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Anharmonic effects in magnetoelastic chains
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We describe a new mechanism leading to the formation of rational magnetization plateau phases, which is
mainly due to the anharmonic spin-phonon coupling. This anharmonicity produces plateaux in the magnetization
curve at unexpected values of the magnetization without explicit magnetic frustration in the Hamiltonian and
without an explicit breaking of the translational symmetry. These plateau phases are accompanied by magneto-
elastic deformations, which are not present in the harmonic case.
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I. INTRODUCTION

Coupling of electronic and elastic modes has been shown
to play a crucial role in many condensed matter systems,
most notably in the BCS theory of superconductivity where
the presence of the lattice degrees of freedom is crucial to
explain pair formation.1 Another paradigmatic case is the
so-called Peierls effect, where modulations in the charge
or spin densities may appear due to the electron-phonon
interactions (see, e.g., Ref. 2 and references therein). More
recently, phonon effects have been observed in many other
strongly correlated systems, in particular in some magnetic
systems that show plateaux in their magnetization curves.3

Usually one expects to have an accurate description of
an electron-phonon system by approximating the phonon
potential with a quadratic function of the interatomic distances
between nearest-neighbor ions on sites i and j , δij . Within
the same degree of accuracy, the dependence in δij of the
hopping amplitudes and/or the magnetic exchange constants
is approximated as a linear function. This description works
well in most of the cases, since interatomic displacements
are usually rather small as has been verified experimentally in
many systems, like in the BCS superconductors. More recently,
however, a less conventional BCS superconductor, MgB2, has
shown an unusually high critical temperature, around 40 K,
which could be the consequence of strong anharmonicities
both in the phonon potential and in the electron-phonon
coupling.4–7

The relevance of anharmonic couplings has also been
discussed in relation to a great variety of compounds, both
from an experimental8–10 and a theoretical point of view,11

including the family of pyrochlore oxide superconductors,
AOs2O6 for A = Cs, Rb, and K,8 the heavy fermion super-
conductors PrOs4Sb12 and SmOs4Sb12,9 and some potentially
thermoelectric materials such as X8Ga16Ge30 (X = Eu, Sr, and
Ba),10 etc. Another possible relevance of anharmonicities is in
the study of spin systems in high pulsed magnetic fields and
Raman experiments,12

Apart from possible experimental motivations, the role of
anharmonicities in the physics of low-dimensional systems is
interesting in its own right and we investigate this issue in the
present paper in one of the simplest and most paradigmatic
one-dimensional systems: the XXZ Heisenberg chain.

More precisely, we analyze in the present paper the
effects of anharmonic (adiabatic) phonons in the spin-Peierls
mechanism as well as the consequences on the magnetic
properties of the XXZ Heisenberg chain coupled nonlinearly
to lattice deformations. The most important consequence of the
anharmonicity is that it produces plateaux in the magnetization
curve at unexpected values of the magnetization. For example,
a plateau at M = 1/3 of saturation magnetization appears
without explicit magnetic frustration in the Hamiltonian and
without an explicit breaking of the translational symmetry.13,14

Besides, magnetoelastic deformations appear in some particu-
lar cases with frequencies that halve that of the first harmonic,
2kF , as, e.g., at M = 1/5 (see below). Similar conclusions
should apply to more complicated models, since the effects
of other interactions such as, e.g., a next-nearest-neighbor
interaction would be simply to enlarge the extension of the
plateaux phases and to modify the magnitude of the spin
gaps.15

II. MODEL

We start from the following spin-phonon Hamiltonian in
the limit of large ionic mass M → ∞, the so-called adiabatic
limit

H = J
∑

i

(1 + A1δi + A2δ
2
i ) �Si · �Si+1

−h
∑

i

Sz
i +

∑
i

V (δi). (1)

Here δi denotes the interatomic distance between site i and
i + 1, h is the external magnetic field, and �Si are spin-1/2
operators.

The dependence of the spin-phonon coupling on the
interatomic distance δi has been expanded up to second order
with coefficient A2. A Zeeman term is included to take into
account magnetic-field effects.

