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High-temperature surface superconductivity in topological flat-band systems
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We show that the topologically protected flat band emerging on a surface of a nodal fermionic system promotes
the surface superconductivity due to an infinitely large density of states associated with the flat band. The critical
temperature depends linearly on the pairing interaction and can be thus considerably higher than the exponentially
small bulk critical temperature. We discuss an example of surface superconductivity in multilayered graphene
with rhombohedral stacking.
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Normal Fermi liquid is the generic form of a system of
interacting fermions. A Fermi liquid has a finite density of
states (DOS) at zero energy, which may lead to instabilities
at low T with the formation of broken symmetry states
with smaller DOS. However, there is a class of fermionic
systems with a diverging DOS: systems with a dispersionless
spectrum that has exactly zero energy (i.e., the flat band).
Historically, this was first discussed in the context of Landau
levels. However, flat bands may also emerge without a
magnetic field; for example, in strongly interacting condensed
matter systems,1–4 in layered systems with integer-valued
pseudospin,5 in 2 + 1 dimensional quantum field theory dual
to a gravitational theory in the anti-de Sitter background,6

etc. In some cases the flat band is protected by topology in
the momentum space: topologically protected zero modes
emerge in cores of quantized vortices,7–9 on surfaces of
gapless topological media such as nodal superconductors9–11

and multilayered graphene,9,12–14 as well as at the edges of
graphene sheets.9,10

In this Rapid Communication we consider a three-
dimensional (3D) system where the topologically protected
flat band with its singular DOS appears on the surface, giving
rise to two-dimensional (2D) surface superconductivity. This
property is generic and does not depend much on the details
of the system. For illustration we use multilayered graphene
with rhombohedral stacking, where a surface flat band appears
in the limit of a large number of layers. We show that the
superconducting critical temperature depends linearly on the
pairing interaction strength and can be thus considerably
higher than the usual exponentially small critical temperature
in the bulk. This may open a new route to room-temperature
superconductivity.9 Formation of surface superconductivity is
already enhanced for a system having N � 3 layers where
the normal-state spectrum has a power-law dispersion ξp ∝
|p|N as a function of the in-plane momentum p. The DOS
ν(ξp) ∝ ξ

(2−N)/N
p has a singularity at zero energy which

results in a drastic enhancement of the critical temperature.
We also demonstrate that doping leads to a suppression of
the surface critical temperature, contrary to its effect on
the bulk superconductivity where the critical temperature is
increased.15,16

a. The model. We consider a multilayered graphene
structure of N layers in the discrete representation with
respect to interlayer coupling. We choose the rhombohedral

stacking configuration considered in Refs. 9,12–14 and assume
for simplicity that the most important are jumps between
the atoms belonging to different sublattices parametrized by
a single hopping energy t . A more general form of the
multilayered Hamiltonian can be found in Refs. 17 and 18.
In the superconducting case the Hamiltonian has the form of
a matrix in Nambu space. The Bogoliubov–de Gennes (BdG)
equations are

N∑
j=1

(
Ĥij − μiδij �iδij

�∗
i δij −Ĥij + μiδij

) (
ûj

v̂j

)
= E

(
ûi

v̂i

)
,

where the sum runs over the layers. The normal-state Hamil-
tonian is14

Ĥij = vF (σ̂ · p)δi,j − t σ̂+δi,j+1 − t σ̂−δi,j−1, (1)

where σ̂ = (σ̂x, σ̂y), σ̂± = (σ̂x ± iσ̂y)/2, and ûi , v̂i are
matrices and spinors in the pseudospin space associated
with two sublattices. This Hamiltonian acts on the envelope
function of the in-plane momentum p taken near one of the
Dirac points; that is, for |p| � h̄/a where a is the interatomic
distance within a layer; vF = 3t0a/(2h̄) where t0 is the the
hopping energy between nearest-neighbor atoms belonging
to different sublattices on a layer. The particle-like, ûi , and
hole-like, v̂i , wave functions near the Dirac point are coupled
via the superconducting order parameter �i that can appear
in the presence of a pairing interaction. Here we do not
specify the nature of pairing which can be either due to the
electron-phonon interaction or due to other interactions that
have been suggested as a source for intrinsic superconductivity
in graphene, see Ref. 19. As a reasonable starting point we
assume s-wave symmetry for the order parameter and neglect
fluctuations for simplicity, although they could, in principle,
be relevant for 2D superconductivity. The excitation energy
for particles and holes is measured upward or downward,
respectively, from the Fermi level, which can be shifted with
respect to the Dirac point. We assume that the shifts at the
outermost layers may be different from the bulk chemical
potential due to the presence of a surface charge (i.e., μi = μ

for i �= 0,N while μ1,N = μ + δμ1,N ). The order parameter
and the Fermi-level shifts μi are scalars in the pseudospin
space. We assume that �i and μi are much smaller than
the interlayer coupling energy t > 0, which in turn is t � t0.
Usually, t ∼ 0.1 t0 where t0 ∼ 3 eV.18
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b. Spectrum. We decompose the wave function(
ûn

v̂n

)
=

[(
α+

n

β+
n

)
⊗ 	̂+ +

(
α−

n

β−
n

)
⊗ 	̂−

]
(2)

into the spinor functions localized at each sublattice:

