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Magnetic fluctuations and correlations in MnSi: Evidence for a chiral skyrmion spin liquid phase
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We present a comprehensive analysis of high-resolution neutron scattering data involving neutron spin echo
spectroscopy and spherical polarimetry, which confirm the first-order nature of the helical transition in MnSi.
The experiments reveal the existence of a totally chiral dynamic phase in a very narrow temperature range above
TC . This unconventional magnetic short-range order has a topology similar to that of a skyrmion liquid or the
blue phases of liquid crystals.
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I. INTRODUCTION

MnSi is one of the most investigated chiral magnets
and, at least in theory, a very simple realization of chiral
magnetism. The Ginzburg-Landau Hamiltonian contains three
hierarchically ordered interaction terms with well-separated
energy scales.1 It is therefore possible to distinguish between
the different contributions to the ground state. The strongest
ferromagnetic exchange interaction term fixes the spins at the
longest range. The weaker Dzyaloshinskii-Moriya (DM) term
arises from the lack of inversion symmetry of the B20 lattice
structure and rotates the spins at the intermediate scales. The
weakest anisotropy term fixes the directions of the spins on
the crystallographic lattice. The magnetically ordered state
below TC ∼ 29 K is a single-domain left-handed helix with a
period of ∼175 Å. All magnetic moments are perpendicular
to the propagation vector �τ that points along the 〈111〉
crystallographic directions.2,3 In the helical phase, small-angle
neutron scattering shows well-defined Bragg peaks of the same
intensity at all equivalent magnetic reflections |�τ111|, with τ =
|�τ111| = 0.036 Å−1.

MnSi is a weak itinerant magnet with an ordered magnetic
moment of only 0.4 μB , a fraction of the effective magnetic
moment of 1.4 μB determined in the paramagnetic phase.4

The strong magnetic fluctuations, which are due to the
weak itinerant magnetism and the vicinity of a magnetic
instability, exist not only above TC ,5 but also persist in the
low-temperature ordered phase.6 The magnetic fluctuations
lead to an enhanced effective electron mass, a broad specific
heat maximum reminiscent of the specific heat of spin
liquids, frustrated magnets or spin glasses,7 and broad features
on thermal expansion and ultrasound measurements, which
almost completely mask the helical transition.8

One intriguing feature of MnSi is that magnetic correlations
above TC appear not only around the positions in reciprocal
space of the helical order, but spread homogeneously over
the whole surface of a sphere with radius τ emerging as a
powder-diffraction-like ring on the two-dimensional small-
angle neutron scattering spectra.9 If the neutron beam is
polarized, the rings reduce to half-moons due to the interaction
between polarized neutrons with the helical correlations as
explained below.

This unconventional feature occurs in a limited temperature
range above TC and is reminiscent of scattering patterns from

cholesteric liquid crystals, suggesting the existence of similar
textures also in magnets. However, the chiral molecules of liq-
uid crystals are rods, whereas magnetic moments are vectors.
This additional topological constraint leads to the formation
of domain walls rendering π disclinations, i.e., the low-order
line defects commonly found in liquid crystals, energetically
unfavorable in magnets.10 On the other hand, domain-wall
formation is minimized by higher-order skyrmionlike 2π

disclinations.
Skyrmions were introduced in the early 1960s by Skyrme11

to bridge the gap between waves and particles in the particle-
wave duality description. The existence of these solitonlike
quasiparticles was alleged in semiconductors under high
magnetic fields12 and their topology corresponds to that of the
blue phases of liquid crystals.13 Their existence in magnets was
first suggested in the late 1980s by Bogdanov and Yablonskii.14

Periodic skyrmion lattices may form under a magnetic field in
the A phase of MnSi (Ref. 15) and have been directly seen
by Lorentz transmission electron microscopy in Fe0.5Co0.5Si
(Ref. 16) and FeGe.17

It has been suggested that the unconventional diffuse
scattering above TC reflects the existence of skyrmion-like tex-
tures, which would form spontaneously without any structural
defects or external magnetic field18 stabilized by spin stiffness.
Skyrmionic textures may also emerge in other approaches,
where e.g. higher order terms were introduced.19,20 As in
liquid crystals, this ground state of condensed matter would
occur at a very restricted temperature range just above the
long-range-ordered helical phase. This was confirmed by
recent numerical work, which evidences an unconventional
short-range order above TC similar to that of the blue phases in
liquid crystals21 and reproduce the neutron scattering patterns.
In the following, we present high-resolution polarized neutron
scattering experimental results, which support this hypothesis
by revealing the existence of a completely chiral fluctuating
phase just above TC . The transition to the helical phase is of
first order.