The phonon potential energy in Eq. (1) is given by

V (δi) = ω0

(
1

2
δ2
i + α3δ

3
i + α4δ

4
i

)
, (2)

where α3 and α4 take into account the anharmonicity of the
interatomic potential energy.
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Generally, the properties due to the anharmonic oscillations
arise both from the addition of quartic terms in the potential
energy and next-to-leading terms in the spin-phonon coupling.
In this paper, we focus on the contribution of the anharmonicity
in the spin-phonon coupling measured by A2, ignoring the
contribution of higher-order terms in the potential energy. We
show that it is the term quadratic in the lattice deformations
in the interaction Hamiltonian that changes drastically the
physics of the magnetoelastic XXZ chain. We expect that
higher-order terms in the potential energy (cubic and quartic)
are inessential.

III. BOSONIZATION DESCRIPTION

Following the usual procedure in the low-energy limit, we
bosonize the spin degrees of freedom at fixed magnetization
M and the interaction term becomes15

Hsp-ph =
∫

dx[A1 δM (x) + A2 δM (x)2]ρ(x), (3)

where we have introduced the subscript M in δM (x) to stress its
dependence on the magnetization. Here ρ(x) is the continuum
expression of the energy density

ρ(x) = α∂xφ + β cos(2kF x +
√

2πφ) + · · · , (4)

where kF = π
2 (1 − M), α and β are constants, and the ellipses

indicate higher harmonics.16

The main contribution in the low-energy limit comes
from the constructive interference between the modulation
term A1δM (x) + A2δM (x)2 and the most relevant part of
ρ(x), i.e., cos(2kF x + √

2πφ). This operator has conformal
dimension that depends on the Tomonaga-Luttinger parameter
K(M,
)/2, where 
 measures the z-axis anisotropy in the
XXZ model. Here we emphasize the dependence on the
magnetization M and the anisotropy 
.

Let us propose a periodic pattern of deformations δM (x)
with period Lp, i.e., satisfying δM (x + Lp) = δM (x) (the
lattice spacing a is set to 1 in what follows, so that Lp is
an integer). The most general ansatz for the modulation term
is given by

δM (x) =
Nw∑
n=1

δn(M) cos

(
n

2πx

Lp

+ θn(M)

)
, (5)

where δn(M) are the amplitudes and θn(M) the phases of
the different terms in the expansion. The upper sum index
Nw equals Lp/2 if Lp is even and (Lp − 1)/2 if it is odd.
[In what follows the dependence of δn(M) and θn(M) on
M is suppressed to ease the notation, i.e., δn(M) → δn and
θn(M) → θn.]

From Eqs. (4) and (5), we see that the product between the
two terms is commensurate whenever the following relation is
satisfied:

kF ∝ 2π

Lp

, (6)

which implies that the wavelengths of the modulations that
could pin the relevant cosine term are related to the magneti-
zation as

Lp = 4m

1 − M
, (7)

where M �= 1 and m is an arbitrary integer—the smallest
possible that makes Lp an integer.

The ansatz in Eq. (5) is verified a posteriori from the
Density Matrix Renormalization Group (DMRG) analysis,
where it is seen that the modulation amplitudes δn and the
phases θn depend strongly on the value of the magnetization
M , some of them being zero in certain cases.

Using this form for δM (x), the interaction term (3) takes the
form

Hsp-ph =
2(Nw+1)∑

p=0

λp

∫
dx cos

(
pkF x +

√
2πφ + 
p

)
, (8)

where 
p is a function of the phases θn in the expansion (5)
and λp is a function of δn, θn, and the coupling constants A1

and A2.
This form of the interaction allows us to conclude that

the spin Peierls effect takes place in the usual manner (see
Ref. 15 and references therein), since we have both the always
commensurate term (p = 0 in the above equation) cos(

√
2πφ)

and the 4kF term that provide together a dimerization of the
lattice and a plateau at M = 0 in the magnetization curve.

For finite magnetization, using Eqs. (6)–(8) and using
the commensurability condition that arises from Eq. (8),
p kF /2π ∈ Z, one obtains the following condition for the
frequencies in Eq. (5) to pin a relevant perturbation:

(z ± 2)(1 − M) = 4 × integer, (9)

where z is an integer that runs through all the frequencies that
appear in the lattice deformation Eq. (5) and its square, i.e.,
z = 0,...,2 Nw. In Table I, we show some examples that we
analyze in what follows using DMRG.

