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Superconductor-insulator transitions and magnetoresistance oscillations in superconducting strips
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The magnetoresistance of thin superconducting (SC) strips subject to a perpendicular magnetic field B and low
temperatures T manifests a sequence of alternating SC-insulator transitions (SITs). We study this phenomenon
within a quasi-one-dimensional (1D) model for the quantum dynamics of vortices in a line junction between
coupled parallel SC wires, at parameters close to their SITs. Mapping the vortex system to 1D Fermions at a
chemical potential dictated by B, we find that a quantum phase transition of the Ising type occurs at critical
values of the vortex filling, from a SC phase near integer filling to an insulator near 1/2 filling. For T → 0, the
resulting magnetoresistance R(B) exhibits oscillations similar to the experimental observation.
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The conduction properties of low-dimensional supercon-
ducting (SC) systems (thin films and wires) are strongly
dominated by fluctuations in the SC order parameter. A
particularly prominent manifestation of the role of fluctuations
is the appearance of a finite dissipative resistance below the
mean-field critical temperature Tc of the bulk superconductor.
At low temperatures T � Tc, the dominant fluctuations are
in the phase of the complex order parameter. Most notably,
topological excitations (vortices and phase slips) can generate
dissipation in their liquid state. In the T → 0 limit, their
quantum dynamics becomes significant and may drive a
transition to a metallic or insulating state.1,2

In the one-dimensional (1D) case, i.e., SC wires of width
and thickness smaller than the coherence length ξ , the
resistance essentially never vanishes at finite T due to thermal
activation of phase slips3,4 (for T � Tc) or their quantum
tunneling at lower T .2,5,6 In contrast, in the 2D case (SC
films) superconductivity is well established at sufficiently low
T . However, a quantum (T → 0) superconductor-insulator
transition (SIT)1,7 can be tuned by an external parameter that
leads to proliferation of free vortices. Employing charge-flux
duality8 it is possible to view the SC phase as a vortex solid,
and the insulator as a vortex superfluid.

A convenient means of inducing a SIT in SC films is by
application of a perpendicular magnetic field B. At fixed T ,
a positive magnetoresistance R(B) is typically observed in a
wide range of B. The SIT is then clearly indicated in the data
as a crossing point of these isotherms at a critical field Bc,
separating a SC phase (where dR/dT > 0) for B < Bc from
the insulating phase (dR/dT < 0) for B > Bc.

A recent experimental study of a strip geometry9—namely,
a SC wire of width comparable to ξ—offers an opportunity
to probe the crossover from a 1D to 2D quantum dynamics of
the topological phase defects in SC devices. The prominent
observation is that in the presence of a perpendicular field
B, the magnetoresistance R(B) exhibits oscillations whose
amplitude is sharply increasing at low T , in striking resem-
blance to the behavior of Josephson arrays10 and SC network
systems.11 Moreover, the SIT at Bc appears to be preempted
by several consecutive transitions at lower fields, from a SC to
an insulator or vice versa alternately.

The periodicity of the above-mentioned oscillations is con-
sistent with a single flux penetration to the sample, suggesting

that the observed SC or insulating behavior of the system is
determined by commensuration of vortices within the strip
area. When an integer number of vortices can be fitted along
the strip length, superconductivity may be supported even at
sufficiently high B such that a large fraction of the sample
area turns normal. Deviation from commensurability of the
vortex filling weakens superconductivity, possibly inducing a
transition to a metallic10 or insulating state.

In this Rapid Communication we focus on the strongly
quantum fluctuation regime characterizing the 1D vortex
matter close to an SIT, and propose a theory for its low T

transport behavior. The system is shown to exhibits a series
of quantum phase transitions of the Ising type, manifested
as SC-insulator oscillations of the Ohmic resistance R(T ,B)
(see Fig. 1). This result underlines a correspondence between
charge-flux duality across a SIT and the order-disorder duality
characteristic of the Ising transition.

We consider a SC strip subject to a perpendicular magnetic
field B � Bc. Assuming that the high vortex density in this case
leads to near merging of their cores along the central axis of the
strip, we model the system as a line junction formed by a pair of
parallel SC wires of length L � ξ , separated by a thin normal
barrier of width w. In the low-T (phase-fluctuations) regime,
the dynamics of the collective phase field in the wires [φi(x,t)
with i = 1,2] is governed by the effective 1D Hamiltonian

H0 = H1 + H2 + Hint, (1)

in which (using units where h̄ = 1)

Hi = 1

2

∫ L
2

− L
2

dx

[
U0ρ

2
i + ρs

4m
(∂xφi)

2

]
, (2)

Hint =
∫ L

2

− L
2

dx [−gJ cos(φ1 − φ2 − qx) + Uρ1ρ2] . (3)

