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Disappearance of the de Almeida-Thouless line in six dimensions
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We show that the Almeida-Thouless line in Ising spin glasses vanishes when their dimension d → 6+ as
h2

AT/T 2
c = C(d − 6)4(1 − T/Tc)d/2−1, where C is a constant of order unity. It is shown that replica symmetry

breaking also stops as d → 6+. Equivalent results that could be checked by simulations are given for the
one-dimensional Ising spin glass with long-range interactions.
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I. INTRODUCTION

The field of spin glasses is now well into its fourth decade,
with many important questions still unresolved. Chief among
these is the nature of the ordered phase. The principal rival
theories of it are (i) the replica-symmetry-breaking (RSB)
theory of Parisi,1 motivated by the exact solution of the
Sherrington-Kirkpatrick (SK) mean-field model, and (ii) the
droplet/scaling theory2,3 based on the properties of excitations
in the ordered phase. There is still no general consensus on
which (if any) of these theories is correct.

An important (and perhaps the simplest) discriminator
between the theories is the predicted behavior of the system
when the temperature is decreased in the presence of an applied
magnetic field. According to the RSB scenario, there will still
be a phase transition in an applied field h, occurring at a
temperature Tc(h), the Almeida-Thouless (AT) line,4 which
decreases as the field increases. This line can be explicitly
calculated in the mean-field SK model. For small h it has the
form Tc(h) = Tc(0) − const × h2/3 or, equivalently,

h2
AT ∝ [Tc − T ]3, (1)

where Tc(0) ≡ Tc. In the RSB theory, this line is the phase
boundary between the (high-temperature) replica-symmetric
phase and the (low-temperature) broken-replica symmetry
spin-glass phase. Within the droplet/scaling theory, on the
other hand, there is no such line: An applied magnetic field is
predicted to remove the phase transition completely and the
low-temperature phase in the absence of a field has replica
symmetry.

Before presenting our calculation, we recall that the shape
of the AT line starts to differ from Eq. (1) already for d < 8,
as shown by Green et al.5 and by Fisher and Sompolinsky.6

Instead of Eq. (1), these authors show that the AT line has the
form

h2
AT ∝ [Tc − T ]d/2−1 (2)

for 6 < d < 8. Note that as d → 8− in Eq. (2), Eq. (1) is
recovered.

In this paper, we will derive an exact result for the form
of the AT line in d = 6 + ε dimensions, correct to leading
nontrivial order in ε. The result can be written, for T close to
Tc(0), as

h2
AT

T 2
c

= C(d − 6)4

(
1 − T

Tc

)d/2−1

, (3)

where C is a nonuniversal constant. The form is the same as
that proposed by Green et al. and by Fisher and Sompolinsky,
but the amplitude contains the factor (d − 6)4, which vanishes
(rapidly) for d → 6.

In itself this result does not prove that there is no AT
line below six dimensions. If there were an AT line below
six dimensions, it would have the scaling form h2

AT ∼ (1 −
T/Tc)β+γ , where β and γ are the critical exponents of the
zero-field spin glass.6 The vanishing of the amplitude in Eq. (3)
would arise to ensure continuity in six dimensions of the
forms above and below Tc.7 Hence, we need to provide an
additional argument why there should be no AT line when
d � 6.

Even before the droplet/scaling theory had been developed,
Bray and Roberts8 (BR) had used standard renormalization-
group (RG) methods to investigate the putative RG fixed point
that controls the critical behavior at the AT line. In zero
field, there are three degenerate soft modes at the critical
point (usually called the “longitudinal”, “anomalous” and
“replicon” modes). A conventional RG analysis9 shows that
the upper critical dimension is du = 6. For d > 6 the Gaussian
fixed point is stable and the critical exponents take their
mean-field values. For d < 6, a nontrivial fixed point is stable
and nonclassical exponents are obtained and can be calculated
as a power series in (6 − d) in the conventional way.

