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Free energy of defect formation: Thermodynamics of anion Frenkel pairs in indium oxide
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The temperature-dependent free energies, entropies, and enthalpies for the formation of anion Frenkel
pairs in In2O3 are reported, as calculated within the Mott-Littleton embedded-cluster approach, by exploiting
the relationship between isobaric and isochoric thermodynamic processes. Our model for In2O3 proves
particularly successful in the reproduction and prediction of the thermoelastic properties, including heat capacity,
compressibility, and thermal expansion in the high-temperature regime. We employ this model to predict
the thermal behavior of oxygen vacancy and oxygen interstitial defects. Aggregation of the point defects is
energetically favorable and dampens the temperature dependence of defect formation, with a decreased free
volume of defect formation. The results highlight the contribution of point defects to the high-temperature thermal
expansion of indium sesquioxide, as well as the appreciable temperature dependence of the thermodynamic
potentials, including enthalpy and free energy, associated with defect formation in general. A transferable
procedure for calculating such thermodynamic parameters is presented.
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I. INTRODUCTION

Indium sesquioxide has been a leading transparent con-
ducting metal oxide (TCO) for the past forty years.1 The com-
bination of optical transparency with electronic conductivity
makes TCOs desirable for electrochromic, photovoltaic, and
a range of other optoelectronic applications.2–4 Despite the
great importance of In2O3, our understanding of its defect
properties is far from complete, especially considering their
crucial role in determining its physicochemical properties.
Based on the measured dependence of electrical conductivity
and oxygen partial pressure at high temperatures, De Wit
suggested that oxygen vacancies were the dominant ionic
defects,5 while Ohya et al. recently proposed that oxygen loss
leads to a defect complex comprising interstitial In and O
pairs;6 the reported powers for the conductivity dependence
span from p

−1/5
O2

to p
−1/10
O2

, indicating the complex nature of
the defect chemistry occurring in this system.5–8 Previous
theoretical studies of In2O3 have concentrated on defect
reactions involving isolated oxygen vacancies and indium
interstitials for generating intrinsic electron charge carriers,9–13

and more recently on ion transport through the lattice.14

We have recently developed an analytical interatomic
potential for In2O3 that provides a good description of the
structural, dielectric, and elastic properties of the thermody-
namically stable phase of In2O3 (bixbyite), as well as a number
of high-pressure phases15 and nanoclusters;16 the Buckingham
pairwise potential is supplemented with shell model polariza-
tion of oxygen, and full details of the parametrization can
be found in Ref. 15. The pertinent equilibrium properties are
summarized in Table I. From an investigation of a range of
stoichiometric defect reactions, we previously identified anion
Frenkel pairs as the lowest energy source of stoichiometry-
preserving intrinsic ionic disorder:

OO ⇀↽ V••
O + O//

i , (1)

in which the defects are represented using the standard notation
of Kröger and Vink, where the perfect lattice is considered as a
neutral reference, and positive and negative charges on defect
sites are represented by dots and dashes, respectively. The
reaction energy is calculated from

EFrenkel = 1
2 (E[V••

O ] + E[O//

i ]) = 3.19 eV (2)

per defect, where E[V••
O ] and E[O//

i ] represent the energetic
cost of introducing the corresponding isolated charged point
defect into the bulk lattice at infinite dilution. For this balanced
defect reaction, the total number of ions remains fixed and no
external chemical potential is required.

Frenkel disorder is favored because the thermodynamically
stable phase of In2O3 contains intrinsic structural anion
vacancies that facilitate interstitial formation on the 16c

Wyckoff position; the bixbyite crystal structure can be viewed
as a 2 × 2 × 2 supercell of the cubic fluorite (CaF2) structure
with ordered anion vacancies. At high temperatures, disorder
in the anion sublattice of the bixbyite structure has been
reported, consistent with significant concentrations of anion
Frenkel pairs.17 Moreover, for samples with high electron
carrier concentrations, such as heavily Sn-doped In2O3 (ITO),
charged oxygen interstitials are known to be present as
compensating defect centers.18

While no studies of stoichiometric defect reactions have
been reported based on electronic structure techniques, an
anion Frenkel-pair energy of 2.89 eV can be calculated from
the defect formation energies reported by Ágoston et al.10 at
the level of GGA + U in a periodic supercell, which is in
reasonable agreement with our reported value of 3.19 eV.

Although it has become standard practice to focus on the
calculation of defect formation energies under constant volume
(isochoric) conditions at T = 0 K,9–13,19–29 the thermodynamic
processes determining equilibrium defect concentrations are
related to the Gibbs free energy of the defect reaction,
defined under constant pressure (isobaric) conditions at finite
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TABLE I. Calculated and empirical properties of the bixbyite phase of In2O3 obtained using an interatomic potential model15 and density
functional theory (DFT). The PBEsol-DFT values of εS and ε∞ are calculated without the inclusion of LO-TO splitting or additional corrections
to the Kohn-Sham band gap.