Here the operator ρi(x) denotes density fluctuations of Cooper
pairs in wire i, and can be represented as12

ρi(x) = − 1

π
∂xθi(x) + ρ0

∑
p �=0

ei2p[πρ0x−θi (x)] (4)

in terms of the conjugate field θi(x) satisfying
[φi(x),∂xθi(x ′)] = iπδ(x ′ − x). The first term in Eq. (2)
hence describes a charging energy; ρs is the superfluid density
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FIG. 1. (Color online) Isotherms of R as a function of B, for
J = 1.06 K, V = 0.98 K, v−/L = 0.01 K [see Eq. (12)], indicating
superconducting (SC) and insulating (I) sections alternately. Inset: R

vs the gap 	d [see Eq. (15) and text thereafter] near a single critical
point, for T = 0.01,0.05,0.1,0.2,0.3,0.4,0.5 K.

(per unit length) assumed to be monotonically suppressed by
increasing B, ρ0 = ρs(B = 0) and m is the electron mass.
The interwire coupling [Eq. (3)] consists of a Josephson term
and an interwire Coulomb interaction, of coupling strengths
gJ and U , respectively; q = 2πwB/
0 (with 
0 the flux
quantum) denotes vortex density per unit length. H0 describes
an ideal system, to which we later add a disorder scattering
potential.

It is convenient to introduce total and relative phase fields
via the canonical transformation φ± = (φ1 ± φ2)/

√
2 and the

corresponding conjugate fields 1
π
∂xθ±, in terms of which the

Hamiltonian (1) is separable:

H0 = H+ + H−, (5)

where H+ = H
(+)
LL ,

H− = H
(−)
LL +

∫ L
2

− L
2

dx[−gJ cos(
√

2φ− − qx)

+ gc cos(
√

8θ−)] (6)

H
(±)
LL ≡ v±

2π

∫ L
2

− L
2

dx

[
K±(∂xθ±)+

1

K±
(∂xφ±)2

]

and the parameters are given by

K± =
√

4m(U0 ± U )

π2ρs

, v± =
√

ρs(U0 ± U )

4m
,

gc = 2Uρ2
0 . (7)

Here we have accounted for the most relevant interaction
terms, neglecting umklapp terms that are effectively sup-
pressed due to the rapidly oscillating factor in Eq. (4).

We next define new canonical fields

φ ≡ 1√
2
φ−, θ ≡

√
2θ− (8)

in terms of which H
(−)
LL acquires the form of a Luttinger

Hamiltonian with an effective Luttinger parameter K = K−/2.

Assuming that the original parameter K− is close to the critical
value for a SIT in a 1D wire, Kc = 2,6 we obtained K ≈ 1.
This yields

H− = v−
2π

∫ L
2

− L
2

[(∂xθ )2 + (∂xφ)2]

+
∫ L

2

− L
2

dx [−gJ cos(2φ − qx) + gc cos(2θ )] . (9)

The model Eq. (10) can be refermionized by introducing
right (R) and left (L) moving Fermion fields,13

ψR,L = 1√
2πα

e±ikF xei(∓φ+θ), (10)

in terms of which H− becomes a free Hamiltonian. Note that
the “Fermi momentum” kF is dictated by q, which can be
viewed as a vortex filling factor in the line-junction area. Quite
interestingly, this implies that near a SIT, it is natural to adapt
a duel representation of this system in terms of fermionic
vortex fields. We note that the vortex matter in the system
is constrained by an effective periodic potential set by the
vortex-vortex interaction and the boundary conditions: the
leads connected to x = ±L/2 (assumed to be macroscopic
superconductors), and the strip edges which induce an effective
“image charges” potential.14 Hence the vortices tend to form a
pinned chain where core positions are separated by a constant
spacing a = L/N , in which N = I[qL] (I[z] is the integer
value of z) denotes the total number of vortices.10 We hereon
regard Eq. (2) as a continuum limit of a lattice model, where
the coordinate x = na (where n is an integer). Consequently,
q is replaced by the deviation of the vortex density from the
closest commensurate value:

q = w(B − BN )


0
, BN = NB0, B0 ≡ 
0

wL
; (11)

N = I[B/B0] so that 0 � q � 1
2 . The lattice constant a also

determines the short-distance cutoff α in Eq. (10).
The fermionic representation of H− is given by

H− =
∫

dx{v−[ψ†
R(x)(−i∂x)ψR(x) − ψ

†
L(x)(−i∂x)ψL(x)]

−μv[ψ†
R(x)ψR(x) + ψ

†
L(x)ψL(x)]

−J [ψ†
R(x)ψL(x) + ψ

†
L(x)ψR(x)]

+V [ψ†
R(x)ψ†

L(x) + ψL(x)ψR(x)]}, (12)

where J = παgJ , V = παgc, and the vortex chemical poten-
tial μv is determined by the band structure of the Fermions. For
simplicity, we associate the commensurate case q = 0 with a
1/2 filled band at μv = 0; e.g., μv = ε0 cos[π (1/2 − q)] with
ε0 ∼ v−/a. We note that the particular dependence of μv on
q is not crucial to demonstrate the qualitative features of the
model: however, generally, it monotonically increases with
μv(q = 0) = 0.

