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Effect of polarization upon light localization in random layered magnetodielectric media
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Light propagation in a random system of isotropic magnetodielectric layers is studied numerically and
analytically. It is shown that if the values of permittivity and permeability are randomly distributed, whereas the
characteristic impedance does not change throughout the system, the Lyapunov exponent (the inverse localization
length) grows with the angle of incidence and does not depend on the polarization of the incident wave. This
independence appears only on the ensemble averaging because in any specific realization the transmission
coefficients for s- and p-polarized light are different. The numerical results confirm analytical analysis.
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I. INTRODUCTION

The light propagation in heterogeneous (both periodic
and disordered) media is one of the fundamental problems
of electrodynamics, continuously attracting the interest of
physicists (see reviews1–4 and references therein). The most
intriguing phenomena observed by light propagation in such
systems are the formation of band gaps and localization of
light.

The phenomenon of localization was first predicted by
Anderson in solid state physics.5 It has been shown5–9 that in
any one-dimensional disordered system an electron is always
localized. It means that the electron’s wave function exponen-
tially decreases from a localization center. The characteristic
length scale of this decrease is called the localization length
Lloc.

The Schrödinger and Maxwell equations can be recast as
a wave equation. This similarity implies that light should also
be localized in a one-dimensional disordered system.2,3,10–16

Moreover, an absence of the interaction among photons brings
the hypothetical quantum problem of a single body into reality
in multilayered systems.

In real disordered three-dimensional system the interaction
between waves and scatterers is so complicated that both
theoretical study and computer simulations are extremely
difficult. The solution of the problem requires a series of
approximations that are not always justified, making it difficult
to relate theoretical predictions to experimental observations.
Light propagation in one-dimensional (1D) systems is a more
manageable problem that can be exactly solved, for example,
by the transfer matrix method.17 Moreover, results in 1D can
provide insight into the problem of wave localization in general
and are suitable for testing various ideas. In particular, it has
recently been shown15 that in 1D systems the formation of
band gaps in periodic systems and the localization of light
in random systems are tightly connected, namely they are
determined by the Bragg reflection. From the point of view
of developing optical devices, one-dimensional systems play a
special role because many devices, such as dielectric mirrors,
filters, antireflective layers, etc., are 1D.

Even though the Schrödinger and Maxwell equations
are similar, light localization in one-dimensional systems

differs from localization of electrons.1–4,13–16,18–21 The main
distinction between them arises from the vector nature of the
electromagnetic wave. For oblique incidence, the reflection
coefficients for s- and p-polarized plane waves are different
even for isotropic materials17 so the localization properties
of light should be different for different polarizations.22–24

Indeed, it was shown in Ref. 22 that localization lengths
depend upon the polarization for oblique incidence in a
disordered binary system of nonmagnetic dielectric layers. For
a binary system at the Brewster angle corresponding to the light
transmission from one component to another, the p-polarized
wave becomes delocalized. It is often convenient to use the
inverse localization length, called the Lyapunov exponent γ ,
which in the case of the absence of localization is equal to zero.
At the same time, the localization length (as well as γ ) for the
s-polarized wave does not exhibit any peculiarity. However,
the transmission coefficient falls off exponentially, which can
be regarded as localization in the direction perpendicular to
the layers’ interfaces.22

The localization length can be defined as the length scale
at which the transmission coefficient t statistically decreases
when the thickness of the system increases1–3,11,12,22:

Lloc = 1

γ
= lim

L→∞
(L/ 〈ln |t |〉) . (1)

In the present paper we study a general case of a random
system of magnetodielectric layers for which the Brewster
phenomenon may exist not only for p but also for the
s-polarization or may not exist at all. Special attention is paid to
the case when the Brewster phenomenon may be observed for
both polarizations. We demonstrate that even though the light
scattering is polarization dependent the localization length
may not depend upon polarization.

II. BREWSTER PHENOMENON IN
MAGNETODIELECTRICS

Let us consider the problem of the plane wave propagation
through a layered structure. The wave is incident from a
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FIG. 1. s- and p-polarized waves incident on the layered structure.

vacuum at an angle α. For a given polarization (s or p) the
problem of an oblique incidence can be reduced to the problem
of the normal incidence. Each layer will be characterized
by the “refraction index” nj = √

εjμj cos αj and “surface”
admittance Yj . The latter depends on the polarization and
differs from the characteristic admittance yj = √

εj /μj . The
meaning of the surface admittance of the plane wave is the
ratio of the tangent to the surface components of magnetic and
electric fields. For the s- and p-polarized waves, the surface
admittances are25 (Yj )s = yj cos αj and (Yj )p = yj/ cos αj ,
respectively, where αj is the propagation angle in the jth layer
(see Fig. 1).