Property Potential Model (This study) Experiment LDA-DFT59 PBEsol-DFT (This study)

Lattice constant (Å) 10.121 10.11760 10.094 10.172
Bulk modulus (GPa) 193.77 194.2461 174 157.10
Compressibility (×10−3 GPa−1) 5.16 5.1561 5.75 6.37
Heat capacity (C◦

p , J mol−1K−1) 102.17 99.0862

Static dielectric constant (εS) 9.05 8.9 − 9.53 6.02
Optical dielectric constant (ε∞) 3.90 4.03 3.82a 4.82

aThe reported value includes an a posteriori correction to the LDA band gap based on a separate HSE03+G0W0 calculation.

temperatures: Gd = Hd − T Sd . The importance of tempera-
ture and volume for the free energies of defect formation has
long been recognized.30 When it was incorporated into defect
calculations, more than thirty years ago, the resulting
model was able to reproduce successfully the known high-
temperature defect behavior of silver halides,31–33 as well
as other ionic systems.34–36 In2O3 represents a particularly
interesting case as it exhibits significant variation in its
high-temperature physicochemical properties, including lat-
tice constant and conductivity.8,17,37,38

Theoretical approaches to the calculation of defect for-
mation enthalpies and free energies have generally been
performed within the quasiharmonic approximation by com-
bining a temperature-independent interatomic potential with
the temperature-dependent lattice constants and dielectric
properties taken from experiment.34–36,39–41 Anharmonic ef-
fects become relevant close to the melting point as demon-
strated in a recent computational study by Grabowski
et al.,42 which addressed the issue of vacancy formation on
the free-energy surface of aluminium at high temperatures,
and included anharmonicity through explicit thermodynamic
integration.

A key quantity is the isochoric pressure change on defect
formation [pd = −( ∂Ad

∂V
)T ], which can be calculated from the

derivative of the Helmholtz free energy (Ad = Ud − T Sd )
of the defect reaction with respect to the lattice volume.
Conceptually, this pressure is an isotropic measure of the stress
exerted by the defect that should result in a lattice (elastic)
strain, which in turn is released under constant pressure.
Improved computational resources allow us to remove a
number of the previous approximations,31–36 and compute the
temperature-dependent elastic and dielectric properties of the
bulk material directly by calculating explicitly the vibrational
contributions, and minimizing free energy with respect to
all structural degrees of freedom. The salient details of this
approach are presented in this work, and it is applied to a
pertinent point-defect pair and its bound complex in In2O3.
The results highlight the role of defects in the lattice-constant
expansion of In2O3 at high temperatures, and provide further
insight into the complex defect chemistry of this material.

II. THEORETICAL AND COMPUTATIONAL
APPROACHES

The bulk and defect properties of In2O3 were calculated
using a set of optimized interatomic potentials15 within the

code GULP.43 Thermoelastic effects of the bixbyite lattice
(40-atom body-centered cubic unit cell) were investigated
by minimizing the free energy as a function of temperature
within the quasiharmonic approximation: at each temperature,
free-energy minimization is performed over all structural
degrees of freedom, using the internal lattice energy (U) and
the vibrational contributions obtained from the phonon density
of states.44,45 A 8 × 8 × 8 Monkhorst-Pack k-point mesh,46

sampling over the first Brillouin zone, was found to offer
convergence in the free energies of up to 1 × 10−5 eV and
in the cell volumes of 1 × 10−4 Å3. Temperature-dependent
properties were investigated from 0 to 1500 K in steps of
20 K; this is well below the experimental melting point of
In2O3, which is in excess of 2000 K, so that the quasiharmonic
approximation remains valid.

All calculations of the defect properties were performed
within the embedded-cluster, Mott-Littleton method47 to pro-
vide an accurate description of the infinitely dilute limit: the
simulation is divided into an inner region in which interactions
are explicitly treated (region I), and an outer region that
responds to the defect perturbation via a linear response
approach (region II). The radius of region I was chosen as
15 Å (>1000 atoms) with a 30 Å radius for the region
IIa (>9000 atoms). The region IIb continuum commences
outside these spheres and extends to infinity. A complete
shell (electronic polarization) and ionic relaxation of region
I was performed. A similar multiregion approach can also be
used with electronic-structure techniques, e.g., as implemented
in the CHEMSHELL package,48,49 as was recently applied to
assess the doping limits of ZnO.50 To facilitate the automated
calculation of the key thermodynamic parameters associated
with defect formation, including entropies, enthalpies, and
free energies, we have implemented our approach within the
auxiliary code FREE.