Following the analogous problem of spin-1/2 ladders,13,15

it is useful to decompose the complex Fermions [Eq. (10)] in
terms of the Majorana fields

η1ν = 1√
2

(ψν + ψ†
ν ), η2ν = 1

i
√

2
(ψν − ψ†

ν ) (13)
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(ν = R,L). Recasting Eq. (12) in k space and using the Fourier
transformed fields ηjν,k = η

†
jν,−k , we obtain

H− =
∑

k

�
†
kHk�k,

Hk ≡

⎛
⎜⎜⎜⎝

v−k i	(0)
u iμv 0

−i	(0)
u −v−k 0 −iμv

−iμv 0 v−k −i	
(0)
d

0 iμv i	
(0)
d −v−k

⎞
⎟⎟⎟⎠ , (14)

�
†
k ≡ ( η1R,k, η2L,k, η2R,k, η1L,k );

here 	
(0)
u,d = J ± V denote the gaps in the excitation spectrum

for commensurate vortex filling (q = μv = 0), in which case
Hk decouples into two independent blocks. Since J,V are
positive, the u sector is higher in energy.

We now focus on the case of interest, where the system is
assumed to be in the SC phase but close to a SIT so that the
Josephson energy J is slightly larger than V , and 	

(0)
d � 	(0)

u .
In this case, the high-energy sector u can be truncated, and the
low-energy properties are governed by the d-type Fermions. In
particular, the gap 	

(0)
d can change sign upon tuning J below

the critical value Jc = V where 	
(0)
d = 0. Indeed, for μv = 0

each species of free massive Fermion models described by
Eq. (14) can be independently mapped to an Ising chain in a
transverse field.7,16 When finite vortex “doping” is introduced
by tuning B away from BN such that μv �= 0, the original d

and u sectors mix. However, the resulting long-wavelength
(k → 0) theory can still be cast in terms of two decoupled d

and u sectors, where the energy spectrum has the same form but
with modified velocities and gaps. In particular, the modified
gaps for finite μv are given by

	u,d (μv) = J ± Ṽ , Ṽ ≡
√

V 2 + μ2
v. (15)

While 	u remains positive and large for arbitrary μv , a
quantum phase transition occurs at a critical value of μv

[which can be traced back to a sequence of critical fields
B(N)

c via μv(q) and Eq. (11)], where 	d changes sign. As
B → B(N)

c , |	d | ∼ |B − B(N)
c |. Below we show that these

Ising-like quantum critical points correspond to SIT.
To study transport properties of the system it is necessary to

include a scattering potential, generically induced by random,
uncorrelated impurities along the coupled wires. Without
loss of generality, we hence consider random impurities in
wire 1 by including a linear coupling of ρ1(x) to a disorder
potential VD(x) in the Hamiltonian. The leading contribution
to dissipation arises from the backscattering term of the form12

HD =
∫

dxζ (x) cos{2θ1(x)} (16)

[see Eq. (4)], where we assume 〈ζ (x)〉 = 0, 〈ζ (x)ζ (x ′)〉 =
Dδ(x − x ′) (with 〈 〉 including disorder averaging).

For sufficiently small D, a perturbative treatment of HD

(see, e.g., Chap. 7.2 in Ref. 12) yields the dc resistance at
finite T ,

R(T ) ≈ AD

∫ ∞

0
dt t�m{χ (t)},

(17)
χ (t) ≡ 〈sin{2θ1(t)} sin{2θ1(0)}〉0;

A is a numerical constant, and 〈 〉0 denotes an expectation
value with respect to H0 [Eq. (5)]. Using θ1 = 1√

2
(θ+ + θ−),

the correlation function χ (t) decouples into

χ (t) = χC+(t)χC−(t) + χS+(t)χS−(t),

χC± ≡ 〈cos{
√

2θ±(t)} cos{
√

2θ±(0)}〉±, (18)

χS± ≡ 〈sin{
√

2θ±(t)} sin{
√

2θ±(0)}〉±,

where 〈 〉± are evaluated with respect to H±. Since H+ is a
Luttinger Hamiltonian [see Eq. (5)], we obtain12

χC+(t) = χS+(t) = lim
ε→0

( −(παT/v+)

sinh{πT (t − iε)}
)1/K+

. (19)

In contrast, as discussed below, χC−(t), χS−(t) depend cru-
cially on the parameters of Eq. (14), and in particular on the
magnitude and sign of the masses 	u,d .

