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Transport properties and Stokes-Einstein relation in a computer-simulated glass-forming
Cu33.3Zr66.7 melt
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Molecular dynamics simulation with a modified embedded atom potential was used to study transport properties
and the Stokes-Einstein relation of a glass-forming Cu33.3Zr66.7 metallic melt. Upon cooling, at high temperatures,
the self-diffusion coefficients of the two species evolve nearly parallel, whereas they diverge below 1600 K. The
viscosity as function of temperature is calculated from the Green-Kubo equation. The critical temperature of
mode coupling theory Tc is found as 1030 K, from both the transport properties and the α-relaxation time. It
is found that the Stokes-Einstein relation between viscosity and diffusivity breaks down at around 1600 K, far
above Tc and even above the melting temperature. The temperature dependence of the effective diameter in the
Stokes-Einstein relation correlates closely with the first derivative of the ratio of the self-diffusion coefficients
of the two components. We propose that the onset of Stokes-Einstein relation breakdown could be predicted
quantitatively by the divergence behavior of diffusion coefficients, and the breakdown of Stokes-Einstein relation
is ascribed to the sudden increase of the dynamic heterogeneity.
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I. INTRODUCTION

Transport properties, such as the shear viscosity and the
diffusion coefficients, of liquid metals, especially in the
metastable undercooled regime, are kinetic key parameters
that determine the crystal nucleation and growth in metallic
melts. They also play a very important role in studying the
liquid-to-glass transition in a glass-forming system, which
has been an open question up to now. According to the free
volume theory,1 the free volume of liquids can be derived
from the transport properties of the liquid. The free volume of
liquids correlates with that of glassy alloys, which determines
the strength and ductility of metallic glasses.2 Thus, transport
properties of liquids could reveal valuable information about
mechanical properties of metallic glasses and, therefore, have
attracted extensive research interest.3–7

In simple liquids, the self-diffusion coefficient is often
related to the shear viscosity by the Stokes-Einstein (SE)
relation8,9

D = kBT

cπηd
, (1)

where kB is the Boltzmann constant, d the effective diameter
of the particle, and c a constant that depends on the boundary
conditions: 3 for “stick” boundary condition and 2 for “slip”
boundary condition.

For some molecular liquids10 and metallic glass-forming
systems,11–13 the SE relation holds quite well at temperatures
above the critical temperature Tc of the mode coupling theory
(MCT)14 and breaks down at temperatures below. According
to MCT, Tc characterizes a change in the dynamics of the
liquid from ergodic liquidlike flow to nonergodic solidlike
hopping. Therefore, a breakdown of the SE relation around Tc

seems quite reasonable. However, some experiments indicate
that the SE relation may already break down at temperatures
far above Tc.15–17 Noticeably, Meyer et al. found that in a
Zr-Ti-Cu-Ni-Be melt the mobility of Ni and Ti atoms remains
decoupled from viscous flow far above the mode coupling Tc

and the liquidus temperature TL.16 This implies that Tc is not
necessarily the temperature that determines the breakdown of
the SE relation. The temperature Ts , marking the onset of the
breakdown of the SE relation, might be different. Clearly, Ts

is determined by the dynamics of the liquid. Its relation to
TL,T c, and Tg, however, is not clear. Why the SE relation can
break down far above the mode coupling Tc and even above
the liquidus temperature and how empirically to predict Ts are
still open questions. An investigation of these questions is not
only meaningful for the understanding of the change in the
dynamics at the liquid-to-glass transition, but also informative
for experimentalists since they often approximate the self-
diffusion coefficient via the SE relation from the viscosity, or
vice versa.

Molecular dynamics simulation allows an insight into the
dynamics on an atomic level. The breakdown of the SE relation
was addressed by several calculations simulating real and
model liquids. A breakdown of the SE relation was observed
in systems as diverse as liquids of hard18 and soft spheres,19

binary Lennard-Jones fluids,20,21 water,22 and silica melts.23

These simulations have, so far, not lead to a unique, accepted
picture.

To elucidate the relation between the viscosity and the
self-diffusion coefficients, we must determine both properties
accurately. In experiment the determination of transport
properties in the metastable undercooled regime is rather
challenging, because any contact of the metallic melt with
the container wall immediately induces crystallization of the
melt.24 This is why experimental studies of viscosity and
self-diffusion coefficients are normally confined to the normal
liquid regime or to the viscous “undercooled” regime between
Tg and the recrystallization temperature of the glass Tx . The
convection inside the sample in terrestrial measurements is
another problem.25 In this work we will use molecular dy-
namics simulation to investigate the temperature dependence
of the viscosity and self-diffusion coefficients, as well as their
relationship.
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In Meyer’s work,16 the breakdown of the SE relation occurs
in a Zr-based system. We study a Cu33.3Zr66.7 binary alloy,
which is also a Zr-based system. To our best knowledge, the
transport properties in the context of the SE relation of this
alloy have not been reported previously. We hope that we can
elucidate the mechanism for the breakdown of SE relation
far above Tc and even the liquidus temperature based on the
simulated transport properties and propose an empirical way
to predict the onset for this breakdown, which could also be
applied to other systems.

