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insulator sandwich structure
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In the heterostructure composed of a topological insulator sandwiched by two s-wave superconductors, the
time reversal invariant topological superconducting phase, possessing helical Majorana edge modes, is found
to exist when the two s-wave superconductors form a Josephson junction with a π phase shift. Based on such
a heterostructure, a helical Dirac-Majorana interferometer is proposed to directly measure a unique transport
signature of the helical Majorana modes. Furthermore, we envision how our proposal can be realized on the basis
of existing materials such as Bi2Se3 or Bi2Te3 thin films.
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Recently, thanks to the discovery of topological insulators
(TIs), the search for new topological phases has attracted
much interest in the condensed matter physics community.1–4

Interestingly, topologically nontrivial phases not only exist
in insulators, but also in superconductors (SCs), which are
dubbed topological superconductors (TSCs). For TIs, the
unique feature is the existence of topologically protected edge
states (or surface states), and similarly, there are also gapless
modes at the edge (surface) of the TSCs which are Majorana
fermions due to particle-hole symmetry. Bound Majorana
modes in a vortex core and chiral Majorana modes along
the edge were proposed in px + ipy SCs;5 and later, helical
Majorana (HM) modes were suggested to exist in TSCs with
time reversal symmetry.6–8

Majorana fermions may serve as building blocks for
topological quantum computation due to their non-Abelian
statistics.9,10 However, unlike TIs, up to now, the existence of
TSCs and Majorana fermions has not been experimentally
confirmed. The difficulty of detecting Majorana fermions
lies in the fact that they are charge neutral and have no
direct response to electromagnetic fields. Therefore, recently
it has been suggested to detect Majorana fermions through
a Dirac-Majorana converter, converting a pair of Majorana
fermions into one Dirac fermion and vice versa.11,12 Such a
Dirac-Majorana converter was proposed for the detection of
chiral Majorana modes. However, for the detection of HM
modes, realistic proposals barely exist.13

In this paper, we consider the heterostructure of a TI thin
film sandwiched by two SCs. Due to the proximity effect on
both the top and bottom surfaces of the TI, it is found that,
if the s-wave pairing functions at the top and bottom surfaces
have a relative π phase shift, a topological superconducting
phase emerges in the TI thin film possessing a HM mode
along its edges. Based on such a configuration, we propose an
experimental setup for a HM interferometer and discuss the
transport properties which can be used to distinguish it from
other types of Majorana interferometers.

How can the envisioned heterostructure schematically
shown in Fig. 1(a) be constructed based on existing ma-
terials? Superconductivity can be realized by copper-doped
Bi2Se3,14 TlBiTe2,15 and Bi2Te3 under pressure,16 which can
be straightforwardly integrated into TI thin films based on

Bi2Se3 or Bi2Te3. Let us describe the minimal model that
captures the essential physics of such a system. We assume
that the chemical potential lies in the bulk gap of the TI, then
the low-energy physics of the TI film is described by two Dirac
cones at the top and bottom surfaces, given by the four band
Hamiltonian17,18

Ĥ0 =
∑

k

ψ
†
kh(k)ψk,

(1)
h(k) = mτx + h̄vf (kxσyτz − kyσxτz),

with the field operator ψk = [c1↑,c1↓,c2↑,c2↓]T , where 1 (2)
denotes the top (bottom) surface and ↑ (↓) denotes spin up
(spin down); vf is the Fermi velocity and m the hybridization
between the top and bottom surface states. Here, the Pauli
matrices σi denote the spin and τi the opposite surfaces. The
Hamiltonian (1) satisfies time reversal symmetry, T Ĥ0T

−1 =
Ĥ0, with the time reversal operator T = iσyK (K denotes
complex conjugation). The proximity effect from the s-wave
SC for the top and bottom surfaces can be taken into account
by the Bogoliubov-de Gennes (BdG) Hamiltonian

ĤBdG =
∑

k

�̂
†
kHBdG(k)�̂k,�̂k =

(
ψk

(ψ†
−k)T

)
,

(2)

HBdG(k) =
(

h(k) − μ �

�† −hT (−k) + μ

)
,

with the s-wave pairing function � given by

� =
(

i�1σy 0
0 i�2σy

)
, (3)

where �1(2) is for the top (bottom) surface. The BdG
Hamiltonian is invariant under charge conjugation C = λxK ,
where Pauli matrices λi denote particle and hole. To preserve
time reversal symmetry, the pairing function �1(2) can only be
real, indicating that the relative phase of the pairing functions
between the top and bottom surfaces can only be 0 or π . The
band dispersion of the Hamiltonian (2) can be directly solved,
and we first look at some simplified limits. If the chemical
potential μ = 0, the band dispersion is given by

Erts = s

√
h̄2v2

f k2 + E2
g, Eg =

√
m2 + �2+ + t |�−|, (4)
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with r,t,s = ± and �± = �1±�2
2 . The above band dispersion

shows double degeneracy, and the two degenerate branches
(r = ±) can be traced back to time reversal symmetry
(Kramers partners). We note that for the branches with t = +,
there is always a gap for any nonzero m, �±, while for the
branches with t = −, the gap will close when m2 + �2

+ = �2
−.

