There are two kinds of third-NN mean-field bond. The first
kind can all be generated by uγ ≡ [1,0,u], which satisfies

τ 1uγ τ 1 = −uγ ,
(B15)

gC6 (u)gC6 (v)gC6 (w)uγ

[
gC6 (u)gC6 (v)gC6 (w)

]† = u†
γ .

The second kind can all be generated by ũγ ≡ [1, − 1,u],
which satisfies

τ 1ũγ τ 1 = −ũγ ,

gσ (u)ũγ g†
σ (u) = ũ†

γ , (B16)

gC6 (u)gC6 (w)gC6 (v)ũγ

[
gC6 (u)gC6 (w)gC6 (v)

]† = η12ũ
†
γ .

APPENDIX C: Z2 SPIN LIQUIDS IN THE NEIGHBORHOOD
OF THE U(1) SL [0,π ] STATE

1. Mean-field Ansatz of U(1) SL [0,π ] state

Following the SU(2) Schwinger fermion formulation with
ψi ≡ (fi↑,f

†
i↓)T , we focus on those Z2 spin liquids (SLs) in

the neighborhood of the U(1) SL [0,π ] state with the following
mean-field Ansätze:

〈x,y,u|x,y,v〉 = −〈x,y,u|x,y,w〉 = (−1)xχτ 3,

〈x + 1,y,w|x,y,u〉 = 〈x,y + 1,v|x,y,u〉 (C1)

= −〈x,y,v|x,y,w〉
= 〈x + 1,y − 1,w|x,y,v〉 = χτ 3,

where χ is a real hopping parameter. We define mean-field
bonds 〈x,y,s|x ′,y ′,s ′〉 in the following way:

HMF =
∑
i,j

ψ
†
i 〈i|j 〉ψj + H.c. (C2)

For convenience of later calculation we implement the follow-
ing gauge transformation:

ψx,y,u → iτ 3ψx,y,u (C3)

and the original mean-field Ansatz (C1) transforms to

〈x,y,u|x,y,v〉 = −〈x,y,u|x,y,w〉 = i(−1)xχτ 0,

〈x + 1,y,w|x,y,u〉 = 〈x,y + 1,v|x,y,u〉 = −iχτ 0, (C4)

−〈x,y,v|x,y,w〉 = 〈x + 1,y − 1,w|x,y,v〉 = χτ 3.

The projected symmetry group corresponding to the above
mean-field Ansatz (C4) is

GT (x,y,v) = GT (x,y,w) = −GT (x,y,u) = gT ,

gT τ 3g
†
T = −τ 3,

GT2 (x,y,s) = gT2 , gT2τ
3g

†
T2

= τ3,

GT1 (x,y,v) = GT1 (x,y,w) = −GT1 (x,y,u)

= (−1)x+ygT1 , gT1τ
3g

†
T1

= τ3,

Gσ (x,y,v) = Gσ (x,y,w) = (−1)x+y+1Gσ (x,y,u) (C5)

= (−1)(x+y)(x+y+1)/2gσ , gσ τ 3g†
σ = τ 3,

GC6 (x,y,u) = (−1)
x(x+1)+y(y−1)

2 gC6 ,

GC6 (x,y,v) = −(−1)
x(x−1)+y(y−1)

2 gC6,

GC6 (x,y,w) = i(−1)
x(x−1)+y(y−1)

2 gC6τ
3,

gC6τ
3g

†
C6

= τ 3,

so that the mean-field Ansätze satisfy (8).

2. Classification of Z2 spin liquids around
the U(1) SL [0,π ] state

Plugging (C5) into the algebraic consistency conditions
(A4)–(A15), we obtain four algebraic solutions of Z2 PSGs
around the U(1) SL [0,π ] state. With choice of a proper gauge
they all satisfy

gT = iτ1, gT1 = gT2 = τ 0,

ηT = η12 = ηC6T1 = −1, (C6)

ηT1,2T = ησT1,2 = ηC6T2 = 1.

The four Z2 PSGs near the U(1) SL [0,π ] state have the
following features:

(No. 6) Z2[0,π ]α: gσ = gC6 = τ 0,

ησ = ησ T = 1, (C7)

ησC6 = ηC6T = −ηC6 = −1;

(No. 2) Z2[0,π ]β: gσ = τ 0, gC6 = iτ 3,
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ησ = ησ T = 1, (C8)

ησC6 = ηC6T = −ηC6 = 1;

(No. 14) Z2[0,π ]γ : gσ = iτ 3, gC6 = τ 0,

ησ = ησ T = −1, (C9)

ησC6 = ηC6T = −ηC6 = −1;

(No. 16) Z2[0,π ]δ: gσ = gC6 = iτ 3

ησ = ησ T = −1, (C10)

ησC6 = ηC6T = −ηC6 = 1.