	̂+ =
(

1

0

)
, 	̂− =

(
0

1

)
.

The BdG equations take the form

τ̌3[vF (px − ipy)α̌−
n − t α̌−

n−1 − μα̌+
n ] = Eα̌+

n , n �= 1, (3)

τ̌3[vF (px + ipy)α̌+
n − t α̌+

n+1 − μα−
n ] = Eα̌−

n , n �= N. (4)

We introduce matrices and vectors in the Nambu space:

τ̌3 =
(

1 0

0 −1

)
, �̌n =

(
0 �n

�∗
n 0

)
, α̌±

n =
(

α±
n

β±
n

)
.

In Eqs. (3) and (4) we assume that �n �= 0 only at the outermost
layers, while �n = 0 for n �= 1,N . The arguments supporting
this model are given below. We also neglect �n as compared to
t in Eqs. (3) and (4) for n = N and n = 1, respectively, as they
lead to higher-order corrections in �/t . The particle and hole
channels are thus decoupled if n �= 1,N , which determines
the coefficients α̌±

n = Ǎ±eipzdn and the energy in terms of the
transverse momentum pz (d is the interlayer distance):14

E2 = v2
F p2 − 2tvF p cos(pzd − φ) + t2, (5)

where p =
√

p2
x + p2

y and eiφ = (px + ipy)/p.

A finite order parameter � couples the particle and hole
channels at the outermost layers, i = 1 and i = N ,

τ̌3vF (px − ipy)α̌−
1 − τ̌3μ1α̌

+
1 = Eα̌+

1 − �̌1α̌
+
1 , (6)

τ̌3vF (px + ipy)α̌+
N − τ̌3μNα̌−

N = Eα̌−
N − �̌N α̌−

N . (7)

Boundary conditions (6) and (7) select pz and determine 2N

particle and hole branches of the energy spectrum. Looking for
the branches that belong to the surface states with energies of
the order of � and μ, we solve these equations for E � t .
Since Eqs. (3) and (4) do not contain �, one can use the
coefficients as obtained in Ref. 14:

α̌+
n = C√

2

[(vF p

t

)n−1
Ǎ+

+
(vF p

t

)N−n vF p(τ̌3E + μ)

v2
F p2 − t2

Ǎ−
]

ei(n−1− N
2 )φ,

α̌−
n = C√

2

[(vF p

t

)N−n

Ǎ−

+
(vF p

t

)n−1 vF p (τ̌3E + μ)

v2
F p2 − t2

Ǎ+
]

ei(n− N
2 )φ.

Here C is a normalization constant. We include the first-order
corrections in energy. Having an imaginary momentum pz for
vF p < t , these solutions decay away from the surfaces and
thus describe the surface states. The vectors Ǎ± = (A±, B±)T

do not depend on n. Equations (6) and (7) yield

τ̌3ξpǍ− = (Ẽ + τ̌3μ̃1)Ǎ+ − �̌1Ǎ
+, (8)

τ̌3ξpǍ+ = (Ẽ + τ̌3μ̃N )Ǎ− − �̌NǍ−, (9)

where ξp = t (vF p/t)N , μ̃1,N = μ̃ + δμ1,N , and

E = Ẽ
(
1 − v2

F p2/t2
)
, μ = μ̃

(
1 − v2

F p2/t2
)
. (10)

Equations (8) and (9) provide the surface-state spectrum[
Ẽ2 − μ̃2

N − |�N |2][Ẽ2 − μ̃2
1 − |�1|2

] + ξ 4
p

− ξ 2
p[2Ẽ2 + 2μ̃1μ̃N − �∗

1�N − �1�
∗
N ] = 0. (11)

If �1 = �N we have from Eq. (11)

Ẽ2
± = [

μ̃0 ∓
√

ξ 2
p + (δμ)2

]2 + |�|2, (12)

where δμ= (μ1−μN )/2 and μ̃0 = (μ̃1+μ̃N )/2. Equations (8)
and (9) determine four independent states. If μ = δμ = 0 they
are (i) Ẽ1 = Ẽ and A±