An applied magnetic field, however, changes everything.
The field lifts the degeneracy, leaving a single soft mode, the
replicon mode. In their RG calculation, BR discarded the two
hard modes, and derived RG recursion relations appropriate
to the soft modes, which we discuss below. Again, the critical
dimension is du = 6. There are now two coupling constants
w1 and w2. In dimensions d > 6, the RG flows have a
single stable fixed point, the Gaussian fixed point with w∗

1 =
w∗

2 = 0, implying that for d > 6 there is a continuous phase
transition, with critical exponents given by their mean-field
values.

For d � 6, however, no physical stable points could be
found. BR suggested that this might be because there was
no AT line for d � 6. We shall strengthen this argument by
examining the RG flows when d > 6 in more detail. We find
that the basin of attraction of the Gaussian fixed point shrinks
to zero as ε → 0; it has a linear extent of order ε1/2. It thus
seems natural to expect that there is no AT line when d � 6;
there is no physical stable fixed point when d � 6 and the basin
of attraction for the controlling fixed point in 6 + ε dimensions
is shrinking to zero as ε → 0.
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Above the AT line the high-temperature phase is replica
symmetric. Below it, the phase has broken-replica symmetry.
Thus if the AT line is disappearing as d → 6+, then one would
naturally expect that replica-symmetry breaking in the zero-
field case would vanish as d → 6+. We shall demonstrate that
this is indeed the case by showing that the “breakpoint” x1 in
Parisi’s RSB function q(x) (see Ref. 1) goes to zero in this
limit. Thus the low-temperature phase for d � 6 should be
replica symmetric.

The structure of the paper is as follows. In Sec. II, we present
an RG analysis, valid for d � 6, that leads directly to Eq. (3).
In Sec. III we analyze the consequences of our RG results for
the form of the breakpoint, x1, in the Parisi RSB theory. We
find that x1 tends to zero for d → 6+, suggesting that replica-
symmetry breaking goes away in six dimensions. In Sec. IV,
the RG equations of BR are presented. The basin of attraction
of the Gaussian fixed point is determined numerically. It is a
compact region enclosing the origin, with linear dimensions of
order

√
ε, shrinking to a point as d → 6+. In Sec. V, we treat

the one-dimensional spin-glass with long-range inetractions
falling off with distance r as r−σ . This model has mean-field
behavior for σ < 2/3 and nonclassical behavior for σ > 2/3.
Thus σ < 2/3 corresponds to d > 6 in the short-ranged model.
We show that the de Almeida-Thouless line goes away as
σ → 2/3−, and that the breakpoint x1 of the Parisi function
goes to zero in this limit. We conclude with a brief discussion
of the main points in Sec. VI.

II. RENORMALIZATION GROUP ANALYSIS

We now describe the calculations that lead to the result
quoted above. We start from the Ginzburg-Landau-Wilson
free-energy functional for the Ising spin glass which, written
in terms of the replica order parameter field, is

F [{Qαβ}]=
∫

ddx

[
1

2
r
∑
α<β

Q2
αβ + 1

2

∑
α<β

(∇Qαβ)2

+ w

6

∑
α<β<γ

QαβQβγ Qγα−h2
∑
α<β

Qαβ +O(Q4)

]
,

(4)

where h is the applied field. We use conventional RG methods,9

but work above the upper critical dimension, du = 6, so we
define ε = d − 6. A simple scaling analysis of the terms in
the functional of Eq. (4) shows that the natural size of h2 is
∼|r|2/w; this remains the correct scaling form for all d > 6.
h2

AT is given by Eq. (3) and Eq. (16) below and is much smaller
than |r|2/w provided w2|r|ε/2 	 1. We shall work in this limit
as it allows the use of the simple RG equations of the h = 0
theory to obtain the AT line as T → Tc. When d � 6 this will
not be possible and the full set of RG equations in Ref. 10
would have to be solved instead.

The renormalization-group flows for w and r read,10

dw

dl
= 1

2
[−ε − 3η(l)]w − 2w3, (5)

dr

dl
= [2 − η(l)]r − 4w2r, (6)

while h2 evolves according to

d(h2)

dl
= d + 2 − η(l)

2
h2 , (7)

where η(l) = −(2/3)w(l)2. The RG equations are correct
to O(w3), and to linear order in r . There is an additional
r-independent term of order w2 in Eq. (6) that we have omitted
since it ultimately just leads to a shift in r , i.e., a shift in the
critical temperature. In these equations, the usual geometrical
factor Kd = 2/�(d/2)(4π )d/2 has been absorbed into w2.
For d > 6 the Gaussian fixed point is stable and the critical
exponents take their mean-field values.