Indeed, for the case of normal incidence (say, along the z
axis, as shown in Fig. 1) the Maxwell equations in the jth layer
can be reduced to the wave equation26

�F + k2
0n

2
jF = 0,

where F = E or H, k0 = ω/c, ω is the wave frequency, c is the
speed of light in vacuum, and nj = √

εjμj is the refraction
index of the jth layer. The solution of this equation has the
form

E = Aje
ik0nj z + Bje

−ik0nj z,
(2)

H = yjAje
ik0nj z − yjBje

−ik0nj z.

One must also satisfy the boundary conditions making
the tangential field components continuous at the interface.
For the oblique incidence, as it follows from the Maxwell
equations, the tangential components of electric and magnetic
fields propagating from left to right are related to each
other as

H‖
E

=
√

εj

μj

kjz

kj

=
√

εj

μj

cos αj = (Yj )s (3a)

H

E‖
=

√
εj

μj

kj

kjz

=
√

εj

μj

1

cos αj

= (Yj )p. (3b)

The refraction index becomes

(nj )s = (nj )p = √
εjμj cos αj . (3c)

For a wave propagating from right to left, the sign of the
impedance is negative and the general solution has the form
of (2) with substitution (3). Note, that in contrast to the normal
incidence, the surface admittance of the vacuum Yv is not equal
to unity. Moreover, it is different for different polarizations:

(Yν)s = cos α, (Yν)p = 1

cos α
. (3d)

In the case of a normal incidence (α = α1 = α2 = 0), the
field has tangential components only and the surface and
characteristic impedances coincide.

It turns out that in the case of the oblique in-
cidence (Fig. 1), one can obtain a system of equa-
tions containing the tangential field components only.
Each of these components satisfies the wave equation
�F + k2

0εjμj cos2 αjF = 0.26 The solution of this equa-
tion has the form of (2) (except for the insignif-
icant factor eik‖x , where k‖ is the tangential com-
ponent of the wave vector; this factor is omitted
below).

For the description of the electromagnetic wave propa-
gation through a layered medium one can use the T-matrix
formalism (see, e.g., Ref. 17). As it follows from the above
discussion, one can obtain the T matrix for the tangential
components of the fields for the oblique incidence by sub-
stituting admittances and refraction indices in the T matrix
describing the normal incidence T (Yj ,Yv,nj ) for the respective
values in (3).

For nonmagnetic dielectrics, the equation for the Brewster
angle,17,26

k‖√
ε1k

2
0 − k2

‖
= tan(α1) =

√
ε2

ε1
,

can be rewritten as an equality of the surface admittances for
the p-polarized wave for neighboring layers:

(Y1)p = √
ε1

⎡
⎣

√
1 −

(
k‖

k0
√

ε1

)2
⎤
⎦

−1

= √
ε2

⎡
⎣

√
1 −

(
k‖

k0
√

ε2

)2
⎤
⎦

−1

= (Y2)p .

This means that the p-polarized light incident on a two-
component layered media at the Brewster angle is delo-
calized, it propagates without reflection from interfaces.26

At the same time, admittances of different layers for the
s-polarized wave are not equal to each other for any
angles:

(Y1)s =
√

ε1 −
(

k‖
k0

)2

�=
√

ε2 −
(

k‖
k0

)2

= (Y2)s .

This inequality represents the fact that in nonmagnetic
dielectrics the Brewster angle exists for the p-polarized light
only.