To validate our interatomic pair-potential model, supple-
mentary calculations of the structural and vibrational proper-
ties of bulk In2O3 were performed using density functional
theory51,52 as implemented in the code VASP,53–55 with the
exchange-correlation functional of Perdew, Burke, and Ernz-
erhof revised for solids (PBEsol).56 A plane-wave cut-off of
500 eV and a k-point grid of 3 × 3 × 3 were found to be well
converged. The equilibrium lattice constant and bulk modulus
were obtained from the energy-volume data from a series
of constant-volume calculations, and a fit to the Murnaghan
equation of state;57 the final forces were minimized to below
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0.001 eV/Å. The phonon frequencies at the � point were
determined from the interatomic-force constant matrix ob-
tained through density functional perturbation theory (DFPT),
which also enabled the calculation of the optical (ε∞) and static
(εS) dielectric constants using a 9 × 9 × 9 k-point mesh across
the first Brillouin zone; due to the band-gap underestimation at
the PBEsol level and the neglect of the vibrational splitting of
transverse and longitudinal optical modes (so-called LO-TO
splitting), the errors in both dielectric constants are relatively
large, as shown in Table I. Both sources of error could be
overcome in the near future when suitable, currently available,
techniques are implemented and become tractable (cf. Ref. 58).

III. RESULTS

A. Bulk thermoelastic properties

Before addressing the temperature dependence of the defect
reaction formation energies and enthalpies, we must first
understand and quantify the thermoelastic properties of the
bulk host metal oxide itself.

1. Phonon dispersion

The optical-phonon dispersion, calculated at T = 0 K using
the interatomic pair potential, ranges from 107 to 545 cm−1 at
the � point, as shown in Fig. 1, which includes a description
of the LO-TO splitting. The LO-TO splitting is largest in the
high-frequency range, which raises a vibrational mode from
a triply degenerate state at 512 to 545 cm−1. In comparison,
the �-point frequencies calculated from the first-principles
DFPT approach range from 75 to 555 cm−1, in good overall
agreement, but indicative of a slightly harder energy surface for
the interatomic potential model. Recently, DFPT calculations
of the lattice dynamics of the related metal oxide Cu2O, using a
similar exchange-correlation functional, have shown excellent
agreement with neutron-scattering experiments.63
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FIG. 1. Calculated phonon dispersion and density of states (DOS)
of the bixbyite phase of In2O3 using a classical interatomic potential.
The primitive body-centered cubic unit cell contains 40 atoms with
120 (3N ) vibrational modes.

2. Linear thermal expansion

The linear thermal-expansion coefficient is defined as:

αl = 1

a0

(
∂a

∂T

)
p

, (3)

where a0 is the lattice constant at the initial temperature.
The thermal expansion of In2O3 was first measured by
Weiher and Ley37 through dilation experiments, who observed
that single-crystal and powdered samples exhibit a similar
temperature dependence from 0 to 700 ◦C when heated in
air. The lattice constant fits well to a polynomial of the
form a = a0(1 + αT + α′T 2), with α = 6.15 × 10−6 ◦C−1

and α′ = 3.15 × 10−9 ◦C−2. A subsequent high-temperature
x-ray diffraction (XRD) study by Kundra and Ali38 on
powder samples heated in vacuum up to 968 ◦C reported
a fit of α = 7.2 × 10−6 and α′ = 1.15 × 10−9. Later work
by Solov’eva17 on polycrystalline samples heated both in
air and in vacuum reported a linear expansion coefficient of
α = 7.5 × 10−6 for stoichiometric In2O3, which decreased to
5.92 × 10−6 in the 550–1100 ◦C range. Data from the three
experiments are reproduced in Fig. 2. Up to 550 ◦C, the
measurements are consistent, but at higher temperatures the
quadratic (α′T 2) terms contribute to the steeper rise in
the lattice expansion measured by Weiher and Ley and Kundra
and Ali in comparison to the work of Solov’eva.

From the structure-temperature data calculated using our
interatomic potential model, αl can be extracted from a plot of
the relative change in lattice constant (�a/a0) against tempera-
ture (T), which is also shown in Fig. 2. The predicted expansion
of the perfect bulk lattice by the interatomic potential is less
pronounced than that of experiment (α = 4.44 × 10−6 and
α′ = 7.99 × 10−10) in the low-temperature range. However, in
the 550–1100 ◦C range measured by Solov’eva, the calculated
expansion of 5.85 × 10−6 ◦C−1 compares very well to the
measured value of 5.92 × 10−6 ◦C−1. We find that in this

FIG. 2. (Color online) Calculated linear thermal expansion of
bulk In2O3 in the bixbyite structure (solid line) from 550 to 1200 ◦C;
the low-temperature expansion from 0 to 550 ◦C is shown inset. For
both cases, the expansion is relative to the lattice constant at the initial
temperature of 0 and 550 ◦C, respectively. The experimental data of
Weiher and Ley,37 Kundra and Ali,38 and Solov’eva17 are drawn for
comparison.
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temperature range, the quadratic α′ term is ca. 5 ×10−10 ◦C−2

and therefore does not contribute significantly to the thermal
expansion (lowering the value of our α to ca. 5.3 ◦C−1, which
however is not comparable directly to the linear expansion
reported by Solov’eva). The near absence of curvature in
the high-temperature regime is therefore consistent with the
measurements of Solov’eva, but in contrast to the earlier
experiments; the influence of intrinsic defects on the lattice
expansion will be explored in further detail below.