To evaluate χC−, χS− we first note that in terms of the field
θ [Eq. (8)], they correspond to correlation functions of cos θ ,
sin θ , which lack a local representation in terms of Fermion
fields. However, a convenient expression is available in terms
of the two species of order (σu,d ) and disorder (σ̃u,d ) Ising
fields:13,16 for 	d > 0,

cos θ ∼ σuσ̃d, sin θ ∼ σ̃uσd . (20)

For 	d < 0, the roles of σd , σ̃d are simply interchanged. The
correlators χC−, χS− can therefore be expressed in terms of
Cλ(t) = 〈σλ(t)σλ(0)〉, C̃λ(t) = 〈σ̃λ(t)σ̃λ(0)〉 (λ = u,d), which
have known analytic approximations in the semiclassical
regime (|	λ| � T ):13,17,18

Cλ(t) ∼ |	λ|1/4K0(i|	λ|t), C̃λ(t) ∼ |	λ|1/4 (21)

[with K0(z) the modified Bessel function]. In the quantum
critical regime (|	d | � T ), Cd (t) ∼ C̃d (t) ∼ t−1/4.

Employing Eqs. (17)–(21), we derive expressions for
the low-T resistance R(T ,B) near commensurate fields BN

[Eq. (11)] where 	d = 	
(0)
d , and near BN+ 1

2
≡ (N + 1

2 )B0,
where 	d is maximally negative. Neglecting terms of order
e−	u/T , we obtain for B ∼ BN

R(T ,B) ≈ Rs

√
	d (B)

T

(
πα	d (B)

v+

)−κ(B)

e−	d (B)/T ,

(22)
κ(B) ≡ 2 − K−1

+ (B), Rs ∝ D [	d (B)]1/4 .

Superimposed on a moderate increase with B arising from
κ(B) due to the suppression of ρs [Eq. (7)], the exponential
factor leads to a strong decrease and R → 0 at T → 0 as
long as 	d (B) > 0 is finite. The disordered Ising phase is thus
identified as superconducting, suggesting that the fields σd

physically represent phase slips. In contrast, for B ∼ BN+1/2

(	d < 0) we find

R(T ,B) ≈ Ri

(
πα|	d (B)|

v−

)1/4 (
παT

v+

)−κ(B)

(23)

(Ri ∝ D). Since K−1
+ � 1

2 , κ(B) > 0 yielding R → ∞ at low
T , indicative of an insulating behavior. In fact, in this regime
the perturbative calculation leading to Eq. (23) is not valid
in the T → 0 limit, where localization takes over and R(T )
diverges exponentially.12
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The above analysis implies that the quantum critical
points at B(N)

c (where 	d = 0) correspond to SC-I and I-SC
transitions alternately (see Fig. 1). However, note that unlike
the 2D SIT, R(T ) in their vicinity does not manifest a metallic
behavior: the power-law correlations in the critical regime
yield

R(T ,B) ∼ T γ (B), γ (B) ≡ 1
4 − κ(B) < 0. (24)

This reflects a slightly moderated insulating behavior, an
asymmetry that stems from the quasi-1D nature of the system.
As a result, a sharply defined crossing point of isotherms does
not exist, as clearly indicated in Fig. 1.

To summarize, we have shown that prominent features of
the magnetoresistance oscillations in SC striplike devices are
captured by a toy model for the quantum Josephson vortices in
a line junction between parallel SC wires. When the wires are
close to a SIT, this system can be described by a field theory
of 1D free Fermions, implying the existence of a sequence of
quantum critical points of the Ising type. It should be pointed
out that since the Fermions are massive, small deviations
from our ideal choice of parameters such that the Fermions

become interacting do not change the essential properties,
as the interactions can be treated perturbatively. The low-T
behavior of the resistance R(T ,B) provides a transparent
interpretation of the critical points as transitions from a SC
(near integer vortex fillings) to insulator (near 1

2 -integer vortex
fillings) or vice versa. However, its behavior in the vicinity of
the transitions is distinct from the SIT in fully 2D SC films.
In particular, it does not reflect the duality symmetry of the
underlying model, and the insulating regimes are effectively
widened.

We have become aware of an independent work,19 propos-
ing an alternative theoretical model as interpretation to the
data of Ref. 9. Both models yield qualitatively similar
magnetoresistance oscillations.
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