For magnetic materials (μj �= 1) the situation is different.
Here the functional dependence of that admittance on k‖
is more complicated and the Brewster angle can exist for
both p- and s-polarized waves.27 However, as shown in
the Appendix, it cannot exist for both polarizations in the
same system (with the exception of the special case of
equal characteristic admittances of all the layers). At the
interface between two media characterized by dielectric
permittivities ε1 and ε2 and magnetic permeabilities μ1

and μ2, the Brewster angles are defined by the systems of
equations
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for s − polarization for p − polarization{√
ε1
μ1

cos α1 =
√

ε2
μ2

cos α2√
ε1μ1 sin α1 = √

ε2μ2 sin α2

,

{√
ε1
μ1

1
cos α1

=
√

ε2
μ2

1
cos α2√

ε1μ1 sin α1 = √
ε2μ2 sin α2

. (4)

In particular, when the characteristic admittances for all layers are the same (i.e., magnetic permeability is proportional to dielectric
permittivity μj = const · εj ), the Brewster angle coincides with the normal α1 = α2 = 0 and is realized for all polarizations.

III. THE LYAPUNOV EXPONENT IN A RANDOM
MAGNETODIELECTRIC LAYERED SYSTEM

To calculate the transmission through the system we use
a modified T-matrix formalism.17,28,29 Between each layer we

introduce an auxiliary vacuum layer with zero thickness. The
T matrix of such a layer is equal to the unit matrix so that
the total T matrix of the system for all polarizations remains
unchanged. The advantage of the method is that now we can
introduce an independent T matrix for each layer29:

Tj =
⎛
⎝ cos ρj + i

2

(
Yv

Yj
+ Yj

Yv

)
sin ρj − i

2

(
Yv

Yj
− Yj

Yv

)
sin ρj

i
2

(
Yv

Yj
− Yj

Yv

)
sin ρj cos ρj − i

2

(
Yv

Yj
+ Yj

Yv

)
sin ρj

⎞
⎠ ,

where ρj = k0njdj , dj is the thickness of the jth layer, and
expressions for the surface admittances of the vacuum Yv and
a layer Yj are given by Eq. (3a) or (3b) dependent on the
polarization.

Now, let us calculate the Lyapunov exponent (1) for our
system for each of the polarizations. The T matrix of the whole
system is

T = TNTN−1 · · · T2T1. (5)

It is convenient to use the representation of the T matrix as
a product of matrices which depends on Yv (α) or cos αj only.
Such a product has the form

Tj = BjAjB
−1
j ,

where, for example, the s-polarized wave, we have

Asj =
⎛
⎝ cos ρj + i

2

(
1

cos αj
+ cos αj

)
sin ρj

i
2

(
cos αj − 1

cos αj

)
sin ρj

i
2

(
1

cos αj
− cos αj

)
sin ρj cos ρj − i

2

(
1

cos αj
+ cos αj

)
sin ρj

⎞
⎠ , Bj =

⎛
⎝Yv +

√
εj

μj
Yv −

√
εj

μj

Yv −
√

εj

μj
Yv +

√
εj

μj

⎞
⎠ .

Since characteristic admittances for all layers are the same,
Bj does not depend on j but depends on the polarization.
Therefore (5) can be rewritten in the form

T = BANAN−1 · · · A1B
−1 = BAB−1. (6)

As the matrix B is finite and does not depend on the
thickness and the realization of the random system, the
localization length is fully defined by the matrix A.

Matrix Asj for the s-polarization has the form of the T
matrix for the normal incidence of the wave from a vacuum
on a layer with the optical thickness ρj and the admittance
cos αj . A similar matrix for the p-polarized wave Apj can
be obtained from Asj by substitution of 1/ cos αj instead of
cos αj . Therefore these matrices are related as

Apj = (
Asj

)T
,

where the superscript T denotes the transpose. Thus

Ap = ApNApN−1 · · ·Ap1

= (AsN )T (AsN−1)T · · · (As1)T = (As1As2 · · ·AsN )T .

As the transmission matrix through a model system of
layers, the matrix As = AsNAsN−1 · · ·As1 can be represented
as

As = AsNAsN−1 · · ·As1 =
∥∥∥∥∥ t − rLrR

t
rR

t

− rL

t
1
t

∥∥∥∥∥ , (7)

where t is the transmission coefficient through the system,
rL and rR are the reflection coefficients for the wave incident
from the left and right, respectively. The matrix As1As2 · · · AsN

differs from AsNAsN−1 · · · As1 by the inverse order of the
model layers. Therefore the former matrix is represented by (7)
with rL and rR interchanged:

As1As2 · · · AsN =
∥∥∥∥∥ t − rLrR

t
rL

t

− rR

t
1
t

∥∥∥∥∥ .