II. EXPERIMENTAL METHOD

MnSi crystallizes in the cubic P 213 (T 4) structure with
the Mn atoms occupying the 4a site for x = 0.138. The lack
of inversion symmetry in the crystallographic structure is at
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the origin of the DM interaction, the chiral magnetism, and
the helical magnetic structure. The experiments were done
on a well-characterized9,22 single-crystalline sample with a
thickness of 2 mm and a diameter of 20 mm, cut from a large
single crystal grown at Ames Laboratory. The lattice constant
was 4.558 Å. The sample was oriented with a 〈110〉 direction
vertical, so that four 111 reflections and two 110 reflections
were accessible in the horizontal scattering plane.

The polarized neutron scattering experiments were carried
out with the neutron spin echo spectrometers IN11 and IN15
at the Institut Laue Langevin, Grenoble, France. On IN15,
the wavelength was 8 Å and on IN11 it was 6.5 Å. At both
instruments, the incoming neutron beam had a monochrom-
atization of 15% full width at half maximum (FWHM).
The XY position sensitive detectors of both spectrometers
covered an angular range of ∼3 × 3 deg and the resolution in
momentum transfer Q was ∼0.005 Å−1 FWHM. On IN11, the
Q dependence of the relaxation and the intensity was analyzed
by taking slices of the detector at constant distance from the
000 point and also from the surface of the sphere with radius
τ leading to −0.005 Å

−1 � q = | �Q| − τ � 0.018 Å
−1

. The
measurements were carried out at one of the four equivalent
magnetic reflections 000 + �τ111. On IN11, it was also possible
to measure at a 000 + �τ110 point, where the correlations do not
develop to a Bragg peak.

Figure 1 shows on a log-lin scale the temperature depen-
dence of the neutron intensity at �τ111. The helimagnetic phase
transition is marked by an intensity jump of more than one
order of magnitude within less than 0.1 deg. The data above and
below TC follow power laws similar to those found previously9

and which were at the origin of a long-standing controversy on
the order of the transition. These power laws, however, do not
account for the intensity jump, which confirms the first-order
phase transition seen by specific heat.23

The intensity jump defines very accurately the transition
temperature is TC = 29.05 ± 0.05 K. These data were collected
on IN15. A different cryostat and thermometer were used on
IN11 and the jump was observed at TC = 28.6 ± 0.05 K.
In order to compare the data sets, the results will be plotted
against T − TC or the reduced temperature ε = (T − TC)/TC .

The helical Bragg peaks are the fingerprint of the helical
phase. They are elastic (energy transfer h̄ω = 0; in the

FIG. 1. (Color online) Temperature dependence of the logarithm
of the intensity at the position of the helical peak (�τ111 = 0.036 Å−1).
An intensity jump of almost one order of magnitude defines the helical
transition TC .

following, we will often use ω to also designate the energy
transfer without explicitly using h̄) and have a Gaussian
lineshape. In contrast, the fluctuating paramagnetic phase
above TC has finite correlations and the scattering function
S(Q,ω) is a superposition of Lorentzians.5,9 In the quasielastic
limit, where the energy transfer is much smaller than the
energies of the incoming beam and of the sample, the neutron
scattering cross section becomes

d2σ

dQdE
∝ S(Q,ω) ∝ C

q2 + κ2

�

�2 + ω2
(1)

with C the Curie constant, κ = 1/ξ , where ξ is the characteris-
tic correlation length, and � is the half width at half maximum
(HWHM) energy linewidth. S(Q,ω) is therefore the product
of the static structure factor, which has the Ornstein-Zernike
(OZ) form

S(Q) =
∫

S(Q,ω) dω ∝ C

q2 + κ2
(2)

and of the dynamic structure factor

s(Q,ω) = S(Q,ω)

S(Q)
∝ �

�2 + ω2
. (3)

The dynamic measurements were performed by neutron
spin echo (NSE) spectroscopy, which uses the Larmor pre-
cession of the neutron spin in a magnetic field as a clock to
measure with very high accuracy the difference in neutron
velocities before and after the scattering process at the
sample. The changes in the neutron energy due to inelastic
scattering affect the neutron velocity and, consequently, the
amplitude of the Larmor precessions. In this way, the energy
transfer is measured directly by circumventing the intensity
resolution limitations of the Liouville theorem. For this reason,
NSE reaches very high resolutions while maintaining the
high intensity advantage of a beam that is only 10%–20%
monochromatic. The highest energy resolution in neutron
scattering is presently reached by IN15, which accesses
energies as low as some neV corresponding to motions with
characteristic times reaching the μs.