At the critical point, the band dispersion (4) becomes linear and
there are totally two Dirac cones (r = ±) which are Kramers
partners. For one Kramers partner, a single Dirac cone will
induce the change of the Berry phase by π between the Eg > 0
and Eg < 0 regimes, while for the other one, the change of
the Berry phase is −π . Therefore, similar to the quantum
spin Hall case,19 a topological phase transition is expected to
happen across the point Eg = 0 in parameter space. When the
SC gap �± is much smaller than the hybridization gap m, the
system should be a trivial SC. Thus, we expect that the system
should be a topologically nontrivial SC when m2 + �2

+ < �2
−

as shown in Fig. 1(b) (which will be confirmed below). We
note that the above condition applies if �1�2 < 0. Hence, the
nontrivial phase only exists when the pairing functions of the
s-wave SCs for the top and bottom surfaces have opposite signs
(i.e., they form a Josephson junction with a π phase shift).

To determine the type of TSC, we consider the limit
�+ = 0, in which we can transform the Hamiltonian (2) into
the basis c±,↑(↓) = 1√

2
(c1,↑(↓) ± c2,↑(↓)), and find the obtained

Hamiltonian is block diagonal with the two blocks related by
time reversal symmetry. Each block of the new Hamiltonian
is exactly the Hamiltonian for the chiral TSC discussed, for
instance, in Ref. 20. Therefore, our system is expected to be
nothing but a TSC with HM edge modes. This can be seen in
analogy to the quantum spin Hall state with a helical edge states
consisting of two copies of the chiral quantum anomalous Hall
state.19 To substantiate the above picture, we take into account
another limit (m = 0) in which the two surfaces are decoupled
from each other. Then, for one surface, our Hamiltonian is
the same as the one discussed by Fu and Kane in Ref. 21.
According to Fu and Kane, a Josephson junction with a π

phase shift will induce a helical Majorana wire along the
one-dimensional junction. In this decoupled regime (m = 0),
the prediction by Fu and Kane is consistent with ours that a
HM wire emerges at the edge of our sandwich structure if there
is a π phase shift across the SC-TI-SC Josephson junction.

Next, we directly solve the Hamiltonian (2) in a half infinite
plane (y < 0) to obtain the effective Hamiltonian for the HM
mode. We assume that the x direction is translation invariant
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FIG. 1. (Color online) (a) Side view of the SC-TI-SC heterostruc-
ture; (b) phase diagram for the SC-TI-SC heterostructure when the
chemical potential μ = 0.

so that kx is a good quantum number. We will first solve the
eigenvalue problem at kx = 0

HBdG(kx = 0, − i∂y)
(y) = E
(y), (5)

and then project the Hamiltonian (2) onto the subspace of the
eigenstates at kx = 0. To impose open boundary conditions,
we need to add a quadratic term into the hybridization
term m = m0 + B∂2

y , where B is considered to be a small
positive number. For simplicity, we only consider the case
μ = 0, �+ = 0, and �− > m0 > 0. With such a simplifica-
tion, we search for the zero-energy state (E = 0) with the
ansatz 
 ∝ eλyφ for the boundary conditions 
(0) = 0 and

(y → −∞) = 0, and find the doubly degenerate eigenstates


i = 1

N0
(e−λ1y − e−λ2y)φi, i = ±, (6)

where N0 is a normalization factor and λ1,2 given by

λ1,2 = 1

2B

( − h̄vf ±
√

h̄2v2
f − 4B(m0 + �−)