A related quantity which we will require later, is the volume
thermal-expansion coefficient,

αv = 1

V

(
∂V

∂T

)
p

, (4)

which can be determined from the relation αv(T ) = 3αl(T ),
where αl(T ) = α + 2α′T .

3. Heat Capacity

To provide further confidence in the description of the
thermoelastic properties from our potential model, we have
calculated the isobaric heat capacity, Cp = ( ∂H

∂T
)p. Detailed

experimental measurements have been performed, with a
reported standard value of C◦

p = 99 J mol−1K−1(see Ref. 62);
our model predicts a value of 102 J mol−1K−1 in very good
agreement.

The thermal-expansion coefficient can be related to the
heat capacity:

αv = γβT Cv, (5)

where γ is the Grüneisen parameter, which is commonly used
to characterise the extent of anharmonicity in the thermoelastic
crystal properties, and βT is the isothermal compressibility
of the host lattice [− 1

V
( ∂V
∂P

)T ]. The potential model has been
shown to reproduce accurately the high-pressure phase transi-
tions of In2O3, and the order of stability of several metastable
sesquioxide phases;15 therefore, we expect that the anharmonic
contributions to the potential-energy surface are well de-
scribed. Moreover, the close agreement between the measured
and calculated values of the heat capacity and compressibility
suggests that the calculated thermal expansion could be closer
to the true expansion of the perfect material, whereas the
measurements are made for the defect-containing solid.

B. Temperature-dependent (isochoric) defect-reaction energies

The formation energy (Ud ) for anion Frenkel-pair formation
is 3.19 eV at T = 0 K, which refers to the two defect species
at infinite separation (see Eq. (2)). We can also consider
the situation where the two components form a bound pair
(without recombination),

V••
O + O//

i
⇀↽ [V••

O + O//

i ]×. (6)

The bound Frenkel-pair energy is 2.29 eV for both defects
aggregated within the same system at their lowest energy
positions; the oxygen vacancy and interstitial are aligned in
the 〈110〉 direction at a nominal separation of ca. 4 Å. The
corresponding defect binding energy can be defined as

�EBinding = E[V••
O ] + E[O//

i ] − [V••
O + O//

i ]×, (7)

which will be positive due to the Coulombic attraction
of oppositely charged defects (�ECoulomb = − q2

εSr
) and the

stabilizing effects of the lattice relaxation in the bound system.
A strong binding energy of 1.80 eV is observed for the anion
Frenkel pair; �ECoulomb contributes 1.59 eV to the binding,
which is further strengthened due to inefficient screening
over small distances.64,65 For the determination of equilibrium
defect concentrations, the energy gain for the formation of
the bound complex will be compensated by the loss of
configurational entropy.66

Taking our predicted thermal expansion for the bulk
material, we can study the effect of temperature on defect
formation by calculating a given reaction energy as a function
of the effective lattice constant at that temperature. Here, we
obtain the temperature-dependent internal energy as a sum
of internal lattice energy (U0) and internal vibrational energy
(Uvib) in the limit of small oscillations:

U (T ) = U0(T ) + Uvib(T ), (8)

where,

Uvib(T ) =
3N∑
i=1

h̄ωi

2
+

(
h̄ωi

eh̄ωi/kBT − 1

)
, (9)

or equivalently,

Uvib(T ) =
3N∑
i=1

h̄ωi

2
coth

(
h̄ωi

2kBT

)
. (10)

In addition to structural effects, the influence of temperature
on defect formation will have a contribution from the changes
in dielectric properties. From 0 to 1500 K, the static dielectric
constant (εS) increases from 9.05 to 9.62 ( + 6%), which
will mildly dampen the binding energies through a reduced
Coulombic attraction; for a doubly charged complex bound at
4 Å, the electrostatic contribution to the binding energy would
decrease from 1.59 to 1.50 eV.

The temperature-dependent defect formation energies are
listed in Table II and plotted in Fig. 3. At high temperatures,
the energy for isolated anion Frenkel-pair formation is reduced
from 3.19 (T = 0 K) to 3.02 eV (T = 1500 K), which is largely
due to contributions from the oxygen interstitial (�Ud =
−0.29 eV), whereas the oxygen vacancy exhibits a weaker
temperature dependence (�Ud = −0.04 eV). Expansion of
the lattice is favorable for the formation of both component
Oi and VO defects. On formation of the bound Frenkel-defect
pair, there is a small reduction in the temperature dependence
(�Ud = −0.14 eV from 0 to 1500 K), which indicates that
the bound complex is less sensitive to the local bulk host
environment.

C. Temperature-dependent (isochoric) defect reaction entropies
and Helmholtz free energies

As with the defect formation energy, the change in
vibrational entropy in a defect reaction can be defined as the
difference between the vibrational entropies of the bulk and
defective systems:

Sd = S(defect) − S(bulk), (11)
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TABLE II. Temperature-dependent defect reaction energies (Ud ), enthalpies (Hd ), and Helmholtz free energies (Ad ) for the formation of
anion Frenkel pairs in In2O3. All values are given in eV per defect.