At the quasielastic limit, which is valid in most NSE
experiments, the amplitude of the NSE Larmor precessions
is directly proportional to the intermediate scattering function
I (Q,t), the Fourier transformation of s(Q,ω).24 The compari-
son between NSE and inelastic neutron scattering is therefore
straightforward through a Fourier transformation

I (Q,t) =
∫

S(Q,ω) cos(ωt) dω∫
S(Q,ω) dω

= �[S(Q,t)]

S(Q)
. (4)

Consequently, the Lorentz function of Eq. (3) Fourier
transforms to the exponential NSE decay exp(−t/t0) with t0 =
1/� leading to t0[ns] = 0.658/�[μeV]. With this relation,
it will be possible to compare our NSE results with the
triple-axis neutron spectroscopy (TAS) measurements from
the literature.5,25

This so-called Larmor labeling requires polarized neutrons
and some polarization analysis features are an integral part
of NSE.26 The pulse sequence, π/2 flip-precession-π flip
(at the sample)-precession-π/2 flip, is that of the classical
Hahn sequence of NMR Spin Echo “Normal” paramagnetic
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FIG. 2. (Color online) Principle of the polarimetric neutron spin echo technique. The neutron wavelength information is encoded in the first
precession arm between two π/2 flippers. The beam is repolarized before entering the zero-field region of Cryopad. The incident and scattered
polarization vectors are set by Cryopad. After scattering, the second precession arm, between two additional π/2 flippers, encodes again the
wavelength and the echo is measured after the analyzer.

scattering acts as a π flipper and gives an echo without the
otherwise obligatory π flipper, which leads to a straightforward
and unambiguous separation of the magnetic and nuclear
signals. On the other hand, due to Larmor precessions, the
neutron beam is depolarized at the sample with all neutron
spins evenly distributed in the precession plane. For this
reason, in the presence of chiral and/or nuclear-magnetic
interference terms, the analysis of the experimental results
is complex. The way out is the polarimetric neutron spin
echo setup, a variant of intensity modulated NSE,27 which
combines the precession field areas required for neutron spin
echo spectroscopy with Cryopad.28 As shown schematically
by Fig. 2, the precessions are stopped before the sample
by an additional π/2 flipper. The neutron beam is then
repolarized with a compact polarizer to allow full analysis of
the scattered polarization vector with the zero-field chamber of
Cryopad. The precessions resume at the second branch of the
spectrometer after a second additional π/2 flipper and the echo
signal is recovered at the neutron detector after the analyzer.

This setup is now implemented at IN15 and can be used
to observe chiral fluctuations with unprecedented accuracy
and resolution both in energy (time) and momentum transfer
(space). The polarimetric NSE and spherical polarimetry mea-
surements were performed with a third-generation Cryopad, a
sensitive zero-field polarimeter that controls the polarization
of the incoming and the scattered beams.29,30 A combination
of μ metal and Meissner shields reduces the residual magnetic
field at the sample position down to ∼0.1 μT and controls the
direction of the polarization vectors with an accuracy of better
than 1◦. The beam polarization was 96% corresponding to a
flipping ratio of 45.

III. POLARIZED NEUTRON FORMALISM: SPHERICAL
POLARIMETRY

Before presenting in detail the experimental results, we
will introduce the interaction between a polarized neutron
beam and the magnetic helix of MnSi following the formalism
developed almost simultaneously by Blume31 and Maleyev32

in the early 1960s. The helix is described by two orthogonal
vectors �s1 and �s2, which have the same amplitude and are
perpendicular to the helix propagation vector �τ . The magnetic
structure factor for a reflection �K is given by

�M( �K) =
∑

j

�mj f ( �K) exp(2iπ �K · �rj ) with

�mj = 1

2
· μ(�s1 − i�s2) exp(2iπ �τ · �rj ) exp(iφj ), (5)

where μ is the amplitude of the Mn moments, f ( �K) is the
magnetic form factor of the Mn atoms, �rj is an atomic position,
and φj is an arbitrary phase angle. As the magnetic interaction
vector �M⊥( �K) = �K × �M( �K) × �K is the projection of the
magnetic structure factor onto a plane perpendicular to the
scattering vector �Q = �K , it is convenient to choose the set of
orthogonal polarization axes with x̂ ‖ Q̂, ẑ perpendicular to the
scattering plane, and ŷ completing the right-handed Cartesian
set. In the geometry of the present experiment, ŷ = n̂ with n̂

the propagation vector of the incoming neutron beam. For the
polarimetric measurements, the MnSi sample was oriented so
that �Q = �τ111 and �z‖(1,1̄,0). For this reflection, the intensity
of the diffracted beam was proportional to