)
, (7)

which are real numbers, smaller than zero. The
wave functions φ+ = 1

4 [1 + i,1 − i, − 1 − i,1 − i,1 − i,1 +
i, − 1 + i,1 + i]T and φ− = 1

4 [−1 − i,1 − i, − 1 − i, − 1 +
i, − 1 + i,1 + i, −1 + i, − 1 − i]T are given in the ba-
sis |1,↑,e〉,|1,↓,e〉,|2,↑,e〉,|2,↓,e〉,|1,↑,h〉,|1,↓,h〉,|2,↑,h〉,
|2,↓,h〉. Since the φ± are invariant under charge conjugation
(Cφ± = φ±) and can be related to each other by time reversal
(T φ+ = −φ− and T φ− = φ+), they are expected to be HM
modes. Indeed, for nonzero kx , we project the Hamiltonian (2)
into the subspace of 
±, which can be done by expanding the
field operator �̂ as �̂(kx,y) = ∑

i 
i(y)γ̂i(kx) (i = ±), and
obtain the effective Hamiltonian

Ĥeff =
∑
kx

h̄vf kx(γ̂ †
+(kx)γ̂+(kx) − γ̂

†
−(kx)γ̂−(kx)), (8)

which is exactly the HM mode as expected. This mode does
not only exist at the interface between a TSC and vacuum but
also at the interface between a TSC and a TI which can be
easily understood on the basis on topological invariants.6–8

After determining the condition of the topological phase
for μ = 0, we can easily extend it to the μ 	= 0 regime. This is
done by analyzing the μ 	= 0 case and afterward adiabatically
connecting the result to the μ = 0 regime. By solving the
bulk dispersion, the helical topological superconductor phase

is found to exist in the regime |m| <
√

( μ2

�2−
+ 1)(�2− − �2+).

To confirm the HM mode experimentally, we consider the
setup shown in Fig. 2(a). It is well known that for a TI film, it
is possible to obtain the two-dimensional quantum spin Hall
state with helical edge states by tuning the thickness of the film
due to quantum confinement.17,18 Then, for the TI film with
proper thickness, we introduce an s-wave superconductor on
both the top and bottom surfaces near the upper edge as shown
by the pink regime in Fig. 2(a) (labeled TSC). By tuning the
relative phase of the pairing functions for the SCs on the top
and bottom surfaces, we can obtain a TSC with HM modes
at the edges. Hence, at the top edge in Fig. 2(a), we find that
one helical Dirac fermion from the left-hand side (LHS) will
be split into two Majorana fermions and then recombined into
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FIG. 2. (Color online) (a) Proposed experimental setup for the
HM interferometer; (b) zoom into the Y junction, where Dirac
fermions (full lines) are converted into Majorana fermions (dashed
lines) and vice versa; (c) dependence of the local conductance
GLL = dIL/dVL and (d) the nonlocal conductance GLR = dIL/dVR

on the phase factors θ1/2 (in units of e2/h).

another helical Dirac fermion at the right-hand side (RHS).
Therefore, a HM interferometer is obtained.

Next, we will discuss the transport properties of the HM
interferometer within the scattering matrix formalism. The HM
interferometer can be divided into three parts, a Y junction at
the LHS is connected to another Y junction at the RHS by
two freely propagating Majorana wires of different length L1

and L2. The Y-junction regime consists of one helical Dirac
fermion mode and two Majorana fermion modes, as shown in
Fig. 2(b). We name the Dirac fermion mode |ψα

i(o)〉 (α = e,h)
and the two Majorana modes |γ α

i(o)〉 (α = 1,2), where i (o)
stands for incoming (outgoing) mode. Time reversal requires
T |ψα

i(o)〉 = (−)|ψα
o(i)〉 and T |γ α

i(o)〉 = (−)|γ α
o(i)〉, while particle-

hole symmetry gives C|γ α
η 〉 = |γ α

η 〉 and C|ψe(h)
η 〉 = |ψh(e)

η 〉
(η = i,o). The scattering wave function takes the form |�〉 =∑

α,η(cα,η|γ α
η 〉 + dα,η|ψα

η 〉), and consequently the S matrix for
the Y junction SY is defined as⎛

⎜⎝
c1,j,o

c2,j,o

de,j,o

dh,j,o

⎞
⎟⎠ = SY

⎛
⎜⎝

c1,j,i

c2,j,i

de,j,i

dh,j,i

⎞
⎟⎠ , (9)

where j = L,R for the left and right Y junction. With
the constraints from time reversal symmetry,22 particle-hole
symmetry, and the unitary condition, SY can be parametrized as

SY =
(

R1 T1

−T T
1 −e−iφR∗

1

)
, (10)

where

R1 =
(

0 r1

−r1 0

)
, T1 =

(
t1 t2
it∗2 −it∗1

)
, (11)

|t1|2 + |t2|2 + |r1|2 = 1, r1 is real, and t2 = t∗1 . In the latter
equations, r1 refers to the reflection amplitude, and t1(2) are
the transmission amplitudes depending on the microscopic
details. In the middle regime, the two HM fermions are

propagating freely, only picking up a phase shift; therefore,
the corresponding S matrix Sm reads⎛