Temperature Isolated-Pair Bound-Pair Isolated-Pair Bound-Pair Isolated-Pair Bound-Pair
(K) Energy (Ud ) Energy (Ud ) Enthalpy (Hd ) Enthalpy (Hd ) Free Energy (Ad ) Free Energy (Ad )

0 3.19 2.29 3.19 2.29 3.19 2.29
300 3.18 2.28 3.21 2.31 3.14 2.26
600 3.15 2.25 3.21 2.31 3.07 2.21
900 3.11 2.22 3.22 2.32 3.00 2.16
1200 3.07 2.18 3.22 2.32 2.92 2.11
1500 3.02 2.15 3.23 2.33 2.84 2.06
� (0–1500) − 0.17 − 0.14 0.06 0.04 − 0.35 − 0.23

where S is calculated from a sum over all 3N vibrational modes
(ωi) of the system (region I of the Mott-Littleton embedded-
cluster). In the present case, we calculate S analytically from
the derivative of the vibrational component of the Helmholtz
free energy (Avib) with respect to temperature:

Sv = −
(

∂Avib

∂T

)
v

, (12)

where Avib is calculated from:

Avib = kBT

3N∑
i=1

ln

(
2sinh

h̄ωi

2kBT

)
, (13)
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FIG. 3. (Color online) Temperature-dependent defect formation
(isochoric) internal (Ud ) and free (Ad ) energies, and (isobaric)
enthalpies (Hd ) for isolated and bound anion Frenkel pairs in In2O3.
All values, including the energies of association, are presented in eV
per defect.

resulting in

Sv =
3N∑
i=1

h̄ωi

2T
coth

(
h̄ωi

2kBT

)
− Avib

T
. (14)

In the classical high-temperature (Dulong-Petit) limit, where
T >> �D and �D is the Debye temperature, this reduces to
the more familiar form, which has been used elsewhere,35,40

Sv = kB

3N∑
i=1

(
1 − ln

h̄ωi

kBT

)
. (15)

The vibrational entropy contributions to defect formation
are listed in Table III. While Oi formation results in additional
vibrations (an entropy increase), VO formation results in a
loss of vibrations (an entropy decrease). As an anion Frenkel
pair consists of two component defects, the resultant entropy
change is small: 2.889kB and 1.493kB for the isolated and
bound pairs, respectively, for T = 1000 K. Similar entropic
dampening would also be expected for oxidation or reduction
reactions, where gaseous oxygen is exchanged with the system.
The temperature dependence of the calculated defect entropy
is shown in Fig. 4; for each case, the entropies approach their
limiting values around 300 K.

From Ud and Sv (both isochoric quantities), the Helmholtz
free energy of defect reaction can be calculated directly from
Ad = Ud − T Sv . The addition of the entropic contributions
further enhances the temperature dependence of Ud , with a
decrease in the Helmholtz free energy of 0.35 eV for the
isolated Frenkel pair and 0.23 eV for the bound pair from
0 to 1500 K, as shown in Fig. 3. The inclusion of vibrational
entropy in the free energy of formation also results in a notable
decrease in the energy of association for the anion Frenkel pair
for higher temperatures: the vibrational entropy is dampened
for the bound complex by more than 1kB .

TABLE III. Predicted isochoric (Sv) and isobaric (Sp) vibrational
entropy contributions associated with Frenkel pair formation in In2O3

at T = 1000 K.

Defect Sv(kB ) Sp(kB )

V••
O − 3.083 − 2.860

O//
i 5.972 8.649

Isolated Frenkel pair 2.889 5.789
Bound Frenkel pair 1.493 4.000
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FIG. 4. (Color online) The predicted temperature dependence for
three of the thermodynamic parameters associated with Frenkel-pair
formation in In2O3 from 0 to 1500 K.

The entropic contributions to oxygen vacancy and in-
terstitial formation have recently been calculated for In2O3

on the basis of periodic DFT calculations,67 with predicted
values of 2.55 (−2.82)kB and 2.72 (11.18)kB , respectively,
at T = 1000 K under isochoric (isobaric) conditions. Due to
the relatively small supercell sizes employed and the resulting
electrostatic and elastic finite-size errors, it is difficult to make
a quantitative comparison of the two studies; however, our
results agree qualitatively with their values obtained under
constant-pressure conditions.

The magnitude of the entropic contributions is similar to the
values reported in previous studies for solid-state materials.40

One recent study68 addressed the effect of lattice vibrations on
the diffusion of point defects in silicon carbide, which allows
for the calculation of both absolute diffusion rates as well as
vibrational entropy contributions to the activation energy for
diffusion; the latter contributions were found to be as large
as 4kB and to exhibit an appreciable temperature dependence,
which is in good agreement with the present findings.

