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Conditions for nonmonotonic vortex interaction in two-band superconductors
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We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of
vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is
determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional
differentiation between type I and type II superconductors. However, we also show that the long-range
interaction is determined by a modified Ginzburg-Landau parameter κ∗, different from the standard κ of a bulk
superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature
dependent, and can be further tuned by alterations of the material on the microscopic scale.
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I. INTRODUCTION

Multigap superconductivity arises when the gap amplitudes
on different sheets of the Fermi surface are radically disparate,
for example, due to different dimensionality of the bands for
the usual phonon-mediated pairing, as is the case in MgB2,1

or due to the repulsive pairing interaction, as it appears
to be the case in recently discovered iron-pnictides.2,3 The
other examples of multigap materials include OsB2, iron
silicides such as Lu2Fe3Si5, chalcogenides (NbSe2), but also
the conventional superconductors such as Pb when reduced to
nanoscale.4

In a strong magnetic field all superconducting condensates
form normal-metal voids, as an intermediate state before su-
perconductivity is fully destroyed. These normal domains tend
to merge in type I superconductors in order to minimize their
positive surface energy, whereas in type II superconductors
they have negative surface energy and split into quantized
vortices. However, in 2005 Babaev and Speight predicted the
so-called semi-Meissner state in two-band superconductors,5

the state with localized regions of high and low vortex
densities, arising from short-range repulsive while long-range
attractive vortex-vortex interaction. This vortex behavior was
recently visualized by Moshchalkov et al.,6 in the form of
stripes and clusters of vortices in a single-crystal MgB2.
Such vortex configurations stemming from the long-range
attractive vortex behavior (see also Ref. 7 for review) are
clearly very important in the field of superconductivity, but
they also present a bridge between solid-state physics and soft
condensed matter, where systems with competing interactions
are of abiding interest.8

To date, the matter of competing vortex interactions in
two-band superconductors has not been conclusively settled
although recent years saw a surge of activities in this field.
The original prediction in Ref. 5 concerns only the case when
one band is type I and the other type II, although it is unclear
how different types of behavior between bands in k-space
(not real space) can be discerned. Reference 9 demonstrated
such vortex behavior in systems where just one band is fully
superconducting, and the other superconducts only due to
direct coupling. Dao et al. found different types of possible
vortex-vortex interactions and several resulting exciting vortex
configurations, but did not provide a universal criterion to

a priori determine the type of vortex interaction.10 Finally,
some authors expressed skepticism to nonmonotonic vortex
interaction; Geyer et al. showed that the normal metal/two-gap
superconductor surface energy close to Tc depends just on
a single Ginzburg-Landau (GL) parameter κ , and thus only
either repulsive (type II) or attractive (type I) vortex-vortex
interaction is possible.11 This point was later reenforced by
Kogan and Schmalian.12

II. METHODS AND DERIVATIONS

A. The Ginzburg-Landau formalism for two-band
superconductors

In this paper we derive criteria for the appearance of
nonmonotonic interaction of vortices in two-gap systems
described by the standard GL model. Our analysis is based
on the two-band GL theory, but with correct microscopic
parameters obtained either from theoretical band structure
calculations or by fitting the experimental penetration depth
or specific heat data by the so-called γ model.13 We begin
from the GL energy functional, which comprises single-band
contributions from both condensates, the coupling term, and
the energy of the magnetic field in and around the sample:
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Here the two Cooper-pair condensates are described by the
order parameters �1 and �2, H is the applied magnetic field,
and h the net one. The Josephson coupling term provides
the “minimal coupling,” well described in literature. The
temperature enters the energy expression through αj=1,2,
linearly dependent on the temperature term τ = ln Tc/T ≈
1 − T/Tc.14 The expansion leading to the GL theory is strictly
valid only in the immediate vicinity of Tc, but we use this
theory at somewhat lower temperatures as well, arguing that
GL theory qualitatively well describes important physics away
from Tc (as was demonstrated at many prior instances). Finally,
it was shown in Ref. 12, that standard two-band GL theory
contains incomplete terms that estimate ψ with precision to
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τ 3/2. The authors reduce the theory by eliminating latter terms,
which results in a single coherence length for both order
parameters of a two-band superconductor. This is, however,
not a correct physical picture at low temperatures,15 and two
coherence lengths for the two-band superconductors can be
recovered even in the GL domain in the extended model
of Ref. 16. Unfortunately, the latter model is presented in
the absence of magnetic field. To be able to capture all the
essential physics, at least qualitatively, we base our study
on the compromise standard GL model. Note, however, that
our further explained semianalytic approach can be applied
to any improved form of the energy functional for two-band
superconductors.