So that

Ap = (As1As2 · · · AsN )T =
∥∥∥∥∥ t − rLrR

t
− rR

t
rL

t
1
t

∥∥∥∥∥ . (8)
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From Eqs. (7) and (8) one can see that the model systems
described by matrices As and Ap have identical transmission
coefficients, and their reflection coefficients differ by signs

only. Now, in the matrix Ts [Eq. (6)] let us express the
transmission coefficient ts of the s-polarized wave via t, rL,
and rR . After some simplifications we obtain

1

ts
=

(1 − rL)(1 − rR) ε
μ

+ 2(1 − rLrR)
√

ε
μ
Yv + (1 + rL)(1 + rR)Y 2

ν − t2
(
Yv −

√
ε
μ

)2

4t
√

ε
μ
Yv

=
[√

ε
μ

(rL − 1) − Yv(rL + 1)
][√

ε
μ

(rR − 1) − Yv(rR + 1)
]

4t
√

ε
μ
Yv

− t

(
Yv −

√
ε
μ

)2

4
√

ε
μ
Yv

. (9)

When the thickness of the system is big, the absolute value
of the transmission coefficient |t| is exponentially small, the
absolute values of the reflection coefficients |rR| and |rL| are
of the order of unity, and their phases are distributed uniformly
in the interval of [0,2π ].30 None of the factors in the numerator
of the first term of the right-hand side of (9) is equal to zero
because this would imply that

r =
(√

ε

μ
+ Yν

)/(√
ε

μ
− Yν

)
,

which is not possible since∣∣∣∣
(√

ε

μ
+ Yν

)/(√
ε

μ
− Yν

)∣∣∣∣ > 1.

Therefore, we can neglect the second term of the

FIG. 2. The dependence of γ , normalized by the average layer’s
thickness d, on the angle of incidence α, for a two-component layered
medium at a frequency k0d = 0.8. The layers of the first and the
second types are randomly mixed and their thicknesses are distributed
uniformly between 0.8d and 1.2d. The layers’ characteristics are
ε1 = 1.2, μ1 = 1 and ε2 = 1.68, μ2 = 1. The solid and dotted
curves correspond to s and p polarizations, respectively. The dotted
curve is calculated for the ensemble of 500 realizations of the random
structure, composed of 50 000 layers. The solid curve is calculated for
the ensemble of 2000 realizations of the random structure, composed
of 1500 layers.

right-hand side of (9), which is proportional to |t|. Then

γs = 1

L

〈
ln

∣∣∣∣ 1

ts

∣∣∣∣
〉

= 1

L

〈
ln

∣∣∣∣1

t

∣∣∣∣
〉

+ 1

L

〈
ln

∣∣∣∣
√

ε

μ
(rL − 1) − Yv (rL + 1)

∣∣∣∣
〉

+ 1

L

〈
ln

∣∣∣∣
[√

ε

μ
(rR − 1) − Yv (rR + 1)

]/
4
√

ε

μ
Yv

∣∣∣∣
〉
.

(10)

The values of the second and the third logarithms of the
right-hand side of (10) are finite, so when the thickness of
the system increases, the respective terms vanish. Thus the
Lyapunov exponent for the s-polarized wave in the real system
is equal to the Lyapunov exponent for the model system of
layers with the transmission matrices Asj . Calculating the
Lyapunov exponent for the p-polarized wave we have to

FIG. 3. The same as in Fig. 2 except ε1 = 1.5, μ1 = 1 and ε2 =
1.5, μ2 = 1.6. The solid curve is calculated for the ensemble of 500
realizations of the random structure, composed of 50 000 layers. The
dotted curve is calculated for the ensemble of 4000 realizations of
random structure, composed of 700 layers.
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FIG. 4. The same as in Figs. 2 and 3 except k0d = 1.0, ε1 =
5, μ1 = 1.08, and ε2 = 15, μ2 = 1.1. The dotted and solid curves
are calculated for the ensemble of 5000 realizations of the random
structure, composed of 400 layers.

replace rL, and rR by −rL and −rR . As the result, the Lyapunov
exponent γ does not change, so that

γs = 1

L

〈
ln

∣∣∣∣1

t

∣∣∣∣
〉

= γp. (11)