Integrating the RG-flow equations when d > 6 up to scale
l gives

w(l) = w(0) exp(−εl/2)

[(2w(0)2/ε)(1 − e−εl) + 1]1/2
, (8)

r(l) = r(0) exp[2l − (10/3)
(l)], (9)

h(l)2 = h(0)2 exp[{(d + 2)/2}l + (1/3)
(l)], (10)

where


(l) =
∫ l

0
w(l′)2 dl′ = 1

2
ln

[
2w(0)2

ε
(1 − e−εl) + 1

]
(11)

and w(0) = w, h2(0) = h2, and r(0) = r .
At large l,

w(l) →
[

ε

2(1 + ε/2w(0)2)

]1/2

exp(−εl/2). (12)

The exponential follows from the O(w) terms in the RG
equation (5). The O(w3) terms in Eq. (5) serve to fix the
amplitude of the asymptotic decay. The basic idea is to
integrate the RG equations to a scale l∗ at which the running
coupling constant, w(l∗), is small enough for one-loop-order
perturbation theory to be accurate.

The one-loop perturbative calculation of the AT line has
been carried out by Green et al. The result is5

h2/Q = 144w2|r|2Id, (13)

where Id is the integral
∫ ∞

0 ddq q−4(q2 + |r|)−2, which equals
Ad |r|d/2−4 and Ad = 1/2 for d = 6. In Eq. (13), the geomet-
rical factor Kd has again been absorbed into w2, and Q is the
mean-field value of the order parameter for r < 0. The factor
of 36 between this result and that in Ref. 5 is due to the dif-
ferent definitions of w, which differ by a factor of six in the
two calculations. Using the result Q ∼ 3|r|/w, which holds
on the AT line in the perturbative limit where w2|r|ε/2 	 1,
we find

h2 ∼ w|r|d/2−1 (6 < d < 8) (14)

which is the result obtained in Refs. 5 and 6.
To exploit the perturbation-theory result, we coarse-grain

to scale l and replace w by w(l), r by r(l), and h2 by h(l)2 to
obtain h(l)2 ∼ w(l) |r(l)|d/2−1. Equation (12) shows that w(l)
becomes progressively smaller as l increases. Our use of the
perturbative result will become valid at some value l = l∗,
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where l∗ will be specified below. Inserting the l-dependent
forms for h(l), w(l), and r(l) at l = l∗, one obtains

h(0)2 ≡ h2
AT = w(0)|r(0)|d/2−1

[(2w(0)2/ε)(1 − e−εl∗ ) + 1]5d/6−1
. (15)

Setting d = 6 + ε, and taking exp(−εl∗) 	 1 we obtain the
final result, correct to leading order in ε, that

h2
AT ∼

(
ε

2w(0)2

)4

w(0)|r(0)|d/2−1 ≡
(

ε

2w2

)4

w|r|d/2−1.

(16)

This is equivalent to Eq. (3).
One cannot simply set l∗ → ∞ in Eq. (15). The RG

equations as presented here are valid provided r(l∗) remains
small or comparable to the square of the cut-off in the theory,
which is conventionally taken to be unity. To leading order
r(l∗) = r(0) exp(2l∗), so we shall fix l∗ by setting6

|r(l∗)| ≈ |r(0)|e2l∗ = 1. (17)

Equation (16) will hold provided that

e−εl∗ = |r(0)|ε/2 ≡ |r|ε/2 	 1. (18)

Thus as ε → 0, the temperature interval near Tc over which
Eq. (3) is accurate becomes very narrow.

III. DOES RSB DISAPPEAR FOR d < 6?

We are arguing in this paper that the lower critical
dimension for the AT line—the line beneath which RSB sets in
in the presence of a field—is 6. In zero field, there is still a phase
transition when d � 6, provided d > dl , where dl is the lower
critical dimension, thought to be between two and three. One
might wonder whether replica-symmetry breaking is present
in the zero-field phase or whether RSB too disappears below
six dimensions. We next present an argument that RSB in zero
field vanishes as d → 6+ based on the same methods that we
used to derive the dimensionality dependence of the AT line.