We next calculate the vortex-vortex interaction in a sim-
ilar fashion to Ref. 5 but within a correct microscopic
framework. The parameters in Eq. (1) can then be ex-
pressed as αj = −N (0)njχj = −N (0)nj (τ − Sj/njη), βj =
N (0)nj/W 2, mj = 3W 2/N(0)njv

2
j , and � = N (0)λ12/η,

where

� =
∣∣∣∣ λ11 λ12

λ21 = λ12 λ22

∣∣∣∣
is the coupling matrix with determinant η; N (0) denotes total
and njN (0) partial density of states, vj are the Fermi velocities
in the two bands, and W 2 = 8π2T 2

c /7ζ (3). For details on
constants Sj , we refer to Ref. 12. This allows us to technically
define the coherence lengths ξj = h̄vj√

6W
and penetration depths

λj =
√

3c2

16πN(0)e2nj v
2
j

, as well as the GL parameters κj = λj/ξj

of the two condensates, as if they were independent. These
are, however, just parameters of the model, and are related
only indirectly with the resulting penetration depth and the
healing lengths of the two order parameters in the two-band
material. Notice also that α1 and α2 change sign at different
temperatures. In particular, close to Tc both αj are positive
but the coupled system is still superconducting. Such situation
is already different from the one studied in Ref. 9, where
at least one αj was negative. The GL equations minimize
the functional from Eq. (1) and read (in dimensionless
form)

(−i∇ − A)2�1 − (χ1 − |�1|2)�1 − γ�2 = 0, (2a)

(−i∇ − A)2�2 − α(χ2 − |�2|2)�2 − γ κ2
2

κ2
1 α

�1 = 0, (2b)

−�A = κ−2
1 j1 + ακ−2

2 j2, (2c)

where jj = �[�∗
j (−i∇ − A)�j ], α = (v1/v2)2, γ =

�/n1N (0), both order parameters are scaled to W , distances
to ξ1, and vector potential to hc/4eπξ1.

B. Long-range vortex interaction

In what follows, we demonstrate the method to determine
the asymptotic long-range interaction of vortices, before
going into fine details at short vortex-vortex distances. In
cylindrical coordinates, considering the ansatz for one circular
symmetric vortex �j = eiθfj (r), and substituting the gauge

�A = a(r)θ̂/r , we rewrite GL Eqs. (2a)–(2c) as
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and
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For r → ∞, a converges to 1 and fj to a constant aj . The
limit r → ∞ leads to the set of nonlinear coupled equations
for aj : (

χ1 − a2
1

)
a1 + γ a2 = 0, (4a)

α
(
χ2 − a2

2

)
a2 + γ

α

κ2
2

κ2
1

a1 = 0. (4b)

These can be decoupled by defining the ratio ρ = a1/a2, which
then obeys the fourth-order equation

γ

α2

κ2
2

κ2
1

ρ4 + χ2ρ
3 − χ1ρ − γ = 0. (5)

Such an equation has a laborious analytical solution known
as Ferrari’s method, which is not presented here, but can be
found in Ref. 17. From Eq. (4), one obtains the dependence of
the constants aj on the ratio ρ as

a1 =
√

γ

ρ
+ χ1, (6a)

a2 =
√

γ

α2

κ2
2

κ2
1

ρ + χ2. (6b)