σ = �M⊥ �M∗
⊥ + �P ′ · 
( �M⊥ × �M∗

⊥), (6)

where �P ′ is the polarization of the incoming beam. The
second term is the chiral part, which measures the degree
of vector chirality characteristic of the spiral structure. This
term adds to the conventional first term for �P ′ = Q̂, i.e., when
the incident polarization is parallel to �Q. On the other hand,
the reflection is completely extinct for �P ′ = −Q̂. Following
Blume’s equations,31 the scattered polarization for MnSi is
given by

�Pσ = − �P ′( �M⊥ �M∗
⊥) + 2�[( �P ′ · �M∗

⊥) �M⊥] − 
( �M⊥ × �M∗
⊥).

(7)

The first two terms form the trivial magnetic part leading to
�P = − �Q( �Q · �P ′) for isotropically distributed electronic mag-
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netic moments.26 The chiral third term creates a polarization
antiparallel to �Q independently from the polarization state
of the incoming beam. Both Eqs. (6) and (7) lead to the
rigorous and accurate determination of the chiral component

( �M⊥ × �M∗

⊥) by polarized neutrons. The more general form
of Eq. (7) is

�P = P̃ �P ′ + �P † (8)

with P̃ the polarization transfer tensor and �P † = −
( �M⊥ ×
�M∗

⊥) the polarization created by the chiral sample. It is then
useful to have the incident polarization along −�x, �x, �y,
and �z and to measure the outgoing polarization components
along ±�x, ±�y, and ±�z for each configuration of the incident
polarization, respectively.33 This measurement procedure is
characteristic of spherical neutron polarimetry (SNP) and
determines the polarization matrix

Pi,j = P ′
i,j

| �P | = P̃i,j P ′
i + P

†
j

| �P | with (i,j ) ∈ {x,y,z}, (9)

where the denominator | �P | corrects for the finite efficiency
of the neutron polarizer-analyzer system and the intrinsic
imperfections of the experimental setup. For nuclear (coherent)
scattering Pi,j = δij , i.e. 1 for i = j and 0 otherwise,

Pnuclear =
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣.
For an ideal paramagnet, all matrix elements are zero except

Pxx = −1:

Ppara =
∣∣∣∣∣∣
−1 0 0
0 0 0
0 0 0

∣∣∣∣∣∣.
In MnSi, according to Eq. (7), the scattered beam will

always have a polarization antiparallel to the helix propagation
vector, i.e., antiparallel to x̂ and Q̂. For this reason, the first row
of the matrix will be nonzero, ideally, Pi,x = −1, Pi,y or z = 0
with (i) ∈ {x,y,z}. In its most general form, the chiral matrix
can be written as

Pchiral =
∣∣∣∣∣∣
−1 ηζ ηζ

0 0 0
0 0 0

∣∣∣∣∣∣,
where ζ determines the chirality of the helix: ζ = +1 for
right-handed and ζ = −1 for left-handed chirality. η measures
the fraction of the dominant chiral domain: η = 1 for a single
domain and η = 0 for equally populated chiral domains or for
the disordered paramagnetic state, in which casePchiral reduces
to Ppara.

The polarization matrix of MnSi below TC is that of an ideal
chiral left-handed single-domain structure. At TC − 4 K, we
found

PTC−4K

=
∣∣∣∣∣∣
−1.000 ± 0.001 −0.995 ± 0.001 −1.002 ± 0.001
−0.007 ± 0.001 0.016 ± 0.002 −0.007 ± 0.002

0.054 ± 0.003 0.055 ± 0.002 0.062 ± 0.002

∣∣∣∣∣∣.

Just above TC , the intensity at �τ111 drops dramatically,
which leads to higher counting times and error bars. Nev-
ertheless, the matrix remains unaffected and is that of a
perfect left-handed single-chiral domain up to ∼TC + 1, e.g.,
at TC + 0.4 K:

PTC+0.4K =
∣∣∣∣∣∣
−1.03 ± 0.03 −0.99 ± 0.03 −0.98 ± 0.03
−0.01 ± 0.05 −0.00 ± 0.05 −0.03 ± 0.05

0.07 ± 0.05 0.04 ± 0.01 0.07 ± 0.05

∣∣∣∣∣∣.
Above ∼TC + 1, the nondiagonal elements decrease slowly

and chirality remains finite even well above TC . For example,
at TC + 4 K, we found