There are several molecular dynamics studies of liquid
and amorphous CuZr in various compositions, using different
interaction models. Using a Lennard-Jones-type interaction,
plasticity was studied.26 The structure and diffusion in
Cu60Zr40 was studied using a Finnis-Sinclair interaction.27

A tight binding-based description was used in a study of
amorphization.28 Kim and Lee developed a modified embed-
ded atom model and gave a few results for Cu50Zr50.29 Cheng
et al. developed an embedded atom model and studied the
structure basis of the mechanical properties of CuxZr100−x (x =
46–65).30

We simulate the CuZr system using a modified embedded
atom model (MEAM) developed earlier. It has been used
extensively in studies of the atomistics of diffusion. The
typical chainlike structure of the diffusional motion, seen
earlier in the glassy state,31 was also found in the undercooled
melt.32 The observation of atomic jumps over nearest-neighbor
distances coupled with the, often observed, time evolution of
a secondary peak in the autocorrelation function led to the
assumption of two distinct mechanisms, jumps over typically
nearest neighbor distances and a more flowlike motion.33 A
detailed study of the atomic jump lengths showed that there
is no typical jump length and that the long-range jumps are
just special cases of the collective jumps.34 The evolution of
the side maximum in the autocorrelation function is not due
to the jump process but results from the prolonged waiting
time between jumps at preferred sites.35 This is an effect of
the dynamic heterogeneity, implying faster atoms moving in a
slower surrounding.

Recently Mendelev and coworkers developed another
Finnis-Sinclair–type potential for CuZr.36 They had used
previously a slightly different version to study diffusion.37

An accurate assessment of the relative merits of this model
compared to our MEAM is not possible. The predicted
positions of the nearest-neighbor peaks of the pair correlation
functions differ by about 5%. Our MEAM gives 0.303, 0.244,
and 0.3 nm, for ZrZr, CuCu, and ZrCu, respectively. The
corresponding values for the EAM2 interaction are 0.321,
0.258, and 0.28 nm. Reported experimental values are 0.318,
0.253, and 0.277 nm,38 0.316, 0.257, and 0.284 nm,39 and
0.316, 0.253, and 0.280 nm.40 The ZrZr and CuCu values are
fairly close to the experimental values for the mono-atomic
melts. At T = 1373 K the position of the first peak is at
0.250 nm for Cu41 and at T = 2000 at 0.312 nm for Zr.42

These slight discrepancies indicate limitations of the model
description, which, however, are not sufficient to severely
affect the results of this investigation.

The organization of the rest of the paper is as follows.
In the next section, we describe the system studied and the

applied simulation methods. The results of the simulation
are given in Sec. III. Self-diffusion coefficients, viscosity,
autocorrelation functions, and heterogeneity are presented and
discussed. Based on the simulated data, the breakdown of
the Stokes-Einstein relation is shown. An empirical way to
predict the breakdown of the SE relation is proposed, and the
mechanism for the breakdown of SE relation is analyzed by the
non-Gaussianity parameter. In Sec. IV the results are discussed
in the context of our previous work and that of other groups.
We end with a summary in Sec. V.

II. SIMULATION DETAILS

The molecular dynamics simulations are performed for sys-
tems of 1000∼8000 atoms with periodic boundary conditions
in three directions. The velocity Verlet algorithm is adopted
to solve the equation of motion at constant temperature T and
constant pressure P, and with a time step of 2.5 fs. The pressure
is kept zero using the Parrinello-Rahman algorithm43 with a
volume mass of

√
N · mZr , where N is the number of particles

and mZr is the atomic mass of Zr, and an additional damping
term to prevent oscillations. The temperature T was controlled
by a Nose-Hoover thermostat.44

Three independent samples are prepared by a quench
from liquid Cu33.3 Zr66.7 at 2500 to 1200 K, in steps of
100 K and with a rate of 1 × 1012 K/s. Within the covered
temperature range the system is in the equilibrium state. At
each temperature step, the samples are aged for 2.5 ns. This
procedure followed our previous work.45 In the temperature
range relevant for the present investigation no aging effects
are expected.46 The measurements are taken during times
ranging from 5 ns at temperatures above 2000 K, 15 ns for
temperatures below 1400 K, and 10 ns for the intermediate
temperatures. The radial distribution functions at the beginning
of the measurements, gr 1, and the end, gr 2, are calculated.
The condition gr 1 = gr 2 is always ensured. During the whole
time needed to gain the necessary statistics no change of the
structure of the liquid is observed.

A. Atomic interaction potential

The atomic interaction in the Cu33.3Zr66.7 alloy is described
by a modified-embedded-atom method (MEAM),47 which can
be viewed as the original embedded atom method (EAM) plus
an additional angular correction. In the original EAM, the total
energy of the system is described by a pair potential ϕij and
an embedding energyF (ρ0), which accounts for the additional
many-body effects due to the electronic density:

Epot =
∑

ϕij (rij ) +
N∑

i=1

F (ρ0,i), (2)

where rij is the distance between atoms i and j, and ρ0,i is the
electronic density of atom i, which is given by a superposition
of radial functions f (r)

ρ0,i =
N∑

j=1
j �=i

f (rij ). (3)
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To account for covalency, there is an additional angular
correction in this work for Zr as apex atom, and the density
takes the form

ρi = ρ0,i exp

⎡
⎢⎢⎢⎢⎣

1

ρ2
0,i

c

N∑
j,k=1
j �=i
k �=i

cos3(�jik)f3(rij )f3(rik)

⎤
⎥⎥⎥⎥⎦ , (4)

where �jik is the angle between �rij and �rik , and f3(r) is the
radial function in the angular correction term. An exponential
plus additional term is used for both f(r) and f3(r). The
parameters were fitted to reproduce the experimental values
of Cu, Zr and CuZr2 crystals. The universal energy-volume
relation of Rose et al.48 was used to determine the anharmonic
contributions, not sampled in the crystal but of essential
importance in the disordered glassy state. We get lattice
parameters a = 0.363, a = 0.323, and c = 0.516, and a = 0.338
and c = 10.35 nm (experimental values49 a = 0.362, a = 0.323,
and c = 0.515, and a = 0.322 and c = 11.18 nm) for Cu, Zr, and
CuZr2 respectively. The CuZr2 lattice is slightly distorted. The
atomic volume, however, is only 2% too large. The sublimation
and vacancy formation energies for Cu and Zr crystals agree
with experiment. The enthalpies of fusion per atom relative
to the monoatomic crystals are reproduced for the CuZr and
CuZr2 crystals within a few percent. Additionally the phonon
dispersion curves and elastic constants of the mono-atomic
lattices were used. In the case of Cu, excellent agreement was
achieved. In Zr we get an overall agreement with experiment,
but some phonons deviate up to 30%, similar to other work.50,51

The detailed form and the parameters are given in our previous
work.45 For more details on the fitting procedure see Ref. 52.