In order to eliminate high order terms for large distances,
we must use auxiliary functions that approach zero as r → ∞,
namely, Q(r) = a(r) − 1 and σj (r) = fj (r) − aj . Keeping
only first-order terms in these functions, Eqs. (3) become

d2σ1

dr2
+ 1

r

dσ1

dr
+ (

χ1 − 3a2
1

)
σ1 + γ σ2 = 0, (7a)
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dr2
+ 1
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+ α

(
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2
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2

κ2
1

σ1 = 0, (7b)

and
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(
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)
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r

d

dr

(
Q

r

)
−

(
ξ 2

1

λ2
− 1

r2

)(
Q

r

)
= 0, (7c)

where we defined λ−2 = (a1/λ1)2 + (a2/λ2)2. The solu-
tion of Eq. (7c) is the modified Bessel function Q(r) =
δ3rK1(rξ1/λ). Similarly, if γ = 0, Eqs. (7a) and (7b) are
decoupled and easily identified as modified Bessel equa-
tions, whose solutions are σ1(r) = η1K0(

√
2χ1r) and σ2(r) =

η2K0(
√

2αχ2r). On the other hand, if γ �= 0, the equations
for σj are still coupled and, in order to decouple them,
one must define the operator L̂2 = ∇2 + α(χ2 − 3a2

2), so that
L̂2σ2 = −(γ κ2

2 /ακ2
1 )σ1, and apply it on Eq. (7a), obtaining

∇2∇2σ1 + C1∇2σ1 + C2σ1 = 0. (8)
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Here C1 = (χ1 − 3a2
1) + α(χ2 − 3a2

2) and C2 = α(χ2 −
3a2

2)(χ1 − 3a2
1) − γ 2κ2

2 /ακ2
1 . The operator ∇2 for axially sym-

metric solutions has eigenfunctions given by Bessel functions
J0(βr) and Y0(βr), with eigenvalue −β2, or modified Bessel
functions I0(βr) and K0(βr), with eigenvalue β2. From these
four eigenfunctions, only the latter satisfies the condition that
σj must decay monotonically with r . Substituting ∇2K0(βr) =
β2K0(βr) in Eq. (8), one obtains

β4 + C1β
2 + C2 = 0, (9)

and

σ1(r) = δ1 cos(ω)K0(β−r) − δ2 sin(ω)K0(β+r), (10a)

σ2(r) = δ1 sin(ω)K0(β−r) + δ2 cos(ω)K0(β+r), (10b)

where

β± =

√√√√−C1 ±
√

C2
1 − 4C2

2
. (10c)

Notice that in Eqs. (10), each σj must contain the Bessel
functions for both β±, in a combination that is conveniently
written in the form of a mixing angle ω.9 In the γ → 0
limit, one has β− → √

2χ1 and β+ → √
2αχ2. Moreover,

substituting Eqs. (10) in the differential equation (7a), one
obtains

tan(ω) = γ

β2+ + (
χ1 − 3a2

1

) , (11)

so that γ → 0 leads to ω → 0 and, consequently, to σ1(r) →
η1K0(

√
2χ1r) and σ2(r) → η2K0(

√
2αχ2r), as expected.

The parameters δk (ηk) in the expressions for Q(r), σ1(r),
and σ2(r) are unknown real constants that can only be
determined by fitting numerical solutions for Eqs. (3) in
analogy to what is done in Ref. 18.