PTC+4K =
∣∣∣∣∣∣
−1.02 ± 0.02 −0.4 ± 0.1 −0.3 ± 0.1
−0.01 ± 0.1 −0.08 ± 0.1 −0.05 ± 0.1

0.02 ± 0.1 0.07 ± 0.1 −0.08 ± 0.1

∣∣∣∣∣∣.
All data have been corrected for the background determined

from polarimetric measurements at 50 K. Figure 3 shows
that Pxy and Pxz are, within the error bars, unaffected by TC

and start to decrease only above ∼TC + 1 K. This result is
confirmed by the intensity of the reflection when �P ′‖ ± �x, in
which case Eq. (6) becomes

σ = Npara ± Nchiral with
(10)

Npara = �M⊥ �M∗
⊥ and Nchiral = | �P ′ · �P †|,

where the sign in front of the chiral contribution Nchiral depends
on the direction of �P ′ (parallel or antiparallel) with respect to
�Q. The intensities in the spin-flip channel are

Nx,−x ≡ NSF
�P ′ ‖ Q

= NSF
bck + Npara + Nchiral,

(11)
N−x,x ≡ NSF

�P ′‖−Q
= NSF

bck + Npara − Nchiral.

The chiral fraction Nchiral/(Nchiral + Npara) can then be deduced
from the ratio (Nx,−x − N−x,x)/(Nx,−x + N−x,x − 2 ∗ NSF

bck),
with the background NSF

bck determined at 50 K. This method
minimizes the error bars and systematic errors because both
Nx,−x and N−x,x are measured under identical conditions. The
deduced chiral fraction is also shown in Fig. 3 and coincides
with the nondiagonal matrix elements.

Complete chirality implies complete break of time reversal
symmetry. This occurs before the onset of the helical Bragg
peaks at T ′

C ∼ TC + 1 K. Between T ′
C and TC , the isotropic

FIG. 3. (Color online) Temperature dependence of the chiral
fraction determined by neutron polarimetry as explained in the text.
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FIG. 4. (Color online) Dynamic correlations at the position of
one of the helical Bragg peaks �τ111 measured by polarimetric NSE
for the Pz,x term of the polarization matrix [Eq. (9)].

scattering at the surface of the sphere with radius τ is observed
and analysis of the dynamic and static correlations in the
following sections will shed a light in this unconventional
and completely chiral short-range order.

IV. NEUTRON SPIN ECHO

The dynamics of MnSi was thoroughly investigated by
triple-axis spectroscopy (TAS) in the mid 1980s.5 It was shown
that strong magnetic correlations exist up to room temperature
and that the magnetic excitation spectrum is well described by
the Moriya-Kawabata theory for weak itinerant ferromagnets.
The TAS measurements, however, did not have the resolution
in energy transfer required to analyze the magnetic fluctuations
close to TC . With neutron spin echo spectroscopy, we can reach
the required resolution, follow very accurately the slowing

FIG. 5. (Color online) Dynamic correlations at �τ111 measured by
classical NSE.

FIG. 6. (Color online) Dynamic correlations at �τ110, where the
spectra are not contaminated by the helical Bragg peaks.

down of the magnetic fluctuations, and complement the TAS
experiments. The fact that MnSi is completely chiral above TC

was an unexpected outcome of the polarimetric measurements
and also a posteriori the justification for combining NSE and
Cryopad to polarimetric NSE.

With the Cryopad on IN15, we were able to measure
separately the relaxation of the diagonal Pxx and of the crossed
chiral terms Pyx and Pzx . The corresponding intermediate

FIG. 7. (Color online) Temperature dependence of the charac-
teristic times t0 (a) and the deduced Lorentz linewidths (b) of the
fluctuations at �τ111 and �τ110 measured by classical (paramagnetic) and
polarimetric NSE. The lines are guides to the eye.
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FIG. 8. (Color online) q dependence of the dynamic linewidth �.
The open and closed symbols represent the values at �τ111 and �τ110,
respectively. At the highest temperature (∼31 K), there is excellent
agreement with literature (Ref. 5) and Eq. (17b) (dotted line).

scattering functions I (q,t) were obtained by normalizing the
spectra against the resolution measured below TC , typically at
25 K. Figure 4 shows polarimetric NSE spectra for the crossed
term Pyx at �τ111.

The polarimetric NSE spectra display a purely exponential
relaxation superimposed on an elastic term

I (q,t) = a exp(−t/t0) + (1 − a). (12)

As seen in Fig. 4, the elastic fraction (1 − a) evolves from
∼15% to 100% within 0.15 K following the fast increase of
the intensity displayed in Fig. 1 and masking the dynamics at
TC . This behavior is confirmed by standard NSE measurements
(Fig. 5), which, however, do not extrapolate to 1 at t → 0. The
comparison with polarimetric NSE identifies this as an artifact
due to the chiral magnetic scattering and not to additional
dynamic components.