B. Self-diffusion coefficient calculation

The self-diffusion coefficients D are calculated for Cu and
Zr from the long-time evolution of the respective mean-square
displacements (MSD),53

〈r2(t)〉 = 1

N

N∑
i=1

[ri(t) − ri(0)]2, (5)

by the standard expression

D = lim
t→∞

1

6t
〈r2(t)〉. (6)

where the bracket denotes the ensemble average and the sum
is over all atoms of Cu and Zr, respectively. Since the present
study is concerned with temperatures well above the glass
transition, no problems with aging effects or long-time plateaus
in the MSD are encountered.

C. Viscosity calculation

The shear viscosity of a liquid is related to the fluctuations
of the off-diagonal elements of the stress tensor. According
to the Green-Kubo equation,53 η can be calculated from an

equilibrium simulation by a time integral over the stress
autocorrelation function η(t)

η =
+∝∫
0

η(t) dt, (7)

with

η(t) = 1

kBT V
〈σxy(t) · σxy(0)〉, (8)

where V is the volume of the system, T the temperature, kB the
Boltzmann’s constant, and σxy is the component of the stress
in the xy direction, which can be computed from the velocities
and the viral

σxy =
∑

i

miv
x
i v

y

i −
∑

i

∑
j>i

∂ϕ(rij )

∂rij

rx
ij r

y

ij

rij

. (9)

Isotropy of the liquid implies equality of all shears. In
finite systems this is slightly violated, and one averages over
the different shears, indicated by the brackets in Eq. (8).
For the calculation of the stress autocorrelation function η(t),
we utilize the method of overlapping-time-interval correlation
averages suggested by Rapaport.54 There are three quantities
in this averaging method, namely, the duration of the MD
simulation tD , the time window over which the stress autocor-
relation function is computed tw, and the time interval between
the start of successive windows ts . The number of time origins
is related to these three quantities by

n0 = 1 +
(

tD − tw

ts

)
, (10)

where the bracket means the nearest integer value.

D. Incoherent intermediate scattering function

The transition from a simple liquid through undercooling
to a glass is also seen in the incoherent intermediate scattering
function


A(q,t) = 〈〈exp {iq [rn(t) − rn(0)]}〉〉n∈A . (11)

The double brackets indicate averaging over all atoms of
type A (Cu or Zr) and over starting times t0.

III. SIMULATION RESULTS

A. Mean-square displacement (MSD) and diffusion coefficient

The calculated MSDs of Cu and Zr in liquid Cu33.3Zr66.7

at temperatures ranging from T = 1200 to 2400 are shown
in Fig. 1. As usual, we observe three different regimes in
the MSDs. For short times the MSDs are proportional to t2,
which is typical for vibration and ballistic motion of particles.
For long times the diffusive regime is reached, MSD∝ t . At
intermediate times a transient regime appears, i.e., a plateau,
between the ballistic and diffusive regimes when the liquid is
cooled to below 1600 K. With the decrease of the temperature,
the plateau becomes more pronounced.

We evaluate the self-diffusion coefficients for Cu, DCu,

and Zr, DZr, from the slope of the MSDs in the long-range
diffusive regime. The results, averaged over the three samples,
are presented in a double-logarithmic plot in Fig. 2, where the
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FIG. 1. (Color online) Log-log plot of the mean square displace-
ments of Cu and Zr in liquid Cu33.3Zr66.7 at temperatures between
1200 and 2400 K. (From low to top, the temperature increases from
1200 K to 2400 K.)

red solid symbols represent DCu and the blue solid ones DZr.
The self-diffusion coefficients for the two species converted
from the viscosity via the SE relation are also plotted in Fig. 2,
denoted by red and blue open symbols. We will come back to
this later.

According to mode coupling theory (MCT), the tempera-
ture dependence of DA is given by

DA(T ) = DMCT
0 (T − Tc)γ . (12)

Fitting the averaged self-diffusion coefficients of Cu and Zr
to the above expression, we find, common to both components,
Tc = 1025 K, and γ = 1.52 and 1.93 for Cu and Zr, respectively.
The MCT critical temperature Tc and the exponent γZr are
compatible with the earlier work,45 whereas γCu lies between
the value γCu = 1.34 derived from the diffusion coefficient
and γCu = 1.57 derived from the intermediate scattering
function. These values depend somewhat on the temperature
range used in the fitting and are, therefore, not exact. The
different γ values for Cu and Zr indicate that the system
should be described by a two-component MCT. Weysser et al.