Of course they belong to the 20 Z2 spin liquids summarized
in Table II.

3. Four possible Z2 spin liquids around the U(1) SL [0,π ] state:
Mean-field Ansätze

a. Consistent conditions on mean-field bonds

Implementing the generic conditions mentioned earlier on
several near-neighbor mean-field bonds with PSG (C6)–(C10),
we obtain the following consistent conditions:

(0) For on-site chemical potential terms �s(x,y,s) =
�λ(x,y,s) · �τ , the translation operations GT1,2T1,2 in the PSG
guarantee that �s(x,y,s) = λs(0,0,s) ≡ �s,s = u,v,w. They
satisfy

gT �sg
†
T = −�s,

gσ�ug
†
σ = �u, gσ�vg

†
σ = �w, gσ�wg†

σ = �v;
(C11)

gC6�ug
†
C6

= �v,
(
gC6τ

3
)
�v

(
gC6τ

3
)† = �w,

gC6�wg
†
C6

= �u.

(I) For the first-neighbor mean-field bond ua ≡ [0,0,v]†

(there is only one independent mean-field bond, meaning
all other first-neighbor bonds can be generated from [0,0,v]
through symmetry operations),

gT u†
ag

†
T = u†

a,
(C12)(

gσg2
C6

τ 3
)
u†

a

(
gσg2

C6
τ 3

)† = −ua.

(II) For the second-neighbor mean-field bond ub ≡ [0,1,w]
we have

gT ubg
†
T = ub,

(C13)(
gσgC6

)
ub

(
gσgC6

)† = −u
†
b.

(II) For third-neighbor mean-field bonds uc1 ≡ [1,0,u] and
uc2 ≡ [1, −1,u] we have

gT uc1g
†
T = −uc1,

(C14)(
g3

C6
τ 3

)
uc1

(
g3

C6
τ 3

)† = u
†
c1

and

gT uc2g
†
T = −uc2,

gσuc2g
†
σ = u

†
c2, (C15)(

g3
C6

τ 3
)
uc2

(
g3

C6
τ 3

)† = −u
†
c2.

b. Mean-field Ansätze of the four Z2 spin liquids near
the U(1) SL [0,π ] state

For the Z2[0,π ]α state with gσ = gC6 = τ 0 the mean-field
Ansätze are (up to third-neighbor mean-field bonds)

ua = ia0τ
0 + a1τ

1, ub = ib0τ
0,

uc1 = c3τ
3, uc2 = c2τ

2, (C16)

�s = λ3τ
3, s = u,v,w.

Since we are considering a phase perturbed from the U(1)
SL [0,π ] state, we shall always assume a0 �= 0 (first-neighbor
hopping terms) in the following discussion. A Z2[0,π ]α spin
liquid can be realized by first-neighbor mean-field singlet
pairing terms with a1 �= 0.

For the Z2[0,π ]β state with gσ = τ 0,gC6 = iτ 3 the mean-
field Ansätze are (up to third-neighbor mean-field bonds)

ua = ia0τ
0 + a1τ

1, ub = ib0τ
0 + b1τ

1,

uc1 = c2τ
2 + c3τ

3, uc2 = 0, (C17)

�u = λ2τ
2 + λ3τ

3, �v,w = −λ2τ
2 + λ3τ

3.

A Z2[0,π ]β spin liquid can be realized by second-neighbor
pairing terms with a0b1 − a1b0 �= 0.

For the Z2[0,π ]γ state with gσ = iτ 3,gC6 = τ 0 the mean-
field Ansätze are (up to third-neighbor mean-field bonds)

ua = ia0τ
0, ub = ib0τ

0 + b1τ
1,

uc1 = c3τ
3, uc2 = 0, (C18)

�s = λ3τ
3, s = u,v,w.

A Z2[0,π ]γ spin liquid can be realized by second-neighbor
pairing terms with b1 �= 0.

For the Z2[0,π ]δ state with gσ = gC6 = iτ 3, the mean-field
Ansätze are (up to third-neighbor mean-field bonds)

ua = ia0τ
0, ub = ib0τ

0,

uc1 = c2τ
2 + c3τ

3, uc2 = 0, (C19)

�s = λ3τ
3, s = u,v,w.