Having the asymptotic form of the order parameters and
the vector potential, we now follow the standard procedure19

for finding the vortex-vortex interaction in the r → ∞ limit,
obtaining

E2B(r) = δ2
3K0

(
r
λ

)
− δ2

1K0

(
β−r
ξ1

)
− δ2

2K0

(
β+r
ξ1

)
, (12)

where the units are now explicitly shown. Here we list
the consequences of the above asymptotics. (i) Comparing
Eq. (12) to the one-band case,20 where

E1B(r) = δ2
4K0 (r/λ1B) − δ2

5K0(
√

2r/ξ1B), (13)

shows that the length scale λ−2 = (a1/λ1)2 + (a2/λ2)2 is
playing the role of an effective penetration depth for the
two-band superconductor in accordance with Eq. (60) in
Ref. 21, contrary to λ−2 = (1/λ1)2 + (1/λ2)2 used in Refs. 5
and 22, which holds only in the (unrealistic) absence of
coupling. (ii) The parameters δk are, in general, different from
each other, but can be calculated exactly in the Bogomol’nyi
point for the two-band system as δ2

1 = δ2
2 = 2δ2

3 . For γ = 0,
the choice of ξ1 = ξ2 = 1 and κ1 = κ2 = 1 in the two-band
case is thus analogous to the Bogomol’nyi point κ1B = 1/

√
2

for the single-band case and, accordingly, the long-range
interaction must vanish (and change sign for κ1 = κ2 < 1).
This directly illustrates that coupling of two (nominally) type
II condensates may lead to a type I behavior of the coupled

system. (iii) In Eq. (13) for single-band superconductors, it is
clear that if κ1B = λ1B/ξ1B > 1/

√
2 (<1/

√
2), the interaction

potential E1B(r) will be repulsive (attractive). For two-band
superconductors, Eq. (12) shows that the relevant parameters
are κ∗

± = β±λ√
2ξ1

, rather than the nominal GL parameters κj

for each condensate. If either κ∗
+ or κ∗

− is below 1/
√

2,
the long-range vortex interaction is attractive (type I like).
Equations (4) and (10c) provide simple means to evaluate this
condition. (iv) In the presence of coupling, the long-range
behavior of both σj depends exponentially on the smallest
of β− and β+. Therefore, in the coupled case, we can define
not only a single penetration depth for both bands, but also
the order parameters for both condensates exhibit the same
decay at large distances, which implies a joint coherence length
ξ ∗ = ξ1/ min(β+,β−).

C. Surface energy and the short-range vortex interaction

The analysis in the previous subsection brings us to
the discussion of the real criterion for the attractive/repulsive
nature of the vortex interaction. In the single-band case, the
changing sign of the normal domain-superconductor surface
energy ES at the Bogomol’nyi point is a correct criterion.
However, in the two-band case and for large vortex-vortex
distance, the Bogomol’nyi point is determined by a single
valued κ∗ = min(κ∗

+,κ∗
−) = 1/

√
2, which is not necessarily

where the surface energy of the normal domain (vortex)
changes sign.

The sign of the energy of the interfaces between normal-
metal domains and the superconductor determines whether
merging of those domains is energetically favorable or not
(i.e., if the superconductor is type I or type II). In the case of
vortices, the smallest possible normal domains, the negative
vortex-superconductor surface energy therefore means that the
vortices should repel (at least at short distances) in order
to avoid the formation of a giant vortex. We here show
how to calculate the normal-superconducting interface energy
and by that predict the type of the short-range vortex-vortex
interaction.

We follow a similar approach to that of Ref. 22, but we take
into account the Josephson coupling and the temperature de-
pendence of the GL parameters, within a correct microscopical
framework. Namely, we consider the interface between normal
and superconducting region as the yz plane at x = 0 and
calculate the surface energy ES using the one-dimensional GL
functional at the thermodynamic critical field Hcc, which reads

ES =
∫ ∞

−∞
dx

{
2
(
� ′2

1 + A2�2
1

) + (
2χ1 − �2

1

)
�2

1

+ α
κ2

1

κ2
2

[
2
(
� ′2

2 + A2�2
2

) + α
(
2χ2 − �2

2

)
�2

2

]
− 2γ�1�2 + (Hcc −

√
2κ1A

′)2

}
, (14)

where the gauge potential is chosen as �A = [0,A(x),0] and
�j=1,2 are taken real. The thermodynamic critical field of the
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coupled system Hcc is obtained from the condition that the GL
functional in Eq. (1) converges to zero for H = Hcc, leading to