FIG. 2. (Color online) Self-diffusion coefficients of Cu (red) and
Zr (blue) in liquid Cu33.3Zr66.7 against temperature. (Solid symbols: D
calculated from the MSD, open symbols: D derived from the viscosity
via the SE relation, lines: fit with the MCT expression.) TL indicates
the calculated melting temperature.

have shown that even for a simple system of polydisperse
quasihard spheres with Brownian dynamics the description by
an effective monodisperse system breaks down in the q → 0
limit.55

In many cases, for example, in a liquid Ni-Zr alloy56 and a
binary Lennard-Jones system,57 the self-diffusion coefficients
for the two species vary in parallel with changing temperature.
In contrast, the diffusion coefficients for two species in the
Cu33.3Zr66.7 melt diverge. To analyze this divergence of the
diffusion coefficients in more detail, we calculate DCu/DZr and
its first derivative d(DCu/DZr)/dT . The results are illustrated
in Fig. 3. Clearly, at temperatures above T∼1700 K, DCu/DZr

increases as temperature decreases with a small constant rate
of 3.4 × 10−4 / K. We refer to this regime as “near-parallel
regime,” where diffusion coefficients for two species run nearly
parallel to each other. This behavior is expected when the two
species merely differ in their respective effective diameter d

FIG. 3. (Color online) DCu/DZr of liquid Cu33.3Zr66.7 and its first
temperature derivative versus temperature for the three samples.
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FIG. 4. Incoherent intermediate scattering function for Cu and Zr
in liquid Cu33.3Zr66.7 at different temperatures (From left to right, the
temperature changes from 2500 to 1200 K with a step of 100 K.)

in Eq. (1). At temperatures below 1600 K, d(DCu/DZr)/dT

changes almost linearly with temperature. In this regime the
slope is around 50 times larger than that in the near-parallel
regime. The difference between the diffusion coefficients for
the two species increases rapidly, and the divergence becomes
more and more pronounced with decreasing temperature.

B. Incoherent intermediate scattering function Fs (q, t)

In Fig. 4 we present the incoherent intermediate scattering
functions Fα

s (q,t) for the two components as a function of
time. The wave numbers used for the two plots correspond
to the location of the first maximum in the structure factor
for Cu and Zr, respectively (q = 2.66 Å−1 for Cu, and q =
2.55 Å−1 for Zr).46 At short times, Fα

s (q,t) shows a Gaussian-
type dependence on time, consistent with the ballistic motion
of the particles in Fig. 1. At high temperatures, Fα

s (q,t) decays
to zero on a picosecond time scale. At low temperatures, a
small shoulder appears, which corresponds to the so-called β

regime, due to the cage effect, and to the corresponding plateau

FIG. 5. (Color online) α-relaxation time versus (T-Tc) for Cu and
Zr in liquid Cu33.3Zr66.7 (symbols: this simulation, lines: fit with the
MCT expression).

in the MSD. The decay from the end of the initial decay due
to ballistic motion of the particle at high temperatures or from
the end of the β regime is called α relaxation.

In the late α-relaxation regime Fα
s (q,t) can be well approx-

imated by a Kohlrausch-Williams-Watts (KWW) function

Fs(q,t) = fq exp

[
−

(
t

τq

)βq

]
(13)

with an exponent βq<1 and fq<1.
Depending on the temperature, we use Fα

s (q,t) for times
longer than 0.2∼1.5 ps to fit the KWW stretched exponential
function. In the considered temperature range β is independent
of temperature, βCu

q = 0.697 ± 0.039, and βZr
q = 0.82 ±

0.028. The increase of the α relaxation time with decreasing
temperature is depicted in Fig. 5. Mode-coupling theory
predicts that the α-relaxation time is related to Tc by

τ (T ) = τ0(T − Tc)−γ . (14)

Data regression shows that the parameters of Tc = 1025 K,
γCu = 2.21, and γZr = 2.39 could fit the data for temperatures
below 2000 K quite well. This value of Tc is the same as derived
above from the self-diffusion coefficients. The exponents γ ,
however, are considerably higher than the ones derived from
the diffusion coefficients.

If diffusion and α relaxation are two expressions of the
same process the product of self-diffusion coefficients and
α-relaxation time should be constant, independent of temper-
ature. Figure 6 shows the product, Dτα , against temperature.
At high temperatures Dτα is almost a constant for both Cu
and Zr. Below 1700 K it increases rapidly. The relaxation
slows down more rapidly than the diffusion. At 1200 K the
product of the α-relaxation time and self-diffusion coefficient
is about a factor of 2, for Zr, or 3, for Cu, higher than at
high temperatures. Thus, when the temperature decreases to
below 1700 K, the self-diffusion coefficients decouple from
the α-relaxation time.
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FIG. 6. (Color online) Product of self-diffusion coefficient and
α-relaxation time, Dτα , for Cu and Zr in liquid Cu33.3Zr66.7 against
temperature (symbols: this simulation, lines: guide to the eye).

C. Shear viscosity

The stress autocorrelation functions (SACF) of Cu33.3Zr66.7

have been evaluated according to Eq. (8). The normalized
SACFs, 〈η(t)/ η(0)〉, are shown in Fig. 7 for temperatures
ranging from 2400 K down to 1200 K. The SACF decays
rapidly toward zero as the correlation time increases. For
longer times, e.g., longer than 2.0 ps for 2400 K or 0.15 ns
for 1200 K, the normalized SACF oscillates weakly around
zero. We cut off the contribution of the SACF to the viscosity
at that time step where the slowest normalized SACF of the
three samples drops to below 8 × 10−4. Another significant
feature of the SACFs evolves at temperatures below 1600 K,
namely, a bump in the correlation time range of 0.3-0.4 ps. This
bump is the effect of the boson peak vibrations, present in all
glasses and still observable in undercooled liquids. The bump
becomes more and more pronounced with a further decrease of

FIG. 7. (Color online) Normalized stress autocorrelation function
of liquid Cu33.3Zr66.7 at different temperatures.