Let us note that for the normal incidence, if ε and
μ are interchanged, the transmission coefficient does not
change. Indeed, in this case, in the Maxwell equations, the

FIG. 5. The dependence of γ normalized by the average layer’s
thickness d on the angle of incidence α for a two-component
layered medium at a frequency k0d = 1.0. The characteristics of
the first and the second layers are ε1 = 2, μ1 = 1 and ε2 = 15,
μ2 = 7.5, respectively. The layers of the first and the second types
are randomly mixed and their thicknesses are distributed uniformly
between 0.8d and 1.2d. The solid and dotted curves correspond to s
and p polarizations, respectively. For the angles between 0.1 and 0.4
radian, both curves are calculated for the ensemble of 400 realizations
of the random structure, composed of 100 000 layers, and for the
angles between 0.4 and 1.57 radian both curves are calculated for the
ensemble of 1000 realizations of the random structure, composed of
30 000 layers.

fields E and H are substituted by H and −E, respectively.
Hence, when the admittance Y is substituted by 1/Y , the
transmission coefficient does not change. Therefore in our
model systems the transmission coefficients, as well as the
localization lengths, are the same. Thus the localization lengths
are identical for both s- and p-polarized waves.

Despite the equality of the transmission coefficients in
model systems, the reflection coefficients for these model
systems have different signs. Therefore the matrices A for
different polarizations are different. In addition, matrices B for
the s and p polarizations are also different. Consequently, in
general, the transmission coefficients for the s- and p-polarized
waves for an oblique incidence are different. Nonetheless, the
localization lengths are equal. This result is in agreement
with the formula for the localization length obtained in the
perturbation theory in Ref. 13 and generalized for the oblique
incidence in Ref. 31.

IV. NUMERICAL CALCULATIONS

The numerical results for the dependence of the Lyapunov
exponent on the angle of incidence for different values
of dielectric permittivities and magnetic permeabilities for
constant frequency are shown in Figs. 2–5. In the case when
magnetic permeability is the same for all layers (Fig. 2), for the
p-polarized wave there exists the delocalization angle,22 which
is equal to the Brewster angle (4) for the transition from one
layer to another. At the same time, for the s-polarized wave, γ

grows with the angle of incidence. This is associated with the
increase of the surface admittances’ contrast when the angle
increases [see Eq. (3a)].

In the case when dielectric permittivity is the same for all
layers and magnetic permeabilities are different, the situation
is exactly the opposite (see Fig. 3). Here the delocalization
angle for the s-polarized wave exists. This angle is equal to the

FIG. 6. Transmission coefficients of s- (the solid curve) and p-
(the dotted curve) polarized waves through the system of 30 layers as
functions of the angle of incidence calculated for a single realization
of the random structure. The values of parameters are the same as in
Fig. 5.
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Brewster angle of the s-polarized wave in magnetic layers (4).
The Lyapunov exponent for p-polarized wave is growing with
the angle of incidence.

It turns out that for some values of the parameters, the
Brewster angle does not exist for both s- and p-polarized
waves. In this case γ is not equal to zero at any angle (see
Fig. 4).

Hence, generally, our system may have the Brewster angle
either for s- or p-polarized waves or the angle does not
exist. Only in the case of equal characteristic admittances is
the Brewster angle realized for both polarizations (see the
Appendix). In this case the Brewster angle is equal to zero
(the normal incidence). Let us consider localization in such a
system.

When the characteristic admittances for all the layers are
the same, for the normal incidence (α = 0) the numerical
experiment confirms an obvious prediction that there is no
localization for both polarizations, so that for the Lyapunov
exponents we have γs = γp = 0.

For the oblique incidence the Lyapunov exponents have
nonzero values for both polarizations. However, we find that
within the accuracy of the numerical experiment (the errors
occur due to the finite size of the system and finite number of
realizations) the Lyapunov exponents for s and p polarizations
are the same (see Fig. 5). The numerical calculations shown in
Fig. 5 are in a good agreement with analytical results (11).

As we discussed in Sec. III, the transmission coefficients
for s and p polarizations are different in each realization, as
shown in Fig. 6.

The obtained results are also valid for a disordered system
of metamaterial layers with negative permittivities in which
the surface plasmon resonance may exist (see, e.g., Ref. 31
and references therein). As shown in Fig. 7, in such systems
when characteristic admittances do not change the localization
lengths for s- and p-polarized waves are identical.