One should stress that, in the present case, the situation
is rather different than in previous studies of spin systems
in a magnetic field, such as in the case of spin ladders,
magnetoelastic zig-zag chains, etc., since now the perturbing
operator that would be responsible for the plateau is relevant,
independently of the values of the microscopic parameters.
This may seem to imply that condition (9) is also sufficient,
but bosonization alone does not provide the actual values of
the amplitudes of the different Fourier components of the

TABLE I. Possible frequencies for the lattice deformations for
magnetizations, M = 1/5, 1/3, and 1/2, obtained from Eq. (9).

M = 1/5 M = 1/3 M = 1/2

Lp 5 6 8
Nw 2 3 4
z ± 2 5,10,... 6,12,... 8,16,...

z 3 4 6
Possible 2kF

kF and 2kF or 2kF and 4kF

frequencies kF and 3kF
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deformation we proposed and it remains to be checked that
they are indeed nonvanishing. In order to answer this question,
we need to use DMRG as we describe below.

From the above analysis, we predict that the magnetization
curve may present new features related to the frequencies
that appear in the Fourier decomposition of the elastic
deformation (5)for some given values of M , such as M = 1/5,
M = 1/3, M = 1/2, etc. Since these frequencies pin the very
relevant term cos(

√
2π φ), plateaux at these values of M are

expected to show up even for a small anharmonicity A2. In
such cases, the plateaux widths gap(M,
) should scale as

gap (M,
) ∝ λ1/[2−d(M,
)], (10)

where λ is the coupling constant associated to the relevant
cosine term in Hsp-ph and d(M,
) is the scaling dimension
that can be computed from the Bethe ansatz solution.17 The
coupling λ is a function of the anharmonic amplitude A2 and its
functional dependence, though not predicted by bosonization,
can be computed numerically as we show below. From now
on, we will concentrate in the isotropic case 
 = 1.

IV. DMRG ANALYSIS

This is the general setting obtained from bosonization,
which provides the qualitative picture expected when an-
harmonic effects play a role. To have a complete and more
quantitative picture, we study the system using extensive
DMRG computations. More specifically, we compute the
ground-state energy E(Sz

total,h = 0) of Eq. (1) in the complete
set of Sz

total subspaces using periodic boundary conditions, and
keeping just 300 states was shown to be enough to assure
the accuracy of the calculation. As usual, adding the Zeeman
term, we solve the equation E(Sz

total,h) = E(Sz
total + 1,h) to
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FIG. 1. (Color online) M vs h for A1 = 0.6, A2 = 0.4, and
different system sizes (N = 30, 36, 48, and 60). The bold black
line corresponds to the extrapolation to the thermodynamic limit.
The plateaux at M = 0 and 1/3 are clearly observed, while for
M = 1/5 and 1/2, it is hard to conclude if they survive in the
thermodynamic limit. Note that for N = 30, M = 1/5 and 1/2 are
not commensurate. The inset shows the finite size scaling of the width
of the plateau at M = 1/3. Its finite size scaling is expected to follow
width(N ) = width(∞) + AN−B .

obtain the normalized magnetization M = 2Sz/N , where the
plateaux are showing up. This procedure allows us to compute
the actual width of the plateaux and their scaling behavior,
the deformation patterns, and fractional excitations for the
different plateaux.

Let us analyze in detail the situation at M = 1/3, where we
expect to have a plateau. In this case, kF = π/3 and our ansatz
for the modulation (5) takes the form

δ1/3(x) = δ1 cos(kF x + θ1) + δ2 cos(2kF x + θ2)

+ δ3 cos(3kF x + θ3), (11)

which leads to the perturbation Hamiltonian

Hsp-ph ≈ λ1/3 cos
(√

2πφ + 
1/3
) + · · · , (12)

where λ1/3 and 
1/3 depend on λ0 and λ6, which are the only
two commensurate terms in Eq. (8) at magnetization M = 1/3
(see Fig. 1). The dots in Eq. (12) indicate less relevant terms,
which can be safely discarded in the presence of the more
relevant term ∝cos(

√
2π φ).

The couplings appearing in Eq. (12) have a lengthy
expression in terms of the strengths of the spin-phonon
couplings A1 and A2 but also on the δn’s and on the relative
phases θn’s, whose values cannot be extracted from the
bosonization analysis alone. To further proceed, we now resort
to the numerical analysis of the system using DMRG on large
systems, which allows us to estimate all these parameters in a
self-consistent way.