FIG. 8. (Color online) Viscosities, calculated from three inde-
pendent off-diagonal stress tensors, and convergence error of liquid
Cu33.3Zr66.7 at 1800 K versus integration time.

temperature. In the intermediate scattering function (Fig. 4) the
corresponding bump can be seen at the lowest temperatures.

In the viscosity calculation we choose the times tD , tw,
and ts , according to two principles. First, the viscosity must
approach its asymptotic value when the integration time
reaches tw. For this, tw should be long enough to capture
the decay of autocorrelation function in its entirety but not
so long that noise is added to the correlation signal when the
noise-of-correlation function approaches its intrinsic value.58

Second, each independent off-diagonal stress tensor provides
an independent estimate of the shear viscosity. Because in real
fluids the shear viscosity is isotropic, these three independent
estimates of the viscosity must converge to one single value.
To monitor the convergence of the viscosity we introduce,
following Ref. [ 58], an error ξ :

ξ = 1

ηave

√
(ηxy − ηave)2 + (ηxz − ηave)2 + (ηyz − ηave)2

3
,

(15)

where ηave is the arithmetic mean of the three independently
determined viscosity estimates ηxy , ηxz, and ηyz. According
to the above-mentioned two principles, tw ranges in our
simulation from 3 to 150 ps depending on temperatures.
Taking tD = 5–15 ns and ts = 10 fs, we have a total of
5 × 105–1.5 × 106 time origins.

The viscosities of Cu33.3Zr66.7 at 1800 K calculated from the
three off-diagonal stress tensors and the error ξ are presented in
Fig. 8. It can be seen that the viscosity from each off-diagonal
stress tensor shows an asymptotic behavior. The convergence
of these three estimates of the shear viscosity is very good; the
convergence error is less than 2% when the correlation time
attains tw. At the other temperatures the behavior is similar.
The convergence errors at different temperatures are shown
in Fig. 9. At temperatures above 1300 K, ξ is less than 5%,
and there seems to be no correlation between temperature and
convergence error. At the lowest covered temperature 1200 K,
the convergence error of 6.3% is still acceptable.
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FIG. 9. Convergence errors of the viscosity calculation at differ-
ent temperatures.

The viscosities from the three independent samples used
in this work should converge to one single value for each
temperature. To check this point, we present in Fig. 10 the
viscosities for the three samples (A, B, and C) separately. These
results are consistent with each other, and their difference is
less than 4%. This again confirms the good convergence of the
viscosity calculation in our work.

The temperature dependence of the calculated viscosities
for the three samples is given in Fig. 11. The averaged viscosity
can be fitted by the MCT power law (blue line):

η(t) = ηMCT
0 (T − Tc)−γ . (16)

For the viscosity the MCT power law holds only at
temperatures below 1900 K, which is consistent with MCT
and similar to the case of α-relaxation time. The fit gives
Tc = 1042 K, and γ = 1.88. Tc is not far from the value gained
from the self-diffusion coefficients and α-relaxation times
(Tc = 1025 K). The value of γ is very close to that derived

FIG. 10. (Color online) Viscosity of liquid Cu33.3Zr66.7 at 1800 K
from three independent samples of 1000 atoms each and one sample
of 8000 atoms.

FIG. 11. (Color online) Viscosity of liquid Cu33.3Zr66.7 against
temperature (symbols: this simulation, red line: fit with the VFT
expression, blue line: fit with the MCT expression).

from DZr (γ = 1.93) but deviates strongly from the values
derived from DCu (γ = 1.52), and the α-relaxation times (γ =
2.21 for Cu and 2.39 for Zr).

The temperature dependence of the viscosity can also be
fitted by a Vogel-Fulcher-Tammann (VFT) law59–61 (red line
in Fig. 11):

η(t) = ηVFT
0 exp

(
B

T − T0

)
. (17)

The VFT law can describe the temperature dependence of
the viscosity quite well in the whole simulated temperature
range. Data regression gives B = 2258 K, and T0 = 767 K.

D. Size effect

In order to check for a possible size effect of the MD
calculations, we did some tests for a system of 8000 atoms at
several temperatures. The initial configuration is obtained by
doubling one configuration of 1000 atoms in each dimension.
The new configuration is run for 5 ns to equilibrate and
subsequently for 10 ns to obtain the needed statistics. The
normalized stress tensor autocorrelation functions for two
system sizes at 1800 K are presented in Fig. 12. The insert
gives an enlargement of the curves from 1 to 10 ps. Clearly,
the results for the two system sizes are in excellent agreement.
The dependence of the integrated shear viscosity on correlation
time is illustrated in Fig. 13 for the two system sizes. The
viscosity gained from the 1000-atom system agrees within
0.5% with the one gained from the larger system. There is
no apparent improvement in the viscosity calculation as the
system size increases. Therefore, we can say that there is
no obvious size effect in our viscosity calculation, and the
1000-atom system gives reasonable results. To improve the
accuracy of the viscosity calculation, the length of the MD run
is more important than the system size. This agrees with earlier
results for a Lennard-Jones system.20 There, also no obvious
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FIG. 12. (Color online) Normalized stress tensor autocorrelation
function at 1800 K for samples of 1000 (blue line) and 8000 (red line)
atoms.

size effect in the calculation of self-diffusion coefficients was
reported.

E. Stokes-Einstein relation

From the Stokes-Einstein relation Eq. (1) with “slip”
boundary condition, the effective diameter for the particle dSE

can be written as

dSE = kBT

2πηD
. (18)

As long as dSE is a constant, independent of temperature,
the SE relation is deemed to hold, otherwise, the SE re-
lation has broken down. In addition to the Stokes-Einstein
diameters for the two components, we define an average
diameter corresponding to the average diffusion coefficient,
given by D−1

aver = 0.333D−1
Cu + 0.667D−1

Zr . Figure 14 depicts
the temperature dependence of the effective diameters for

FIG. 13. (Color online) Viscosity of liquid Cu33.3Zr66.7 at 1800 K
for samples of 1000 (blue line) and 8000 (red line) atoms.