At �τ110, the quasielastic scattering does not develop to a
Bragg peak and the NSE spectra were not contaminated by
an elastic contribution. Consequently, the fluctuations could
be followed even below TC (Fig. 6). The decay is exponential
with the same t0 and deduced � as at �τ111.

All relaxation times and linewidths at q = 0 are plotted
against temperature in Fig. 7. The diagonal (xx) and crossed
terms (yx and zx) measured in the polarimetric NSE mode are
also included. All data, even those in the closest vicinity of TC ,
fall on the same curve. Consequently, the relevant parameter
for the fluctuations is the distance from the sphere with radius
τ , not the Bragg peaks �τ111 of the helical phase.

We will now discuss the q dependence of the relaxation
(Fig. 8). Close to TC , the linewidths take their lowest values
at the surface of the sphere with radius τ . We found that �

increases both for | �Q| > τ and | �Q| < τ and the low-q points
in Fig. 8 are the average for q = ±0.03 Å−1. However, above
∼TC + 1.4 K, the q dependence of � flattens and it is no longer
possible to identify the position of the minimum.

FIG. 9. (Color online) Magnetic signal, proportional to S(q),
around the �τ111. The continuous lines are the best fits: simple Gauss
function at TC , superposition of a fluctuating Lorentz (Orstein-
Zernike), and an elastic Gaussian part at TC < T < TC + 0.2 K and
a fluctuating Lorentz function above TC + 0.2 K.

Close to TC , �(q = 0) levels off at ∼0.64 μeV, which
implies that the associated correlation length does not diverge
at TC . The results will be discussed in the frame of dynamic
scaling also after the determination of the correlation length in
the following section.

V. CORRELATION LENGTH

The Q dependence of the magnetic static structure factor
S(Q) was analyzed in the configuration Nx,−x of Eq. (11),

FIG. 10. (Color online) Comparison of the quality of fits for a
simple Lorentz (dotted line), Gauss (dashed line), and the superposi-
tion of a Lorentz and a Gauss (continuous line) at TC + 0.05 K and
�τ111.
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where the magnetic intensity is maximum and the background
correction negligible for T < 30 K.

Figure 9 shows the scattered neutron intensity, which is
proportional to S(Q), around �τ111 in a log-lin scale. At TC ,
the points are best fitted by a Gauss function, with σ 2 =
6.11 × 10−3 ± 3 10−5 Å−1 leading to 1.44 10−2 ± 10−4 Å−1

FWHM, i.e., significantly broader than the Q resolution of the
instrument. Well above TC , the data are well described by the
OZ function of Eq. (2) convoluted with the Gauss resolution
function.

Just above TC , however, neither the Gauss nor the OZ
functions fit satisfactorily the experimental data. Instead, the
best fit is obtained by a superposition of a fluctuating OZ
and an elastic Gauss with relative weights fixed from the
NSE spectra, as shown by Fig. 10. We note that all three
fits in Fig. 10 involve the same number (two) of independent
parameters: the total intensity and the σ for the Gauss or
κ for the Lorentz and Gauss + Lorentz fits, respectively (in
this case, the width of the Gauss was fixed to that found
below TC).

Similarly to the NSE spectra, the data analysis is eas-
ier at �τ110, where there is no contamination from Bragg
peaks. At this position of the reciprocal space, a simple
Lorentzian describes the scattered neutron intensity at all
temperatures, even below TC . All correlation lengths are
plotted versus T − TC in Fig. 11 and the deduced values of
κ are in excellent agreement with previous published data9

(Fig. 12).
At �τ110, the correlation length ξ110 levels off at about 100

Å, i.e., about half the pitch of the helix. At �τ111, the correlation
length ξ111 increases considerably close to TC following a
power law of the reduced temperature ε similar to those found
at second-order phase transitions and illustrated by Fig. 13.
The continuous line in the figure corresponds to

ξ111 = a ε−ν with a = 12 ± 2Å and ν = 0.5 ± 0.2.

(13)

The dotted line represents ξ = 5.6 ε−0.5 Å, the extrapolated
curve from the high-temperature TAS data of Ishikawa
et al.5 It is remarkable that this extrapolation from very high
temperatures (100–300 K) is only a factor 2 off our results.

FIG. 11. (Color online) Plot of the correlation lengths (ξ111 and
ξ110) measured at �τ111 and �τ110 as a function of temperature.

FIG. 12. (Color online) Plot of κ measured at �τ111 and �τ110. The
closed symbols are the present work. The open symbols are from
Grigoriev et al. (Ref. 9).