⎜⎝
c1L,i

c2L,i

c1R,i

c2R,i

⎞
⎟⎠ = Sm

⎛
⎜⎝

c1L,o

c2L,o

c1R,o

c2R,o

⎞
⎟⎠ , (12)

with

Sm =
(

0 TLR

TRL 0

)
, TLR =

(
eiθ1 0
0 eiθ2

)
, (13)

and TRL = −T T
LR due to time reversal symmetry. The angles

θ1 and θ2 denote the phase shifts of the Majorana fermions
propagating along the two arms of the TSC. Combining the
above S matrix for three different regions, we can obtain the
total S matrix St defined as⎛

⎜⎝
deL,o

dhL,o

deR,o

dhR,o

⎞
⎟⎠ = St

⎛
⎜⎝

deL,i

dhL,i

deR,i

dhR,i

⎞
⎟⎠ , (14)

which connects the helical Dirac fermions on the LHS to those
on the RHS. The matrix elements of St are named s

αβ

jl where
α,β = e,h denote electron or hole and j,l = L,R denote left
or right lead. Then, the conductance is given by23–25

Gjl = d〈Îj 〉
dVl

= e2

h

[
δjl − T ee

jl + T he
jl

]
, (15)

where T
αβ

jl = |sαβ

jl |2. Gjl represents the differential (i.e.,
nonlinear) conductance for the current in lead j with
respect to the voltage in lead l. We only consider the zero
temperature case for simplicity. Here, T ee

jj and T ee
jl (j 	= l)

are the electron reflection and transmission probabilities,
respectively, while T eh

jj and T eh
jl (j 	= l) are the Andreev

reflection and transmission probabilities, respectively. By
solving St from the expressions (9)–(13), we can obtain the
T

αβ

jl . We find T ee
LL and T ee

RR vanish because of time reversal
symmetry. The Andreev reflection, the electron transmission,
and the Andreev transmission probabilities are given by

T he
LL = T he

RR = 4r2
1 sin2

(
θ1+θ2

2

)
r4

1 + 1 − 2r2
1 cos(θ1 + θ2)

, (16)

T ee
LR = T ee

RL = 4|t1|4 sin2
(

θ1−θ2
2

)
r4

1 + 1 − 2r2
1 cos(θ1 + θ2)

, (17)

T he
LR = T he

RL = 4|t1|4 cos2
(

θ1−θ2
2

)
r4

1 + 1 − 2r2
1 cos(θ1 + θ2)

, (18)

respectively, which satisfy the current conservation condition∑
lβ T

αβ

jl = 1.
From expressions (16)–(18), we find that the current

through our HM interferometer is qualitatively different
from both (i) the current through a TI-SC-TI junction26 and
(ii) the current through a chiral Majorana interferometer.11,12

First, although there is no electron reflection in the HM
interferometer, Andreev reflection still exists. This is similar
to the TI-SC-TI junction26 but different from the chiral
Majorana interferometer.11,12 Second, in our case, an electron
can transmit as either an electron or a hole, which can be
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used to distinguish the HM interferometer from the TI-SC-TI
junction,26 where only electron transmission is allowed.

In the HM interferometer, the normal and Andreev trans-
mission probabilities depend on the phase difference between
the upper and lower arms. It can be experimentally tuned by
changing the applied bias voltage V , by varying the lengths
of the arms L1/2, or by varying the number of vortices n

trapped in the TSC regime. This can be explicitly seen from
the dependencies of the angles θ1,2 on physical parameters:
θ1 = kxL1 + (n + 1)π and θ2 = kxL2 where kx = V/(h̄vf ).
Here, the π phase shift, which we choose to add to θ1, comes
from a Berry phase of a spin-1/2 rotation. Furthermore, the
nπ phase shift, due to the trapped vortices in the TSC, is
compatible with time reversal symmetry.13 Therefore, it can
be expected that the trapped vortices do not diminish the helical
Majorana modes. The dependencies of the local GLL and the
nonlocal conductance GLR on the parameters θ1 and θ2 are
shown in Figs. 2(c) and 2(d), respectively. The observation of

such an interference pattern would be a clear signature of HM
modes in this setup.

To summarize, we have proposed a realistic setup for a HM
interferometer which can be used to confirm the existence
of HM modes and helical TSCs. The core parts of our
setup could, for instance, be realized in Bi2Se3 thin films
selectively doped by copper to turn layers within the structure
superconducting. A big advantage of our proposal is that the
superconducting material and the TI material are of the same
type. Therefore, there should be no Schottky barriers between
them maximizing the proximity effect. We have proposed to
identify HM modes by measuring phase-dependent transport
through a HM interferometer.
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