FIG. 14. (Color online) Effective SE diameters dSE, calculated
from DCu, DZr, and Daver., and d(DCu/DZr)/dT.

DCu, DZr, and Daver.. Apparently, for these three diffusion
coefficients, the effective diameter dSE fluctuates around a
value d0 at temperatures above T ∗. Here d0 = 0.306 nm for
Zr, d0 = 0.205 nm for Cu, and d0 = 0.276 nm for the average.
However, the dSE start to deviate from their respective d0 at
a temperature of T∗∼1600 K for Zr and the average, and
T∗∼1900 K for Cu. The self-diffusion coefficients for the
two species, Dd0,SE, derived from the viscosity via the SE
relation with d0 as the effective diameter are shown in Fig. 2.
As expected at temperatures above T∗ the Dd0,SE agree well
with their counterparts calculated from the MSD, whereas they
deviate increasingly when the temperature drops below T∗.

To relate the effective diameters to the nearest-neighbor
structure, we calculate the partial radial correlation functions
of Cu33.3Zr66.7 at different temperatures; see Fig. 15. The
first nearest-neighbor distance of Zr-Zr is d1

Zr = 3.03 Å, and
that of Cu-Cu is d1

Cu = 2.44 Å, both nearly independent of
temperature. The effective diameter for Zr approximated from
the SE relation using slip boundary condition, d0

Zr agrees well
with the nearest neighbor distance of the Zr-Zr pairs, d1

Zr. For
copper, d0

Cu is 16% less than d1
Cu.

From self-diffusion, viscosity, and α-relaxation time, we
found a MCT Tc around 1030 K. This Tc is far below the
temperature T ∗, where the SE relation breaks down for Zr as
well as for Cu. This means that in the Zr66.7Cu33.3 binary melt
the SE relation does not hold even at temperatures far above
Tc. The temperature T ∗ is even higher than the simulated
melting temperature TL = 1478 K, which is calculated
following a procedure described in the Appendix. This finding
is contrary to experimental indications that the SE relation
holds at temperatures above the mode coupling Tc but breaks
down at temperatures below Tc.10–13 However, the behavior
of SE relation described in this work is quite similar to the
experimental findings of the Zr-Ti-Cu-Ni-Be melt.16 In that
work the mobility of Ni and Ti atoms remains decoupled
from viscous flow even above the liquidus temperature. This
indicates that the breakdown temperature is material dependent
and not simply determined by a single-component mean-field
picture.

It has been suggested that the breakdown of the SE relation
is related to a changeover from flow motion to a more
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FIG. 15. (Color online) Pair correlation functions for Cu-Cu and
Zr-Zr at different temperatures.

hopping-like motion.17 Such a changeover would most likely
affect the diffusivities of the two constituents differently. To
test this we calculated the ratio DCu /DZr and show in Fig. 14
the temperature derivative d(DCu /DZr)/dT. It shows a similar
temperature dependence as for the SE radius of Zr. A larger
d(DCu /DZr)/dT means a more rapid change of DCu/DZr with
temperature, and a more rapid increase of the divergence of
the two diffusion coefficients. It does not, however, explain the
drop of the SE-diameter of Cu at even higher temperatures. We
will come back to this point below.

We test the universality of this argument by reproducing
the data of the viscosity and the self-diffusion coefficient
from the MD simulation of Bordat et al.17 for a binary
Lennard-Jones system. In that work the SE relation breaks
down at a temperature around 1.2, which is far above the MCT
critical temperature Tc = 0.435. In Fig. 16, we present the
calculated values of KBT/(2πDη) for the two species, D2/D1,
and its first derivative d(D2/D1)/dT based on the published
data. Obviously, the first derivative of D2/D1 changes its
temperature behavior at around a temperature of 1.2, which
is exactly the temperature of the breakdown of the SE relation.
Therefore, a “near-parallel” to “nonparallel” transition also

FIG. 16. (Color online) Effective diameters of the two species,
ratio of their self-diffusion coefficients D2/D1, and its first derivative
for a binary Lennard-Jones system, reproduced from Ref. 17. The
effective diameter has the unit of σ1, d(D2/D1)/dT has units of kB/ε1,
where kB is the Boltzmann’s constant, and σ1 and ε1 are the length
and energy parameter for the first component.

occurs in the self-diffusion coefficients of the L-J liquid, and
this transition in the diffusion mechanism is accompanied
by the breakdown of SE relation. The hypothesis that the
divergence behavior of diffusion coefficients is related to the
breakdown of SE relation and that d(D2/D1)/dT can predict
the onset of the breakdown is confirmed.

F. Dynamic heterogeneity

The breakdown of the SE-relation has often been linked
to the evolution of the dynamic heterogeneity (DH), one of
the characteristics of the glassy state. DH means that at any
given time some atoms are more mobile than the average, but
over a long time average equal mobility is restored. One of the
standard measures of the DH is the non-Gaussianity parameter,
α2(t),62

α2(t) = 3〈�r4(t)〉
5〈�r2(t)〉2

− 1. (19)

where <···> denotes the average over all atoms of one species,
and over start times t0, �r2(t) and �r4(t) are the mean square
and quartic displacements, respectively.