When d > 6 the form of replica-symmetry breaking is well
established.1,11 〈Qαβ〉 becomes a function q(x) in the interval
1 � x � 0, which is constant for 1 � x � x1 at the value
qEA (= Q) and then falls from this value to zero at x = 0. For
the functional of Eq. (4) (with h2 set to zero) the breakpoint
x1 is given to one-loop order for 6 < d < 8 by11

x1 ∼ w2|r|d/2−3 . (19)

If x1 was zero, the spin glass would be replica symmetric.
We shall argue that as d → 6+, x1 goes to zero linearly with
(d − 6), suggesting that when d � 6 there will be no replica-
symmetry breaking. Higher loop terms will leave the exponent
of |r| unchanged, but modify its prefactor, just as they do for
the AT line of Eq. (2).

We shall work in 6 + ε dimensions again with ε small and
take |r| small so as to permit neglect of the quartic terms in
the functional Eq. (4). The RG will be used to coarse-grain to
scale l∗ at which the form of the perturbative one-loop-order
expression for the breakpoint x1 becomes valid. The breakpoint
x1[r,w] has zero scaling dimension, so it follows that

x1[r,w] = x1[r(l∗),w(l∗)] ∼ w(l∗)2|r(l∗)|d/2−3. (20)

Inserting our previous expressions for r(l∗) and w(l∗), one
finds

x1[r,w] ∼ w(0)2|r(0)|d/2−3

[(2w(0)2/ε)(1 − e−εl∗ ) + 1]5d/6−4
. (21)

l∗ is specified as in Eq. (18). Hence, in the limit when ε is
small (but εl∗ � 1)

x1 ∼ 1
2 (d − 6)|r|d/2−3, (22)

which goes to zero as d → 6+, implying that replica-symmetry
breaking vanishes in this limit.

IV. THE BRAY-ROBERTS CALCULATION AND
THE ISLAND OF STABILITY

We shall now describe the BR calculation of the RG
equations pertinent to the AT line. It is this work, which is at the
heart of our contention that six is the lower critical dimension
for the existence of the AT line. As mentioned before, their
approach is to study just the fields in the replicon sector Q̃αβ ,
which are such that

∑
β Q̃αβ = 0. The effective functional is

F [{Q̃αβ}] =
∫

ddx

[
1

4
r̃
∑

Q̃2
αβ + 1

4

∑
(∇Q̃αβ)2

+ (w1/6)
∑

Q̃αβQ̃βγ Q̃γα + (w2/6)
∑

Q̃3
αβ

]
.

(23)

Here, the convention has been adopted that the sums over
replica indices are unrestricted except that Q̃αα = 0. At the
AT line, r̃ = 0 in the mean-field approximation. According to
BR, the coupling constants w1 and w2 would have for d > 6
the RG-flow equations:

dw1

dl
= 1

2
[−ε − 3ηR(l)]w1 + 14w3

1

− 36w2
1w2 + 18w1w

2
2 + w3

2, (24)

dw2

dl
= 1

2
[−ε − 3ηR(l)]w2 + 24w2

1w2 − 60w1w
2
2 + 34w3

2.

(25)

Once again we have adopted the convention of absorbing the
geometric factor Kd into w1 and w2 and ηR(l) = (4w2

1 −
16w1w2 + 11w2

2)/3. Presumably one could obtain these
replicon-sector equations by integrating the full equations
of Ref. 10 containing the hard longitudinal and anomalous
modes as well as the replicon modes until the hard modes are
decoupled from those in the replicon sector. If one were able
to carry out this formidable task, the initial values of w1 and
w2 could be determined. We suspect that the initial value of w1

would turn out to be of order w(l∗)(∼ε1/2|r|ε/4). At mean-field
level, w2 is ∼yQ, where y is the coefficient of a particular
quartic term, (y/4)

∑
α<β Q4

αβ , found when one goes beyond
the cubic functional in Eq. (4).8 The effective value of y is
dominated at small |r| when 6 < d < 8 by its renormalization
by the four cubic vertex “box” diagram.6 Then y ∼ w4|r|d/2−4

and so w2 ∼ w(l∗)3|r(l∗)|ε/2(∼ε3/2|r|3ε/4). Fortunately, we do
not need the precise initial values of w1 and w2 for our
argument, which is based upon the form of the basin of
attraction of the Gaussian fixed point of Eqs. (24) and (25).
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FIG. 1. The island of stability of the Gaussian fixed point for
d > 6. Distances are measured in units of

√
ε. Only the region w2 > 0

is displayed.