D. Temperature-dependent (isobaric) defect reaction
enthalpies and Gibbs free energies

1. Defect pressure

In order to quantify isobaric defect reactions and to extract
formation enthalpies, we must explicitly consider the pressure
change on defect formation, which is especially important at
higher temperatures, where defect concentrations are larger.
Following the approach of Catlow et al.,32 which has been
described in detail by Gillan and Lidiard34 and Harding,35,36

we are conceptually introducing one further point defect into
a macroscopic system already containing n noninteracting
defects. The primary thermodynamic relationship employed
is

Hd = Ud − T

(
∂V

∂T

)
p

(
∂Ad

∂V

)
T

, (16)

where Ud and Hd refer to the temperature-dependent isochoric
and isobaric processes, respectively. The second term contains
the contribution from the effective defect-formation pressure
(pd ), which can be extracted from the derivative of the defect
free energy with respect to volume:

pd = −
(

∂Ad

∂V

)
T

. (17)

In previous studies,32,34 an equivalent formulation of
Eq. (16) has been used to account for the thermal expansion
(which was not modeled explicitly):

Hd = Ud + pd�V, (18)

where �V represents the temperature-dependent lattice vol-
ume expansion, which could be calculated from the thermal
expansion coefficient (αv):

�V = T

(
∂V

∂T

)
p

= αvT V. (19)

In contrast to the formation energy decrease, the formation
enthalpies increase as a function of temperature as shown in
Fig. 3. The demonstrated decrease of Ud at higher temperatures
is offset by the expansion work involved in the defect reaction.
From 0 to 1500 K, an increase of 0.06 eV is predicted for
isolated Frenkel pairs. On formation of a bound pair, this effect
is slightly dampened to 0.05 eV. The temperature dependence
of the defect pressures is found to be small, as shown in Fig. 4.

2. Gibbs free energy

The remaining component required for the calculation of
the Gibbs free energy of defect reaction (Gd = Hd − T Sd ) is
the isobaric entropy change. We can use the relation35,36

Sp = Sv −
(

∂V

∂T

)
p

(
∂Ad

∂V

)
T

. (20)

The correction term is the same as that used to perform the
Ud to Hd conversion [see Eq. (16)]. For Frenkel-pair formation,
the isobaric entropy contribution increases from 2.889 to
5.789kB at 1000 K (Table IV), and a similar temperature
dependence is found as for the isochoric entropies, except for
a slow rise at higher temperatures, which follows the thermal
expansion of the In2O3 lattice.

A result of the relationships between Sp and Sv [see
Eq. (20)] and Hd and Ud [see Eq. (16)], which are valid for a
point defect introduced into a macroscopic crystal where the
number of lattice sites are conserved, is that Gd = Ad to first
order in the defect pressure, pd . Here, the elastic contributions
present in the entropic and enthalpic terms of Gd cancel.
When describing a change in the number of lattice sites (e.g.,
Schottky disorder), an additional term is required;69 however,
it is not needed for the case of Frenkel disorder.
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TABLE IV. Predicted pressure change, and corresponding defect volume and effective radius, associated with Frenkel-pair formation in
In2O3 at T = 1000 K.

Defect Pressure (GPa) Pressure (eV/Å3) Volume (Å3) Radius (Å)

V••
O 0.35 0.0022 0.99 0.62

O//
i 4.20 0.0262 11.86 1.41

Isolated Frenkel pair 4.55 0.0284 12.85 1.45
Bound Frenkel pair 4.02 0.0251 11.35 1.39

For finite defect concentrations, such as those present for
calculations performed within the supercell approach, the
relationship Gd = Ad does not hold true, owing to the fact that
the defect center is embedded not in a macroscopic crystal
but in a defective one. The first-order correction, which is
dependent on the supercell expansion (or defect concentration,
n = 1/vsupercell) is70

Gd = Ad − 1

2

(
vd

vsupercell

)
pdV, (21)

where vd is the defect volume of formation, to be described
below.

3. Defect-induced lattice expansion

From the calculated data, we can also assess the effective
volume associated with point-defect formation. Removal of
the increment of pressure caused by isochoric defect formation
(pd ) has an associated isobaric volume change (vd ). Through
a relation analogous to Hooke’s law of elasticity:

vd = −pd

(
∂V

∂P

)
T

= pdβT V, (22)

where V is the temperature-dependent bulk cell volume. The
pressures and volumes of defect formation for each species are
listed in Table IV. At T = 1000 K, the volumes of formation for
the isolated and bound Frenkel pairs are 12.85 and 11.35 Å3,
respectively. Assuming an isotropic (spherical) dilation, the
corresponding defect radii are 1.45 and 1.39 Å. Similar to the
defect pressures, the defect volumes do not exhibit a significant
temperature dependence; the values increase as a function of
temperature due to a softening of the crystal lattice (increase
in compressibility).

Neglecting long-range defect interactions, the volume of
the defective cell can therefore be calculated for an arbitrary
concentration (per unit cell) of defect species as

Vd = V + nvd. (23)

The resulting plot of the lattice strain against Frenkel pair
concentration is shown for T = 1500 K in Fig. 5, which
demonstrates that Frenkel pairs can contribute to the lattice
expansion if produced in sufficient concentrations, which may
be the case in In2O3 as disorder in the anion sublattice is
known to occur at higher temperatures. Indeed, to account for
the differences in the calculated thermal expansion and the
experimental values (see Fig. 2), Frenkel-pair concentrations
of 2 × 1019 cm−3 (Solov’eva37), 1 × 1021 cm−3 (Kundra and
Ali38), and 2 × 1021 cm−3 (Weiher and Ley37) would be
required.