In a completely isotropic system α2(t) = 0 for vibrations
and diffusion. In the other limit where a single atom is mobile
and all others immobile, α2(t) = ∞ for t = ∞. Generally
α2(t) starts at zero and increases in the ps range to values
of the order of 0.1 because of anisotropies in vibration or
short-distance ballistic-like motion. It then increases ∝ √

t

toward a maximum and finally decays approximately ∝ 1/t .63

The
√

t increase has been explained by the collectivity of
motion. With decreasing temperature the maximum value of
α2(t) increases and is reached later.

The α2(t) for Cu and Zr for different temperatures are
illustrated in Fig. 17. They agree with the ones reported earlier,
mainly at low temperatures.45 Their behavior is similar to the
one observed in other liquids.63,64 At high temperatures, as
expected, α2(t) reaches a weak maximum on a ps timescale.
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FIG. 17. Non-Gaussian parameters for Cu and Zr in liquid
Cu33.3Zr66.7 at different temperatures (from low to top, the temperature
changes from 2500 to 1200 K with a step of 100 K).

As the temperature is lowered, the DH of the melt becomes
more and more pronounced, and the maximal non-Gaussianity
parameter, α2(MAX), is reached later and later. At T = 1200 K,
α2(t) grows for about 20 ps, and its maximal value is increased
by an order of magnitude. To show the temperature dependence
of the dynamical heterogeneity more clearly, the α2(MAX) at
different temperatures for the two species and their first deriva-
tives with respect to temperature, dα2(MAX)/dT, are reported
in Fig. 18. The temperature dependence of dα2(MAX)/dT
shows the same trend as d(DCu/DZr)/dT, and as the effective
diameter of the SE relation dSE. At temperatures above 1800 K,
dα2(MAX)/dT is nearly constant, whereas it decreases
linearly at temperatures below 1500 K. From the intersection of
the linear approximations in the two regimes of dα2(MAX)/dT
the transition temperature is found at about 1600 K. This
temperature equals the one found for the change in slope of
the temperature derivative of the ratio of the self-diffusion
coefficients of the two species; see Fig. 14. Below this
temperature the DH of the liquid increases upon cooling with
a much enhanced rate. Therefore, it is reasonable to say that

FIG. 18. (Color online) Maximum of the non-Gaussianity param-
eter α2(MAX) and its first derivative for Cu and Zr liquid Cu33.3Zr66.7

against temperature.

the change of self-diffusion coefficient ratio is accompanied
by a sudden increase of the dynamic heterogeneity. It is this
sudden increase of the dynamic heterogeneity that results in
the breakdown of the SE relation.

IV. DISCUSSION

The simulated CuZr2 melt shows the typical features of
glass-forming systems when they are quenched from the
simple liquid to the undercooled liquid state. The viscosity,
α-relaxation time and diffusion coefficients can be fitted by
the MCT with a single critical temperature Tc. The different
values of γ for Cu and Zr indicate the limitations of a simple
one-component MCT for our system. At the same time the
atomic dynamics of Cu and Zr differ significantly. At T =
1200 K the diffusivity of Cu is four times that of Zr. This
higher mobility transpires in several other properties such as
the breakdown of the SE relation. The slower majority species
Zr is considered to be the structure-forming one. We expect,
therefore, that some of the differences between the dynamics
of Cu and Zr will depend strongly on the composition and
might disappear for systems with a larger Cu concentration.
Our results reflect in part typical features of metallic melts,
mainly seen in the Zr results, but also more system-specific
ones, seen in the differences of the results for Cu and Zr.

Concentrating on Zr we see a clear correlation between the
onset of the rapid increase in dynamic heterogeneity and the
breakdown of the SE relation. Such a correlation has been
seen in simulations of several other materials, and the DH was
given as the reason for the breakdown.18,19,21,65 If some atoms
move fast, they will give a large contribution to diffusion,
whereas viscosity is strongly influenced by the slow atoms.
A simulation for high-density hard-sphere fluids has shown
that the slow particles obey the SE relation.18 We have seen
the correlation in the non-Gaussianity parameter α2, which is
dominated by the fast-moving atoms. It would be interesting to
test whether such a correlation can also be found in the alternate
non-Gaussianity parameter γ ,66,67 which is dominated by the
slow atoms.
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It has been suggested that the breakdown of the SE relation
is due to a change in the nature of the atomic motion.
Bordat et al.17 ascribe the breakdown of the SE relation to
the transition of flow motion to hopping motion when the
system becomes aware of the underlying energy landscape.
In particular hopping between sites, where the particles are
localized for some time, is taken as an indication. In this
work we find that the onset of the breakdown of the SE
relation can be determined from the ratio of the diffusion
coefficients of the two components, hinting toward a change in
mechanism affecting the two components differently. Earlier
we related the time dependence of the DH to the collectivity
of the jump process in glasses and undercooled liquids.63

Experiments and simulations have shown that diffusion in
both the glass and the undercooled liquid is collective.7 From
the isotope effect of the diffusion coefficient in mono-atomic
and binary Lennard-Jones liquids it has been shown that this
collectivity grows far above the MCT critical temperature
Tc.68,69 A study of the pressure dependence of the diffusion in
the binary Lennard-Jones liquid has shown that the activation
volume drops already at twice Tc from the value in the hot
liquid Vact = 0.6� (� = atomic volume) to the much lower
value of Vact = 0.3�, which is an indication of correlated
jump motion.57 A detailed analysis of the atom motion in
the present system has shown that there is no preferred jump
length and the contribution of jumps over a nearest-neighbor
distance to the diffusion of Zr is small even at 1400 K.45 The
distribution of jump lengths was found to be independent of
temperature; the jump probability followed an Arrhenius law.
These simulation results indicate that there is indeed a change
in the nature of the atomic motion already at temperatures far
above Tc.