1 = u, B±
1 = v, (ii) Ẽ2 = −Ẽ and A±

2 =
v, B±

2 = −u, (iii) Ẽ3 = Ẽ and A±
3 = ±v, B±

3 = ±u, and (iv)

Ẽ4 = −Ẽ and A±
4 = ±u, B±

1 = ∓v. Here, Ẽ =
√

ξ 2
p + �2

and

u = 1√
2

[1 + ξp/Ẽ]
1
2 , v = 1√

2
[1 − ξp/Ẽ]

1
2 . (13)

The overall normalization requires d
∑N

n=1[|α+
n |2 + |β+

n |2 +
|α−

n |2 + |β−
n |2] = 1. For ξp � t this gives

|C|2 = d−1t[1 − (vF p/t)2]. (14)

Note that Eqs. (11)–(14) hold for ξp � t . The spectrum is
plotted in Fig. 1.

If N → ∞ and ξp → 0 for any vF p/t < 1, the surface-
state part localized at n = N (with the coefficients Ǎ−)
decouples from that (with Ǎ+) which is localized at n = 1.
For a “flat band” ξp → 0, Eq. (11) yields

Ẽ2
+ = μ̃2

N + |�N |2 or Ẽ2
− = μ̃2

1 + |�1|2. (15)

This shows that the different signs in Eq. (12) belong to the
surface states localized at the corresponding layers.

c. Flat band, zero doping. The gap at layer N is

�N =
∫

d2p

(2πh̄)2

N∑
k=1

Vp,pz(k)Tr[ûN (p,k)v̂∗
N (p,k)]

× [1 − 2f (Ep,k)],

?? ? ??? ?
? ?? ? ??? ?

?

FIG. 1. (Color online) Spectrum of surface states for different
numbers of layers. N = 5 (left) and N = 50 (right). The symbols
have been calculated by exact diagonalization and the solid lines are
computed from Eq. (12) up to the point where the approximation in it
is valid. The three cases are: normal case with μn ≡ 0 (blue circles),
� = 0.05t,μn ≡ 0 (red squares), and � = 0.05t,μ1 = μN = 0.03t

(green crosses).
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where f (E) is the Fermi distribution function. We assume
that the cutoff momentum pc of the pairing potential V is
larger than pFB = t/vF . The sum includes one n = N surface
state which we label by k = 0 and the bulk states specified by
the transverse momenta pz(k), where k = 1,2, . . . ,N − 1 with
the spectrum of Eq. (5). Therefore, �N = �S + �B where the
surface contribution comes from the flat band area p < pFB,

�S = V

∫
p<pFB

d2p

(2πh̄)2
Tr[ûN (p,0)v̂∗

N (p,0)][1 − 2f (Ep,0)].

(16)

The bulk contribution comes from the momenta p > pFB. For
such momenta, the surface state k = 0 will also extend to the
bulk, giving rise to (for T = 0)

�B = V

∫
pFB<p<pc

d2p

(2πh̄)2

{
Tr[ûN (p,0)v̂∗

N (p,0)]

+
N−1∑
k=1

Tr[ûN (p,k)v̂∗
N (p,k)]

}
. (17)

All the bulk states with p > pFB are normalized to the
sample width W = dN (i.e., u∗(z) ∼ 1/

√
W ). According to

Eq. (5), E ∼ vF p > t in Eq. (17). Therefore,

�B ≈ Vp2
c

4πh̄2

N

W

[
�

vF pc

− O

(
�

vF pc

)3
]

.

If there was only the bulk contribution (� ≡ �B = �N ), the
gap equation would have a nonzero solution only for a potential
strength higher than a certain critical value Vpc/(4πh̄2vF d) >

1, as is the case in the usual single-layer graphene with zero
doping.15,16

The surface states for p < pFB are normalized according to
Eq. (14). We find from Eq. (16):

�S = 2V

∫
p<pFB

d2p

(2πh̄)2
|C|2uv tanh

E

2kBT
. (18)

For simplicity we assume that V is constant up to the cutoff
momentum pc. Here, u and v are determined by Eqs. (13) and
(14). In the case of a flat band uv = 1/2 while E = �(1 −
v2

F p2/t2). For T = 0 it gives

�S = �0 ≡ g/(8π ), (19)

where g = Ṽ p2
FB/h̄2 is the characteristic pairing energy and

Ṽ = V/d is the two-dimensional pairing potential.
The ratio of the order parameter in the bulk to that on surface

is of the order (�/t)(vF pc/t). Since � � t , the contribution
from the bulk states with E > t can be neglected if the cutoff
momentum of the interaction pc does not considerably exceed
t/vF . We thus arrive at the central result of our paper, namely
that the surface superconductivity in the presence of a flat band
dominates over the bulk superconductivity. This follows from
an infinitely large density of states associated with the flat band.
The critical temperature is determined by Eq. (19) with � →
0, which gives �0 = 3kBTc. Due to its linear dependence on
the interaction strength, the critical temperature is proportional
to the area of the flat band and can be essentially higher than
that in the bulk.