It has been predicted that oxygen vacancies have a low
formation energy,9,10,12 which could lead to nonstoichiometry
(i.e., In2O3−δ); however, because the defect volume of V••

O is
remarkably small (vd = 0.99 Å3 and the effective defect radius
is 0.62 Å), isolated vacancies will not contribute significantly
to the lattice expansion. To explain the high-temperature lattice
expansion and the large variation in the oxygen partial-pressure
dependence of the electrical conductivity, in addition to
isolated oxygen vacancies, more complex defect compensation
or aggregation must occur in In2O3, where oxygen interstitials
are undoubtedly involved.

IV. DISCUSSION

As we have demonstrated above, all of the principal ther-
modynamic parameters associated with point-defect formation
can be obtained using a well-defined computational procedure:

(1) Isochoric defect formation performed at the equilibrium
(T = 0 K) lattice constant yields the reaction energies and
entropies Ud (0) and Sv(0).

(2) Isochoric defect formation performed as a function of
the lattice constant yields temperature-dependent Ud (T ) and
Sv(T ), and therefore, the temperature-dependent Helmholtz
free energy of formation (Ad = Ud − T Sv), which is equiva-
lent to the Gibbs free energy at the limit of infinite dilution.

FIG. 5. (Color online) The predicted lattice strain of In2O3 as a
function of Frenkel-pair concentration, for T = 1500 K and assuming
negligible interactions between defect species. The dashed vertical
lines refer to the differences in thermal expansion between the
calculated value and the experimental reports of Weiher and Ley,37

Kundra and Ali,38 and Solov’eva.17
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(3) The pressure of defect formation, pd = −( ∂Ad

∂V
)T , can be

obtained through differentiation of the temperature-dependent
Helmholtz free energy.

(4) Modeling of the bulk thermoelastic properties yields
the bulk isothermal compressibility [βT = − 1

V
( ∂V
∂P

)T ], which
allows for the calculation of temperature-dependent de-
fect reaction enthalpies through the relation: Hd = Ud −
T ( ∂V

∂T
)p( ∂Ad

∂V
)T .

(5) The volume of defect formation, vd = −pd ( ∂V
∂P

)T , can
then be obtained through the previously determined values of
pd and βT .

(6) Finally, relating the isochoric and isobaric defect en-
tropies [Sp = Sv − ( ∂V

∂T
)p( ∂Ad

∂V
)T ] gives access to the Gibbs

free energy of defect formation, Gd = Hd − T Sp, which is
appropriate for modeling finite defect concentrations.

Our calculations have clearly shown that the temperature
dependence of the thermodynamic parameters governing
defect formation is appreciable. Furthermore, consideration
of temperature-dependent defect formation energies can have
significant influence on the thermodynamic stability and will
be of particular relevance for modeling equilibrium defect
and carrier concentrations under different experimental growth
conditions. While the present study has been restricted to the
embedded-cluster Mott-Littleton method, in principle the same
approach can be applied to periodic supercell calculation of
defects, e.g., as in Refs. 70 and 71; however, careful attention
must be paid to achieve appropriate convergence in the cell
sizes, especially for charged defect centers.

Concerning the high-temperature thermal expansion of
indium oxide, our calculations demonstrate that while oxygen
vacancies alone will not contribute appreciably to lattice
expansion, charge compensation by oxygen interstitials, pro-
ducing anion Frenkel pairs, will effect a significant free volume
of defect formation and hence can contribute to the lattice
expansion when produced in significant abundance. Making
the strong assumption that the Frenkel pair is the only defect
present in the system, the variation in thermal expansion
observed at high temperatures (Fig. 2) could be accounted
for by Frenkel-pair formation involving concentrations of the
order of 1019 cm−3. Such a high degree of disorder in the
anion sublattice is not unrealistic considering the structural
freedom offered by the bixbyite structure and the typical
carrier concentrations of the undoped material, which can
exceed 1021 cm−31. However, such concentrations are above

the thermodynamic limit set by the formation energy of
the isolated Frenkel pairs, i.e., n = Nsitesexp(− Gd

kBT ), which
again suggests that more complex defect aggregates are
at play, probably involving oxygen exchange and/or redox
reactions at the material surface and grain boundaries. Further
experimental and theoretical investigations could help to verify
these predictions.