The lattice deformations can be calculated in a self-
consistent way. Minimizing the ground-state energy and
imposing the following constraint:

∑
j

δj = 0, (13)

0 1 2 3 4
0

0.1
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1 2 3
0

0.4
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1 2
0

0.4

A2 = 0.1

A2 = 0.2

A2 = 0.3

A2 = 0.4

M = 1/2 M = 1/3

M = 1/5

wn/kF

wn/kF

wn/kF

FIG. 2. (Color online) Amplitudes δn(M) [see Eq. (5)] as a
function of the frequency wn = 2π n/Lp in units of kF (with
A1 = 0.6) for M = 1/2, 1/3, and 1/5. The peaks indicate which
frequencies contribute to the deformation pattern. The 2kF peak is
always bigger because, to linear order in δM (x), it contributes to the
energy for all magnetizations.
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8 7 6 5 4 3 2 1
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log

log λ1/3

reference
curve
α = 0.77

Bosonization+
DMRG
α = 0.778

log gap = α logλ1/3 + cte

gap

FIG. 3. (Color online) Logarithmic plot of the gap(λ): the blue
dots correspond to the reference curve gap(λ) = λ0.77 with the gap
obtained from DMRG, while the red dots correspond to the gap
obtained from DMRG vs the values of λ extracted from bosonization.
The value 0.77 is obtained from the Bethe ansatz solution.

we obtain

δi =
JA1

[(∑
k〈�Sk · �Sk+1〉(ω0+2JA2〈�Sk · �Sk+1〉)−1∑

k (ω0+2JA2〈�Sk · �Sk+1〉)−1

)
− 〈�Si · �Si+1〉

]

(ω0 + 2JA2〈�Si · �Si+1〉)
. (14)

We start from an arbitrary chosen initial set of deformations
{δ(0)} to be varied and determined self-consistently. For a given
set {δ(N)}, we determine the corresponding ground state and
then we compute a new set {δ(N+1)} using Eq. (14), which
we use again in the Hamiltonian. Iterating this procedure, we
finally obtain a fixed-point configuration of the deformations
δ

(N+1)
i ({δ(N)}) = δ

(N)
i .

From the DMRG data, we observe that for M = 1/3 only
the 2kF mode contributes to the lattice deformations (see
Fig. 2), so that we can safely set δ1 = δ3 = 0. As for the
phase θ2, it is negligible within the numerical precision so we
set it to zero in what follows. With this input from DMRG, we
get the following expressions for the bosonization parameters,
i.e., for the amplitude λ1/3 and phase 
1/3 in Eq. (12),

λ1/3 ∝
(

A1δ2√
8

+ A2δ
2
2√

32

)
,

(15)

1/3 = −π/3.

Here a word is in order: To analyze the scaling of the gap,
we need to identify the effective coupling constant associated
to the perturbing operator responsible for the opening of the
gap. Since the term proportional to A1 is present for all
magnetizations, it does not play a role in the gap opening

and we can then identify the coupling constant governing the
scaling of the gap in Eq. (10) as λ ∝ A2δ

2
2.

On the other hand, we can extract the deformation ampli-
tude as a function of A2 from the numerical data, which after
a finite-size scaling analysis and a square fit leads to δ2 =
a + bA2 + cA2

2, with a = 0.110, b = 0.098, and c = 0.551.
Now that we have the dependence of the effective coupling
λ1/3 on the anharmonicity A2 we can analyze the scaling of
the spin gap (the width of the plateau), which should scale as
in Eq. (10).

In order to compare both approaches, we need to use the
relation (15) between λ1/3 and A2, together with the values of
δ2 obtained from DMRG. Following this approach, in Fig. 3 we
show a logarithmic plot of the gap vs λ1/3 using the values of
λ1/3 obtained by bosonization and those of the gap by DMRG
(red points). We show a linear fit to obtain the exponent in
Eq. (10) and compare with a reference line (blue points) to
show the agreement of both approaches.