A Z2[0,π ]δ spin liquid can be realized by third-neighbor
pairing terms with c2 �= 0.

4. Low-energy effective theory

The reciprocal unit vectors (corresponding to unit vectors
�a1,2) on a kagome lattice are �b1 = 1

a
(x̂ − 1√

3
ŷ) and �b2 =

1
a

2√
3
ŷ, satisfying �ai · �bj = δi,j . In the mean-field Ansatz (C4)

of U(1) SL [0,π ] the unit cell is doubled; the translation unit
vectors are �A1 = 2�a1 and �A2 = �a2. Accordingly, the first BZ
for such a mean-field Ansatz is only half of the original first BZ
with the new reciprocal unit vectors being �B1 = �b1/2 and �B2 =
�b2. Denoting the momentum as k ≡ (kx,ky)/a = k1 �B1 + k2 �B2

with |k1,2| � π , we have

k1 = 2kx, k2 = (kx +
√

3ky)/2. (C20)

The two Dirac cones in the spectra of the U(1) SL [0,π ] state
(C4) are located at ±Q with

Q =
(

0,
π√

3

)
= π

2
�B2 (C21)

224413-9



YUAN-MING LU, YING RAN, AND PATRICK A. LEE PHYSICAL REVIEW B 83, 224413 (2011)

with the proper chemical potential �(i) = 〈i|i〉 = χ (
√

3 −
1)τ 3 added to the mean-field Ansatz (C4).

For convenience we choose the following basis for the
Dirac-like Hamiltonian obtained from expansion around ±Q:

φ+,↑,A = 1√
6
e−i 1

24 π

× (
e−i 11

12 π ,0,ei 11
12 π ,0,0,0,e−i 11

12 π ,0,ei 5
12 π ,0,

√
2,0

)T
,

φ+,↑,B = 1√
6
e−i 1

24 π

× (
1,0,e−i 4

3 π ,0,
√

2e−i 11
12 π ,0, − 1,0,e−i 5

6 π ,0,0,0
)T

,

φ−,↑,b = RT1

(
k1 = 0,k2 = −π

2

)
φ+,↑,b,

φ±,↓,b = RT φ±,↑,b, (C22)

where ± are the valley indices for two Dirac cones at ±Q
with Pauli matrices μ and b = A,B are band indices with
Pauli matrices ν. The spin indices � = ↑,↓ are as usual,
with Pauli matrices σ . The corresponding creation operators
for these modes are �

†
±,�,b = ψ

†
±Q

φ±,�,b in the order of
(0,0,u),(0,0,v),(0,0,w),(1,0,u),(1,0,v),(1,0,w) for the six
sites per doubled new unit cell.

Here

RT ≡ I2×2 ⊗
⎡
⎣−1 0 0

0 1 0
0 0 1

⊗ gT ,

⎤
⎦

RT2 (k) = e−ik2I6×6 ⊗ gT2 ,

and

RT1 (k) =
[

0 −e−ik1

1 0

]
⊗

⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ ⊗ gT1

are transformation matrices on 12-component eigenvectors for
time reversal T and translation T1,2 operations. By definition
of the PSG the eigenvectors φk with momentum k = k1 �B1 +
k2 �B2 ≡ (k1,k2) and energy E have the following symmetric
properties:

T : φ̃(k1,k2)(E) = RT φ(k1,k2)(−E),

T1: φ̃(k1,k2)(E) = RT1 (k1,k2)φ(k1,k2+π)(E),

T2: φ̃(k1,k2)(E) = RT2 (k1,k2)φ(k1,k2)(E).

φ̃ and φ are the bases after and before the symmetry operations.
In such a set of bases the Dirac Hamiltonian obtained by

expanding the U(1) SL [0,π ] mean-field Ansatz (C4) around
the two cones at ±Q is

HDirac =
∑

k

χ√
2
�

†
kμ

0σ 3(−kxν
1 + kyν

2)�k. (C23)

k should be understood as small momenta measured from
±Q. Possible mass terms are μ0,1,2,3σ 1,2ν0 and μ0,1,2,3σ 0,3ν3.
However, not all of them are allowed by symmetry. Here we
enumerate all symmetry operations and associated operator
transformations:
spin rotation along the ẑ axis by angle θ :

�
†
k → �

†
ke

i θ
2 ;

spin rotation along the ŷ axis by π :

�
†
k → �T

−kμ
2σ 2ν2;

time reversal T :

�
†
k → �

†
k(−iσ 2);

translation T1:

�
†
k → �

†
k(−μ3);

translation T2:

�
†
k → �

†
k(−iμ3).