VI. DYNAMIC SCALING

Dynamic scaling relates � to κ (or inversely t0 to ξ ) through
a homogenous function

�(q,ε) ∝ �(q,ε = 0)f (κ/q) (14)

with the dimensionless ratio κ/q defining the critical (κ/q �
1) and hydrodynamic (κ/q � 1) regimes, respectively.34 At
the critical limit, which is always reached at κ = 0, the
linewidth and relaxation times reflect the volume probed by
the measurement

t0(q,ε = 0) ∝ q−z and (15a)
�(q,ε = 0) ∝ qz (15b)

with z the dynamic exponent. For q = Q, as in ferromagnets
z = 5/2, whereas for antiferromagnets and MnSi, where the
relevant parameter is q = |Q − τ |, z = 3/2.

FIG. 13. (Color online) Plot of the correlation length ξ111 deter-
mined at �τ111 versus the reduced temperature ε on a log-log scale. The
continuous line is the best power-law fit ξ = 12 ε−0.5 Å. The dotted
line shows the extrapolated values from the high-temperature TAS
work of Ishikawa et al. (Ref. 5).
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At the hydrodynamic limit, q = 0 and κ > 0, the dynamics
is governed by the correlated volumes through the power laws

t0(q = 0) ∝ ξz and (16a)
�(q = 0) ∝ κz. (16b)

The previous extensive study of spin fluctuations in MnSi
with TAS (Ref. 5) showed that the linewidth is equally
well described by two universal scaling functions over an
extremely large temperature scale, from ∼30 K up to the room
temperature:

� ∼ �0Q
3 [1 + (κ/Q)2] (17a)

∼ A0Q
5/2 [1 + (κ/Q)2] (17b)

with κ2 = 0.0325 ε Å−2, �0 = 50 meVÅ3, and A0 =
19.6 mevÅ5/2. Equation (17b) is derived from the Moriya-
Kawabata theory for weak itinerant ferromagnets,35 whereas
Eq. (17b) has the form expected for dynamic scaling. The
dotted line going through the data at TC + 2.3 K in Fig. 8
corresponds to the calculated values from Eq. (17b) and
is in excellent agreement with our experimental results. At
high temperatures, the momentum transfer Q is the relevant
parameter and z = 5/2. Close to TC , however, magnetic
correlations build up at τ and the relevant parameter crosses
over to q = |Q − τ |, which is used in this paper. Consequently,
also the dynamic critical exponent should cross over from
z = 5/2 to 3/2.

If the transition were of second order, an analysis along the
lines of dynamic scaling would imply critical slowing down.
In this case, �111(q = 0) should decrease continuously to zero
at TC following the divergence of ξ111. In contrast, �111(q = 0)
remains finite and strictly the same as �110(q = 0).
Moreover, Figs. 7 and 12 show that, close to TC , both �111

and �110 are roughly proportional to κ110, not to the “critical”
κ111. Consequently, we do not observe the critical slowing
down and rapidly changing dynamic behavior expected for
second-order phase transitions. This is underlined by Fig. 14

FIG. 14. (Color online) Temperature dependence of the ratio
�(q = 0)/κ110 revealing the existence a broad flat minimum, where
�(q = 0) ∝ κ110 between TC and T ′

C .

FIG. 15. (Color online) Scaling plot of the reduced dimensionless
quantities �/�(TC) versus κ110/q. The dotted line shows the
extrapolated values from the previous high-temperature TAS data
[Eq. (17b)]. The (red) dashed line is the Resibois-Piette function for
antiferromagnets and the (green) continuous line is a guide to the
eyes through the experimental data for TC � T � T ′

C .

where the ratio between all � and the calculated κ110 levels off
to a broad plateau between TC and T ′

C , pointing toward z ∼ 1.
Figure 15 shows the interdependence of the reduced

dimensionless quantities �/�(TC) and κ110/q. Following the
scaling assumption of Eq. (14), all experimental data should
collapse on a universal curve. This is obviously not the case.
Close to TC , both � and κ110 do not vary with temperature and,
for this reason, the data accumulate on the green continuous
line of Fig. 15, which is significantly different from the
Resibois-Piette function for antiferromagnets.36 Above ∼T ′

C ,
there is a fast change of behavior crossing over to Eq. (17) and
the dotted line in Fig. 15.