V. CONCLUSIONS

In conclusion, we have described a new mechanism
leading to the formation of rational magnetization plateau
phases, which is mainly due to the anharmonic spin-phonon
coupling. We have shown that its role is to pin magneto-elastic
deformations that are not present in the harmonic case. By
means of bosonization, we have shown that the inclusion of
the anharmonic spin-phonon coupling gives as a contribution
a relevant operator that is responsible for the plateau in
the magnetization curve for certain commensurate values of
the magnetization M . We have performed extensive DMRG
computations to complement the analytical computations,
since the bosonization approach alone does not provide
the actual values of the amplitudes of the different Fourier
components of the lattice deformations. In particular, we have
analyzed in detail the situation at M = 1/3, where we have
computed the plateau width as a function of the anharmonic
coupling, to extract the scaling dimension of the relevant
operator that opens the gap. Finally, we have seen that the
exponent obtained from the DMRG computations and the one
obtained from the Bethe ansatz through bosonization are in
excellent agreement, providing further support to our results.
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J. Gonzalez, Appl. Phys. Lett. 96, 152103 (2010).

13M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78,
1984 (1997); D. C. Cabra, A. Honecker, and P. Pujol, ibid. 79, 5126
(1997); Phys. Rev. B 58, 6241 (1998).

14D. C. Cabra, A. Honecker, and P. Pujol, Eur. Phys. J. B 13, 55 (2000);
K. Okunishi and T. Tonegawa, J. Phys. Soc. Jpn. 72, 479
(2003); K. Hida and I. Affleck, ibid. 74, 1849 (2005); C. J.
Gazza, A. O. Dobry, D. C. Cabra, and T. Vekua, Phys. Rev.
B 75, 165104 (2007); F. Heidrich-Meisner, I. A. Sergienko,
A. E. Feiguin, and E. R. Dagotto, ibid. 75, 064413 (2007).

15T. Vekua, D. C. Cabra, A. Dobry, C. Gazza, and D. Poilblanc, Phys.
Rev. Lett. 96, 117205 (2006).

16F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).
17D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. Lett. 79, 5126

(1997); Phys. Rev. B 58, 6241 (1998).

224406-5

http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1103/PhysRevLett.87.087005
http://dx.doi.org/10.1103/PhysRevLett.87.087005
http://dx.doi.org/10.1103/PhysRevLett.87.037001
http://dx.doi.org/10.1103/PhysRevLett.87.037001
http://dx.doi.org/10.1016/j.physc.2004.02.108
http://dx.doi.org/10.1103/PhysRevB.76.014523
http://dx.doi.org/10.1103/PhysRevB.76.014523
http://dx.doi.org/10.1103/PhysRevB.77.064303
http://dx.doi.org/10.1103/PhysRevB.69.180511
http://dx.doi.org/10.1143/JPSJ.78.074710
http://dx.doi.org/10.1103/PhysRevLett.99.156408
http://dx.doi.org/10.1103/PhysRevB.63.245113
http://dx.doi.org/10.1103/PhysRevLett.92.185502
http://dx.doi.org/10.1103/PhysRevLett.92.185502
http://dx.doi.org/10.1103/PhysRevB.79.214306
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevLett.104.227401
http://dx.doi.org/10.1063/1.3387843
http://dx.doi.org/10.1103/PhysRevLett.78.1984
http://dx.doi.org/10.1103/PhysRevLett.78.1984
http://dx.doi.org/10.1103/PhysRevLett.79.5126
http://dx.doi.org/10.1103/PhysRevLett.79.5126
http://dx.doi.org/10.1103/PhysRevB.58.6241
http://dx.doi.org/10.1143/JPSJ.72.479
http://dx.doi.org/10.1143/JPSJ.72.479
http://dx.doi.org/10.1143/JPSJ.74.1849
http://dx.doi.org/10.1103/PhysRevB.75.165104
http://dx.doi.org/10.1103/PhysRevB.75.165104
http://dx.doi.org/10.1103/PhysRevB.75.064413
http://dx.doi.org/10.1103/PhysRevLett.96.117205
http://dx.doi.org/10.1103/PhysRevLett.96.117205
http://dx.doi.org/10.1103/PhysRevLett.45.1358
http://dx.doi.org/10.1103/PhysRevLett.79.5126
http://dx.doi.org/10.1103/PhysRevLett.79.5126
http://dx.doi.org/10.1103/PhysRevB.58.6241