H 2
cc =H 2

c(1)a
2
1

(
2χ1−a2

1

)+H 2
c(2)a

2
2

(
2χ2 − a2

2

)+4γH 2
c(1)a1a2,

(15)

where the formally defined thermodynamic critical
field of each condensate is Hc(j ) = hc/(4e

√
2πλjξj ) =

2W
√

πN (0)nj . We then find �j and A that minimize ES

by numerically solving the set of Euler-Lagrange equations
for the functional in Eq. (14), which are exactly the
one-dimensional versions of Eqs. (2a)–(2c):

� ′′
1 = A2

2
�1 − (

χ1 − �2
1

)
�1 − γ�2, (16a)

� ′′
2 = A2

2
�2 − α

(
χ2 − �2

2

)
�2 − γ κ2

2

ακ2
1

�1, (16b)

A′′ =
(

�2
1

κ2
1

+ α
�2

2

κ2
2

)
A. (16c)

The boundary conditions in the normal state (x → −∞) and
deep in the superconducting state (x → ∞) are ψj (x →
−∞) = 0, A′(x → −∞) = 1, ψ ′

j (x → ∞) = 0, and A′(x →
∞) = 0.

D. Constrained GL equations for fixed vortices

We supplement our argumentation by numerically obtained
vortex-vortex interaction potentials (in a similar fashion as in
Ref. 23). Since the problem of two vortices does not have
circular symmetry, we now consider the fixed-vortex ansatz
in Cartesian coordinates �j = ein1θ1ein2θ2fj (x,y), describing
two fixed vortices with winding numbers n1 and n2, where
einkθk is written in Cartesian coordinates as

einkθk =
(

xk + iyk

xk − iyk

)nk/2

, (17)

and �rk = (xk,yk,0) is the in-plane position vector with origin at
the center of the vortex k. For the case of two vortices separated
by a distance d, we take �r1 = (x − d/2,y,0) and �r2 = (x +
d/2,y,0). With this ansatz, the Euler-Lagrange equations for
the energy functional in Eq. (1) read (see also Ref. 23)

∇2f1 − [X
2 + Y

2 + 2(AxY − AyX) + �A2]f1

+ (
χ1 − f 2

1

)
f1 + γf2 = 0, (18a)

∇2f2 − [X
2 + Y

2 + 2(AxY − AyX) + �A2]f2

+α
(
χ2 − f 2

2

)
f2 + γ κ2

2

ακ2
1

f1 = 0, (18b)

and

�∇ × �∇ × �A = −
[

�A − n1θ̂1

r1
− n2θ̂2

r2

] (
f 2

1

κ2
1

+ α
f 2

2

κ2
2

)
,

(18c)
where

X = n1x1

r2
1

+ n2x2

r2
2

, Y = n1y1

r2
1

+ n2y2

r2
2

,

and the angular unit vectors around each vortex are written as
θ̂k = (−yk/rk,xk/rk,0).

Repulsion

Attraction

FIG. 1. (Color online) The normal domain-superconductor sur-
face energy ES as a function of the ratio of the density of states
in the two bands (a) and the corresponding vortex-vortex interaction
energies (b)–(d) for indicated parameters. The short-range interaction
force changes sign when the surface energy changes sign.

Equations (18a)–(18c) are thus the GL equations for the
two fixed vortices, and we solve them numerically by a
relaxation method. The obtained order parameter and vector
potential are then substituted back in the energy functional,
yielding the energy E(d) for the vortex pair at distance d.
Repeating this procedure for different vortex-vortex separa-
tion, we obtain the interaction potential �E = E(d) − E(0)
between vortices in the two-gap superconductor, as shown in
Figs. 1(b)–1(d).

III. RESULTS AND DISCUSSION

We now apply the techniques described in the previous sec-
tions to calculate (i) the asymptotic long-range GL parameter
κ∗, (ii) the normal domain-superconductor surface energy ES ,
and (iii) the full vortex-vortex potential (using the constrained
GL equations (18a)–(18c)).