The basin of attraction has been determined numerically,
and is displayed in Fig. 1. By scaling both w1 and w2 by ε1/2

and writing l̃ = εl, the explicit dependence on ε in Eqs. (24)
and (25) can be removed. There is a peculiarly shaped compact
region (the “island of stability”) around the origin in the w1-w2

space inside which all flows are to the Gaussian fixed point
w∗

1 = 0 = w∗
2 . Outside this region the flows are to infinity.

The linear extent of this basin of attraction is from the scaling
of w1 and w2 of order ε1/2. Thus as ε → 0, the size of the
basin of attraction shrinks to zero. Now BR showed that when
d � 6 there was no stable physical fixed point; all flows of w1

and w2 were to infinity. Since the basin of attraction of the
fixed point associated with the AT line is shrinking to zero as
d → 6+ and no physical stable fixed points exists for d � 6,
it seems natural to expect that the lower critical dimension
of the AT line and replica-symmetry breaking generally must
be six. This is a result in line with earlier expectations3 but
is also in accord with more recent results for the “strongly
disordered spin-glass model”, a model with an unusual bond-
distribution.12

The behavior of the basin of attraction of the Gaussian fixed
point of Eqs. (24) and (25) as d → 6+ should be contrasted
with that of Eq. (5) for the zero-field case. In the latter case, the
basin does not shrink to zero as d → 6+ and there is a phase
transition when dl < d � 6.

Our treatment of the AT line was done using the zero-field
RG equations with one coupling constant w rather than the
full set of coupling constants, w1,w2, . . . ,w8 of Ref. 10. The
justification for this is that all but w1 can be dropped when
obtaining the form of the AT line as T → Tc. To elaborate
this point further we have already quoted forms for w2(l∗)
and w1(l∗) and as |r| → 0, w2(l∗) is indeed negligible in
comparison with w1(l∗). However, for d � 6, the situation is
quite different. If the coupling coefficients w2,w3, . . . ,w8 are
anything but zero, the RG flows will take them to infinity
and so for d � 6 it is never possible to work with just
the one-coupling-constant RG equations. The same point is
relevant for the attempts to extend RSB calculations to d � 6
in zero field.11 For d > 6 all the coupling constants can flow
to the Gaussian fixed point.

V. THE ONE-DIMENSIONAL SPIN GLASS
WITH LONG-RANGED INTERACTIONS

Because our calculation on the form of the AT line is only
valid when ε is small, there is no chance that it can be directly
checked by simulations. However, we can derive the analogous
results for the one-dimensional Ising spin glass with long-
range interactions, whose AT line has recently been the subject
of contradictory numerical simulations.13,14 The Hamiltonians
of these studies are variants of

H = −
∑
〈ij〉

JijSiSj −
∑

i

hiSi, (26)

where hi is a random field of variance h2, the sum is over all
pairs 〈ij 〉, and i and j are positions on the one-dimensional
lattice. The interaction

Jij = J
εij

|i − j |σ , (27)

where the εij are independent random variables with a
Gaussian distribution of zero mean and unit variance. This
model was introduced by Kotliar et al.,15 who showed that
for σ < 2/3 the model has mean-field critical exponents,
and non-mean-field exponents for 2/3 < σ < 1. When σ > 1,
there is no finite-temperature phase transition. The σ interval,
2/3 < σ < 1, is the analog for short-range spin glasses of
the dimension range between the upper critical dimension
(du = 6) and the lower critical dimension, while σ < 2/3
corresponds to dimensionalities d > 6. Thus just by changing
the value of σ one can explore both systems corresponding to
high and low dimensionality.