For a flat band ξp = 0, with pc = pFB, the only character-
istic values in the superconducting surface state are the energy
� and the momentum pFB. Therefore, the coherence length
should be of the order of the only available length scale,
ξ0 ∼ h̄/pFB. It is much larger than the interatomic distance,
ξ0 � a, since pFB � p0 ∼ h̄/a.

Doping destroys the surface superconductivity. This can
be seen from Eq. (18) with uv = �/(2Ẽ+) and E = (1 −
v2

F p2/t2)Ẽ+ where Ẽ+ is taken from Eq. (15). The critical
temperature is found by putting � = 0. For example, if μ and
μN have the same sign, both �0 and Tc vanish at the critical
doping level that satisfies

1 = Ṽ

4πh̄2|μN − μ|

∣∣∣∣1

2
− μ

μN − μ
+ μ2

(μN − μ)2
ln

μN

μ

∣∣∣∣ .
If μN = μ the critical doping is |μ| = 2kBTc.

d. Surface superconductivity in a finite array. Since the
normal-state DOS defined as

ν(ξp) = p

2πh̄2

dp

dξp

= t(ξp/t)
2−N
N

2πh̄2Nv2
F

(20)

has a low-energy singularity for N > 2, the surface supercon-
ductivity is favorable already for a system with a finite number
of layers N � 3. A simple expression for the zero-temperature
gap can be obtained if N � 5. For a finite N , the value ξp

can reach values larger than �. We use Eqs. (12)–(14) for
zero doping in Eq. (18), where the upper limit of integration
pc is now such that ξc = t(vF pc/t)N � �. Transforming to
the energy integral with the normal-state DOS [Eq. (20)]
we see that, for N > 4, the integral converges at ξp ∼ � or
p ∼ p� = pFB(�/t)

1
N . The zero-temperature gap is

�0 = t

(
g

4πt

[
α(N ) − 1

2
(�0/t)

2
N α(N/2)

]) N
N−2

, (21)

where

α(N ) =
∫ ∞

0

x
N+2
N dx

(
√

x2 + 1)3
= 1√

π


(
N − 2

2N

)


(
N + 1

N

)
.

For N � 1 we have αN = 1. The flat-band result, Eq. (19),
is recovered if the number of layers is N � 2 ln(t/�0).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

FIG. 2. (Color online) Zero-temperature gap self-consistently
calculated from Eq. (16) for g = 0.01t . Left panel: � as a function
of pc for various N (solid lines). For pc ∼ p� the gap saturates at the
values given by Eq. (21) which approach Eq. (19) for N → ∞. The
dashed lines show the dispersion ξp for each N . Right panel: �(z)
profile, z = nd . �(z) is symmetric with respect to z → W − z.
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The coherence length for a finite system is ξ0 ∼ h̄/p�. It
approaches h̄/pFB for N → ∞.

Results of numerical integration of the self-consistency
equation (16) with a cutoff pc are plotted in Fig. 2, left panel.
The right panel shows the order parameter as a function of the
transverse coordinate. It extends into the bulk only over a few
interlayer distances due to a decay of the wave functions. This
supports the model of Eqs. (3)–(7) in which � is nonzero only
on the outermost layers.

e. Conclusion. The flat band with infinite DOS emerges in
semimetals with topologically protected nodal lines. The flat
band promotes surface superconductivity with Tc proportional
to the pairing interaction strength and to the area of the flat band
in the momentum space determined by the projection of the
nodal line onto the surface. The critical temperature can thus
be considerably higher than an exponentially small bulk Tc.
Formation of surface superconductivity is enhanced already
for a system with N � 3 layers where the normal DOS has a

singularity at zero energy. Topologically protected flat bands
may also appear on interfaces and on twin or grain boundaries
in bulk topological materials leading to an enhanced bulk
Tc. Indications toward surface superconductivity proving the
existence of proper pairing interaction have been seen in
graphite.20,21 Enhanced superconductivity was reported on
twin boundaries in Ba(Fe1−xCox)2As2.22 These observations
agree with our theory. Our predictions may be used to search
for or fabricate layered and/or twinned systems with high-
temperature and even room-temperature superconductivity.
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