VII. DISCUSSION

These high-resolution neutron scattering data confirm the
first-order nature of the helical transition in MnSi seen by
specific heat and ultrasonic attenuation measurements.7,23 In
favor of the first-order phase transition are the following:

(a) the sharpness of the transition (Fig. 1), even though the
helical Bragg peaks are not resolution limited;

(b) the coexistence of high- and low-temperature phases
between TC and TC + 0.2 K. At �τ111, the NSE spectra are
the superposition of a fluctuating and elastic part (Figs. 4
and 5) and the static structure factor is best described by
the superposition of a Lorentzian (fluctuating) and Gaussian
(elastic) contributions (Fig. 10);

(c) the absence of critical slowing down at TC . The
slow change of the dynamics scales with the nondiverging
correlation length ξ110.

Fluctuations are present above TC and ξ111 can indeed be
approximated by a power law [Eq. (13) and Fig. 13]. For
this reason, it will always be possible to bend a selection of
experimental findings into the second-order phase transition
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FIG. 16. (Color online) Temperature dependence of (a) the
intensity at the helical Bragg peak �τ111, (b) the chiral fraction,
(c) the ratio �/κ110, and (d) the specific heat from Stishov et al.
(Ref. 23). These experimental results confirm the existence of a
completely chiral but fluctuating skyrmion liquid phase between TC

and T ′
C .

scheme by introducing crossovers, as it was recently done by
Grigoriev et al.37 However, second-order phase transitions are
global transformations involving all parameters of the system,
and this is not the case in MnSi.

We will now proceed to the discussion of the fluctuating
phase between TC and T ′

C . Figure 16 recapitulates the most
important findings of this work and includes the specific heat
measured by Stishov et al.23 The first-order helical transition
TC is marked by the sharp peak in the specific heat [Fig. 16(d)]
and the Bragg peak [Fig. 16(a)]. On the other hand, the helical
transition has no effect on η, the degree of single-domain
chirality. η is the fraction of left-handed chiral correlated
magnetic moments and can be associated to a characteristic
correlation length as suggested by a mean-field model9

η = 2Qτ/(Q2 + τ 2 + 1/ξ 2), (18)

which, for Q = τ , as it is the case for the present results,
becomes

η = 1 − 1/ξ 2

2τ 2 + 1/ξ 2
.

From ξ111, we calculate the dotted line of Fig. 16(b), which is
significantly different from the measured η. The assumption of
unpinned chiral fluctuations put forward by Grigoriev et al.9,37

is therefore not sufficient to explain the behavior of MnSi
above TC .

In spite of this inconsistency, Eq. (18) bears the correct
physics: when η → 1, the disordered paramagnetic phase
fades away, time reversal symmetry is completely broken
and, for this reason, some characteristic correlation length
must diverge. This is obviously not ξ , which is only about
half of the pitch of the helix at T ′

C . If the correlation length
between magnetic moments is not the relevant parameter,
the answer must be found not at the microscopic but at the
mesoscopic scale. The hint is given by recent theoretical
approaches,18,21 which reveal that chiral objects, such as
skyrmions are highly stable and energetically favorable at
short distances. These mesoscopic soliton-like objects form
by thermal fluctuations at high temperatures and diffuse in the
paramagnetic surroundings. Their stability explains the slow
decrease of η and its finite value well above TC . The number of
these objects increases with decreasing temperature until they
completely fill the space. When this happens, the associated
“renormalized” correlation length diverges and η = 1.

We suggest that T ′
C is the temperature where these

skyrmionic objects condensate. Their natural size levels off
at about half of the helix pitch, i.e., the same as ξ110 between
TC and T ′

C . Consequently, the mean distance between two
skyrmions in the condensed phase is about the helix pitch
leading to the homogeneous scattering on the sphere with
radius τ , in spite of the significantly shorter-ranged magnetic
correlations. In addition, this closed-packed phase has reduced
degrees of freedom, which modify the dynamics, and lead to
the low dynamic exponent z ∼ 1 and to the slow temperature
dependence between TC and T ′

C discussed in the previous
sections and illustrated by Fig. 16(c).

T ′
C is seen in the specific heat [Fig. 16(d)], thermal expan-

sion, sound velocity, sound absorption, or resistivity.8 The con-
densation of the skyrmionic chiral objects is therefore a major
transformation with some characteristics of a phase transition.
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In summary, we combined high-resolution neutron spin
echo spectroscopy and spherical polarimetry to obtain a
consistent picture of MnSi above TC . The results evidence
a first-order transition between the helical phase and a
completely (single-domain) chiral and fluctuating new state
of matter, which we identify as a skyrmion liquid. This
phase would be the magnetic equivalent of the blue phases
in liquid crystals. Through our findings the phase diagram of
MnSi becomes similar to that of cholesteric liquid crystals,
emphasizing the parallel between magnetic and structural
ground states.
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