FIG. 7. The dependence of γ normalized by the average layer’s
thickness d on the angle of incidence α for a random two-component
layered medium. The characteristics of the first and the second layer
types are ε1 = −2, μ1 = −1 and ε1 = 15, μ1 = 7.5, respectively, all
other parameters are the same as in Fig. 5.
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APPENDIX

In this Appendix we prove that the Brewster angles cannot
exist for both s- and p-polarized waves at the same system (if√

ε1/μ1 �= √
ε2/μ2). Let us consider an interface between two

media characterized by dielectric permittivities ε1 and ε2 and
magnetic permeabilities μ1and μ2, respectively. We assume
that ε1 � 1, ε2 � 1, μ1 � 1, μ2 � 1, and

√
ε1/μ1 �= √

ε2/μ2.
Let us presume the possibility of the existence of the Brewster
angles for both polarizations. Then, from the equality of the
surface admittances for the p polarization,(

ε1

μ1

) (
1 − sin2 αp

ε1μ1

)−1

=
(

ε2

μ2

)(
1 − sin2 αp

ε2μ2

)−1

, (A1)

one can obtain the expression for the Brewster angle for the
p-polarized wave

sin2 αp = ε1ε2(ε1μ2 − ε2μ1)

ε2
1 − ε2

2

.

In these equations sin αp denotes the ratio k‖/k0, at which
Eq. (A1) holds. We assume that ε1 > ε2, then in order to have
sin2 αp > 0, the inequality

ε1μ2 > ε2μ1 (A2)

must be satisfied.
Similarly, using equality of surface admittances for the s-

polarized waves,(
ε1

μ1

) (
1 − sin2 αs

ε1μ1

)
=

(
ε2

μ2

) (
1 − sin2 αs

ε2μ2

)
,

we obtain an expression for the Brewster angle for the s
polarization

sin2 αs = μ1μ2(ε1μ2 − ε2μ1)

μ2
2 − μ2

1

.

In order to satisfy inequality (A2), along with ε1 > ε2, and
to have sin2 αs be positive, an additional condition must be
imposed: μ2 > μ1.

In order for αs and αp to exist simultaneously, they must
have real values, which means that sin2 αp � 1 and sin2 αs �
1. This leads to the inequalities 0 < (ε1μ2 − ε2μ1) <

(ε2
1 − ε2

2)/ε1ε2 and 0 < (ε1μ2 − ε2μ1) < (μ2
2 − μ2

1)/μ1μ2 or
equivalently ε2

1(ε2μ2 − 1) < ε2
2(ε1μ1 − 1) and μ2

2(ε1μ1 −
1) < μ2

1(ε2μ2 − 1). From the latter two inequalities one ob-
tains ε1μ2 < ε2μ1, which contradicts inequality (A2). Hence,
in a general case when ε1 � 1, ε2 � 1, μ1 � 1, μ2 � 1, and√

ε1/,μ1 �= √
ε2/μ2, if the Brewster angle exists, then it exists

for one of the polarizations only.
Now, let us assume that only inequalities ε1 �= 0, ε2 �=

0, μ1 �= 0, μ2 �= 0 are satisfied. We also assume that signs

224205-6



EFFECT OF POLARIZATION UPON LIGHT . . . PHYSICAL REVIEW B 83, 224205 (2011)

of ε and μ are the same. Let us suppose that the Brewster
angles exist for both s and p polarizations. These angles must
be smaller than the angles of the total internal reflection for
the light incident on either media from vacuum. This implies

sin2 αs = μ1μ2(ε1μ2 − ε2μ1)

μ2
2 − μ2

1

< ε1μ1,

sin2 αp = ε1ε2(ε1μ2 − ε2μ1)

ε2
1 − ε2

2

< ε2μ2.

These inequalities are not compatible because from the first
one it follows that ε1μ1 < ε2μ2, and the second one implies
that ε1μ1 > ε2μ2.

Hence, for the oblique incidence either the Brewster angle
does not exist for one of the polarizations or the wave with s
or p polarization experiences the total internal reflection when
it is incident on the interface from vacuum at the Brewster
angle. When

√
ε1μ1 = √

ε2μ2, the Brewster angle is equal to
zero [Eq. (3a)] and the phenomenon does not depend on the
polarization.
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