V. CONCLUSIONS

We have investigated the thermodynamics of anion Frenkel-
pair formation in In2O3 with an analytical interatomic po-
tential, within the Mott-Littleton embedded-cluster approach.
Temperature and pressure effects are found to make significant
contributions to the thermodynamics of defect formation and,
within the approximations of the given model, can change the
reaction energies by up to 0.4 eV. Furthermore, anion Frenkel
pairs are likely to contribute to the high-temperature thermal
expansion of In2O3, while isolated oxygen vacancies are not,
due to a low free volume of defect formation. We note that
the low-temperature thermal expansion of indium oxide has
not been studied experimentally, and the discrepancy between
experimental and theoretical data in the intermediate regime
(0–550 ◦C) warrants further investigation. We have demon-
strated that the calculation of the full free-energy expansion
of defect formation including enthalpic and entropic effects
is possible using a well-defined computational procedure,
which should facilitate future studies of defect formation and
behavior in solid-state systems.
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67P. Ágoston and K. Albe, Phys. Chem. Chem. Phys. 11, 3226 (2009).
68O. N. Bedoya-Martı́nez and G. Roma, Phys. Rev. B 82, 134115

(2010).
69M. J. Gillan, Philos. Mag. 43, 301 (1981).
70M. B. Taylor, G. D. Barrera, N. L. Allan, T. H. K. Barron, and W. C.

Mackrodt, Faraday Discuss. 106, 377 (1997).
71S. C. Parker and G. D. Price, in Advances in Solid-State Chemistry,

Vol. 1 (JAI Press, Stamford, 1989).

224105-9

http://dx.doi.org/10.1103/PhysRevB.81.125116
http://dx.doi.org/10.1103/PhysRevB.81.125116
http://dx.doi.org/10.1103/PhysRevB.81.195205
http://dx.doi.org/10.1021/cm902280z
http://dx.doi.org/10.1021/cm902280z
http://dx.doi.org/10.1039/c0cp00056f
http://dx.doi.org/10.1039/c0cp00056f
http://dx.doi.org/10.1007/BF01400027
http://dx.doi.org/10.1007/BF00619080
http://dx.doi.org/10.1103/PhysRevB.57.9642
http://dx.doi.org/10.1103/PhysRevLett.103.096405
http://dx.doi.org/10.1103/PhysRevLett.103.096405
http://dx.doi.org/10.1039/b607406e
http://dx.doi.org/10.1039/b607406e
http://dx.doi.org/10.1103/PhysRevB.78.075211
http://dx.doi.org/10.1103/PhysRevB.78.075211
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1103/PhysRevB.73.035215
http://dx.doi.org/10.1103/PhysRevB.73.035215
http://dx.doi.org/10.1103/PhysRevB.73.205203
http://dx.doi.org/10.1103/PhysRevB.73.205203
http://dx.doi.org/10.1103/PhysRevB.76.165202
http://dx.doi.org/10.1103/PhysRevB.76.165202
http://dx.doi.org/10.1021/jp711566k
http://dx.doi.org/10.1021/jp711566k
http://dx.doi.org/10.1021/jz100312y
http://dx.doi.org/10.1016/s0166-1280(03)00285-9
http://dx.doi.org/10.1088/0022-3719/12/17/016
http://dx.doi.org/10.1088/0022-3719/12/17/016
http://dx.doi.org/10.1088/0022-3719/14/6/002
http://dx.doi.org/10.1088/0022-3719/12/3/013
http://dx.doi.org/10.1103/PhysRevB.32.6861
http://dx.doi.org/10.1039/F29898500351
http://dx.doi.org/10.1063/1.1702698
http://dx.doi.org/10.1107/S0021889870006842
http://dx.doi.org/10.1107/S0021889870006842
http://dx.doi.org/10.1103/PhysRev.99.1085
http://dx.doi.org/10.1103/PhysRev.99.1085
http://dx.doi.org/10.1088/0022-3719/21/32/002
http://dx.doi.org/10.1088/0022-3719/21/32/002
http://dx.doi.org/10.1103/PhysRevB.79.134106
http://dx.doi.org/10.1103/PhysRevB.79.134106
http://dx.doi.org/10.1080/0892702031000104887
http://dx.doi.org/10.1103/PhysRevB.51.3520
http://dx.doi.org/10.1103/PhysRevB.51.3535
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1039/tf9383400485
http://dx.doi.org/10.1002/qua.20032
http://dx.doi.org/10.1016/s0166-1280(03)00285-9
http://dx.doi.org/10.1016/s0166-1280(03)00285-9
http://dx.doi.org/10.1039/c1cc10314h
http://dx.doi.org/10.1039/c1cc10314h
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1073/pnas.30.9.244
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.77.155107
http://dx.doi.org/10.1107/S0365110X66001749
http://dx.doi.org/10.1063/1.2999369
http://dx.doi.org/10.1016/0022-3697(92)90169-E
http://dx.doi.org/10.1016/0022-3697(92)90169-E
http://dx.doi.org/10.1103/PhysRevB.80.134304
http://dx.doi.org/10.1039/b900280d
http://dx.doi.org/10.1103/PhysRevB.82.134115
http://dx.doi.org/10.1103/PhysRevB.82.134115
http://dx.doi.org/10.1080/01418618108239410
http://dx.doi.org/10.1039/a701687e