Affouard et al.21 ascribe the violation of the SE relation
to a decoupling between the A and B particles in a binary
generalized Lennard-Jones system. They observe different SE
breakdowns at different temperatures for the two components.
A collective jump process, however, involves both species.
The chain (or string) of jumping atoms involves them both,
perhaps with a probability somewhat deviating from their
concentrations. On the other hand, we also observe different
breakdown temperatures for Zr and Cu in our system. A key to
these different temperatures for Cu and Zr can be seen in the
respective time evolutions of the van Hove pair correlation
functions35 and in particular in the time evolution of the
self-hole, i.e., the probability that the site of a given atom is
taken by a different atom. In the long time limit, the self-hole
is filled with Cu and Zr atoms according to their concentration,
independent of whether it starts as a Zr or Cu site. The site of a
Zr atom is filled by another Zr atom approximately following
a simple exponential law, as expected for normal diffusion. In
contrast, the site of a Cu atom is filled first with an enhanced
probability by another Cu atom, before the filling probability
drops to the statistical average. This leads to the seemingly
paradoxical result that the correlation function of the faster
particle decays more slowly. This effect can be explained by
the relative rigidity of the Zr matrix enhanced by the dynamic
heterogeneity in combination with the correlation between
neighboring Cu atoms. This replacement of a Cu atom by
another Cu atom contributes to tracer diffusion but has little
effect on viscosity, since the surrounding need not change. An

onset of this is already visible at T = 2000 K. It can explain
the deviation from the SE relation for Cu diffusion at higher
temperatures than for Zr. We want to stress that this effect
will be strongly concentration and material dependent. We do
not expect that this latter effect also occurs in Cu-rich CuZr
melts.

V. SUMMARY

Using a modified embedded atom potential we calculated
by molecular dynamics the shear viscosity, the intermediate
scattering function, the tracer self-diffusion coefficients, and
the non-Gaussianity parameter of a Cu33.3Zr66.7 melt at temper-
atures from 1200 to 2500 K. The shear viscosity is calculated
from a Green-Kubo relation. No system size dependence is
observed. The diffusion coefficients are evaluated from the
long time limits of the mean-square displacements. Plotted
against temperature, the self-diffusion coefficients of the two
components diverge away from each other, whereas, e.g., for
binary Lennard-Jones melts, they evolve nearly in parallel
with temperature. Both the diffusion coefficients and the
intermediate scattering functions can be fitted by MCT with
a common critical temperature Tc ∼ 1030 K, in agreement
with earlier work. The SE relation between viscosity and
diffusion coefficient starts to be strongly violated already at
T ∼ 1600 K, which is far above the MCT critical temperature
and above the melting temperature. At the same temperature
the dynamic heterogeneity starts to increase rapidly. At
about the same temperature there is also a change of slope
in the temperature derivative of the ratio of the two diffusion
coefficients, d/dt(DCu/DZr). We relate the breakdown of the
SE relation to the dynamic heterogeneity, which in turn is
connected to a change in atomic motion.

For the diffusion of the minority component Cu the
SE relation breaks down at even higher temperatures. This
additional effect can be traced to the much higher mobility,
which allows the replacement of a Cu atom, which has
moved away, by another Cu atom before the surrounding
Zr-dominated matrix has changed its structure too much. This
effect should be absent in the Cu-rich CuZr melt but should be
observable for other small minority components in melts.

The breakdown of the SE relation even at temperatures
above the melting temperature indicates that it should be used
only with great caution to approximate the viscosity from the
self-diffusion coefficients or vice versa.
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APPENDIX

Here we provide the simulation details of predicting the
melting temperature for CuZr2 with our MEAM potential.
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FIG. 19. Potential energy of the coexisting structure at different
temperatures.

For the prediction of the melting temperature, we
use a coexisting structure of crystal and liquid.
During the simulation, we use a NPT ensemble with the
external pressure kept at zero using the Parrinello-Rahman
algorithm. At the beginning a CuZr2 crystal of 1800 atoms with
stable lattice structure is equilibrated for 1 ns at 600 K. The
liquid phase is then generated by heating the well-equilibrated
solid phase to 2000 K and equilibrating for 1 ns. The two
subsystems are merged by joining them in the z-axis direction.
Finally, the whole system with a total number of 3600 atoms
is allowed to evolve for 7.5 ns (3 000 000 time steps) at
given temperatures. The equilibrium melting temperature TL

is estimated from the change of the growth direction in the
coexisting solid and liquid structure. At temperatures above

FIG. 20. (Color online) Variation of potential energy for the
coexisting structure during simulation at two different temperatures.

TL, the liquid phase will grow on the expense of the solid phase
and vice versa at temperatures below TL.

Figure 19 presents the simulated potential energy per atom,
Epot, at its homogeneous end state at different temperatures
when starting with a coexisting structure of solid and liquid.
For the temperature dependence of the potential energy,
there is an abrupt change between 1475 K and 1482 K.
The change of the potential energy with time at these two
temperatures is illustrated in Fig. 20. Clearly the coexisting
structure crystallizes at 1475 K but melts at 1482 K. Therefore,
the melting temperature of CuZr2 lies between these two
temperatures. We approximate TL as TL

simu = 1478.5 ± 3.5 K,
which is close to the experimental value, TL

exp = 1310 K, the
deviation being around 12.8%.

*xjhan@sjtu.edu.cn
†H.Schober@fz-juelich.de
1M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979).
2Y. Yokoyama, T. Ishikawa, J. T. Okada, Y. Watanabe, S. Nanao, and
A. Inoue, J. Non-Cryst. Solids 355, 317 (2009).

3L. Battezzati and G. S. Greer, Acta Metall. 37, 1791 (1989).
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