Considering the above conditions, the only symmetry-allowed
mass terms are

∑
k �

†
km1,2�k with m1 = μ0σ 1ν0 and m2 =

μ3σ 3ν3.
The transformation rules for mirror reflection σ and π/3

rotation C6 depend on the choice of gσ ,gC6 in the PSG. In
general we have

σ : �†
k → �

†
σkMσ (gσ ),

C6: �†
k → �

†
C6kMC6 (gC6 ).

Using the basis (C22) the 8 × 8 matrices Mσ ,C6 can be
expressed in terms of Pauli matrices μ ⊗ σ ⊗ ν. For the four
Z2 spin liquids we have

Mσ (gσ = τ 0) = μ3 ⊗ σ 0 ⊗
(

0 e−i 1
12 π

e−i 5
12 π 0

)
,

Mσ (gσ = iτ 3) = μ3 ⊗ σ 3 ⊗
(

0 ei 5
12 π

ei 1
12 π 0

)
,

MC6 (gC6 = τ 0) =
(

1 0
0 i

)
⊗ σ 0 ⊗ ei 7

6 πν3
,

MC6 (gC6 = iτ 3) =
(

i 0
0 −1

)
⊗ σ 0 ⊗ ei 1

6 πν3
.

It turns out that in the Z2[0,π ]β state, only the first mass
term m1 = μ0σ 1ν0 is invariant under σ and C6 operations.
In the other three states neither of the mass terms m1,2 is
symmetry allowed. As a result we only have one gapped Z2

spin liquid, i.e., the Z2[0,π ]β state in the neighborhood of the
U(1) Dirac SL [0,π ] state.

Let us consider mean-field bonds up to second neighbor for
the Ansatz Z2 [0,π ]β. Perturbations to the two Dirac cones
of U(1) SL [0,π ] with λ3 = (

√
3 − 1)a0 in general have the

following form:

δH0 = [λ3 − (
√

3 − 1)a0 − (
√

3 + 1)b0]μ0σ 3ν0

+ [(
√

3 + 1)b1 − λ2 − (
√

3 − 1)a1]μ0σ 1ν0. (C24)

This means that we need either a first- neighbor (a1) or a
second-neighbor (b1) pairing term to open up a gap in the
spectrum. Meanwhile these pairing terms break the original
U(1) symmetry down to Z2 symmetry.
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APPENDIX D: Z2 SPIN LIQUIDS IN THE NEIGHBORHOOD
OF THE UNIFORM RVB STATE

The mean-field Ansatz of the uniform RVB state is simple:

HMF = χ
∑
〈ij〉,σ

f
†
i,σ fj,σ , (D1)

where χ is a real parameter and 〈ij 〉 represents sites i,j that
are nearest neighbors of each other. It is straightforward to
show that the PSG elements of such a mean-field Ansatz are

GU (x,y,s) = gU , U = T1,2,T ,σ ,C6 (D2)

and the SU(2) matrices gU satisfy

gT τ 3g
†
T = −τ 3,

(D3)
gUτ 3g

†
U = τ 3, U = T1,2,σ ,C6.

It turns out that there are only four gauge-inequivalent Z2

PSGs as solutions to (A4)–(A16) with the form (D2). In other

words, there are only four different Z2 in the neighborhood
of a uniform RVB state. With choice of a proper gauge they
all satisfy gT = iτ 1, gT1,2 = τ 0, and ηT1,2T = η12 = ηC6T1,2 =
ησT1,2 = 1,ηT = −1. These four states are characterized
by

(No. 1) Z2[0,0]A: gσ = gC6 = τ 0,

ησ T = ηC6T = ησ = ηC6 = ησC6 = 1. (D4)

(No. 5) Z2[0,0]B: gσ = τ 0, gC6 = iτ 3,

ησ T = ησ = 1, ηC6T = ηC6 = ησC6 = −1. (D5)

(No. 15) Z2[0,0]C: gσ = iτ 3, gC6 = τ 0,

ησ T = ησ = −1, ηC6T = ηC6 = ησC6 = 1. (D6)

(No. 13) Z2[0,0]D: gσ = gC6 = iτ 3,

ησ T = ηC6T = ησ = ηC6 = ησC6 = −1. (D7)

It turns out that these four Z2 SLs around the uniform RVB
state are all gapped as shown in Table II.
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