Our expectation is that when σ < 2/3 there will be an AT
line and both Refs. 13 and 14 confirm this. Unfortunately, for
σ > 2/3 the two groups of simulators were in disagreement
with each other: Ref. 13 did not see an AT transition, whereas
Ref. 14 did. Our prediction below of the form of the AT line
as σ → 2/3− supports the conclusions of Ref. 13.

The RG equations near the upper critical value of σ , 2/3,
were first written down in Ref. 15. They exploited the fact that
for these long-range interactions 2 − η = 2σ − 1 .16 The bare
propagator is 1/(q2σ−1 + r). The RG-flow equations become

dw

dl
= −(2 − 3σ )w − 2w3, (28)

dr

dl
= (2σ − 1)r − 4w2r, (29)

while h2 grows as

d(h2)

dl
= σh2. (30)

Equations (28) and (29) are valid only when w is small, but
Eq. (30) is exact.

The perturbative calculation along the lines of Green et al.5

of the AT line to one-loop order gives a result similar to
Eq. (14):

h2/Q = 144w2|r|2Iσ , (31)
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where Iσ = ∫ ∞
0 dq q−2(2σ−1)(q2σ−1 + |r|)−2, which equals

Bσ |r|(5−8σ )/(2σ−1), and B2/3 = 3. Hence, to one-loop order the
equation of the AT line is

h2 ∼ w|r| 2−2σ
2σ−1 , (2/3 > σ > 5/8). (32)

For σ → 5/8, the mean-field AT form h2 ∝ |r|3 is recovered.
Hence, σ = 5/8 is the analog of eight dimensions for short-
range spin glasses.

It is straightforward to integrate the RG equations for the
long-range case to obtain the form of the AT line as σ → 2/3−.
The result is

h(0)2 ∼
[

2 − 3σ

w(0)2

] 3−2σ
2(2σ−1)

w(0)|r(0)| 2−2σ
2σ−1 (33)

or equivalently

h2
AT

T 2
c

= C(2 − 3σ )
3−2σ

2(2σ−1)

(
1 − T

Tc

) 2−2σ
2σ−1

, (34)

and C is again a constant of O(1). Hence, as σ → 2/3− the
AT line goes away. That there was no AT transition in the
interval 1 > σ > 2/3 has also recently been suggested17 from
an expansion about σ = 1, the “lower critical value.”

The equivalent result for the breakpoint x1, in the Parisi
function for the one-dimensional long-ranged system is

x1 ∼ (2 − 3σ )|r|(4−6σ )/(2σ−1), (35)

when σ → 2/3−.

VI. CONCLUSIONS

We have presented arguments that the Almeida-Thouless
line in spin glasses is absent in systems with six or fewer space
dimensions, i.e., these systems exhibit no phase transition

under cooling if an external magnetic field is present. We have
also argued that the features associated with broken-replica
symmetry in the Parisi solution of the SK model are not present
in finite-dimensional spin glasses with d � 6.

Equivalent results have been obtained for a one-
dimensional spin glass with interactions decaying with dis-
tance r as 1/rσ . These systems are more amenable to
simulation than short-ranged systems in high-dimensional
space. To date, however, there seem to be no simulational
studies of the one-dimensional long-range model that might
help to confirm Eq. (34) in the interval 5/8 < σ < 2/3. One
issue that will complicate such studies was pointed out in
Ref. 13. Simulations at the AT line require the system to
be large enough so that the Parisi overlap function P (q) has
only positive support. This requires h(QN )1/2 > T . Whether
simulations can be done with the number of spins N large
enough to meet this requirement remains to be seen.

The debate as to the nature of the spin-glass phase in
three dimensional systems has run for so long because on
the experimental side, for example, dynamical effects can
produce an apparent AT line,3,18 while in simulations there are
always finite-size effects that can mimic some of the effects
of replica-symmetry breaking.19 As a consequence, it was
always hard to be certain which of the two pictures, RSB or
droplet scaling, was correct. Ref. 20 is an example of a recent
simulation and provides further references. We believe that
our calculations provide strong arguments that the spin-glass
phase will not have replica-symmetry breaking in dimensions
d � 6.
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