As a first example, Fig. 1 shows the surface energy ES and
the numerically obtained vortex-vortex interaction potentials
for a set of parameters corresponding (arguably) to MgB2:
κ1 = 3.71 and ξ1/ξ2 = v1/v2 = 0.255 are taken from Ref. 6,
the coupling matrix is obtained from Ref. 24, the temperature
is fixed at T = 0.82Tc, while we vary the density of states
in the two bands. We note that in all considered cases
κ∗ < 1/

√
2 and the long-range interaction is always attractive,

whereas short-range interaction changes to repulsive exactly
when the surface energy ES changes sign with increasing
n1/n2. To conclude, the long-range vortex-vortex interaction is
determined by κ∗ with respect to 1/

√
2, while the short-range

behavior is determined by the sign of the surface energy ES .
This also proves insufficient the initial premise in Ref. 6 that if
the system has λ/ξ1 > 1/

√
2 and λ/ξ2 < 1/

√
2, the vortex

interaction should be long-range attractive and short-range
repulsive. The actual behavior is far more complex and can
be exactly determined as explained above.

Recent calculations have shown that as T → Tc, only type
I or type II vortex behavior can be observed.11 Indeed, by
analyzing κ∗ and the sign of ES at T → Tc as explained above,
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FIG. 2. (Color online) The long-range interaction phase diagram
for a MgB2 crystal, at different temperatures and for varied values of
the ratio between (a) the Fermi velocities and (b) the partial density
of states of the two bands. In each panel, the black line separates
the regions of long-range attraction and long-range repulsion (left
to right). The white lines indicate where ES changes sign and the
short-range interaction changes from attractive to repulsive (left to
right).

we always found the same type of interaction in either long-
or short-range limit. However, for T immediately below Tc

the sign change of ES and the transition from κ∗ > 1/
√

2 to
κ∗ < 1/

√
2 occur for different sets of parameters, opening

up the parameter space for observation of the nonmonotonic
vortex interaction. This is shown in Fig. 2, where we plot κ∗
as a function of temperature and also the ratios between the
Fermi velocities [Fig. 2(a)] and the partial density of states of
each condensate [Fig. 2(b)]. The black line in Fig. 2 denotes
κ∗ = 1/

√
2 and the white line indicates where ES = 0. At

T = Tc these lines coincide, in agreement with Ref. 11, but
as T decreases, the lines separate, bordering the region where
the system exhibits short-range repulsion (ES < 0) and long-
range attraction (κ∗ < 1/

√
2), that is, nonmonotonic vortex

interaction. This finding further creates a new possibility of
tuning the magnetic interactions in two-band superconductors
by changing temperature. For example, for the parameters
of MgB2 given in Ref. 6 [Fig. 2(a) for v1/v2 = 0.255], we
find that nonmonotonic vortex interactions occur only for T �
0.49Tc,24 whereas pure type II behavior is expected at higher
temperatures. The experiment in Ref. 6 was done at T ≈ 0.1Tc

and could thus be repeated at higher temperatures to verify our
prediction.

In Fig. 3(a) a similar phase diagram is constructed for
recently discovered, and for many reasons exciting, pnictides.
In particular, we show the results for LiFeAs, using the
parameters given in Ref. 3, except for the fact that λ12 in
the � matrix must be taken negative due to the s± pairing.
For this material, we extract κ1 = 2.4, n1/n2 = 1.384 and

v1/v2 = 0.722. Interestingly enough, as κ2 = κ1

√
n1v

2
1/n2v

2
2,

we note that both nominal GL parameters of the bands

are larger than 1/
√

2 if
√

n1v
2
1/n2v

2
2 � 0.295. Therefore, it

can be once more verified that in a large portion of the
parameter space where both bands are convincingly type II,
the coupled system exhibits type I behavior. In Fig. 3(b), we
show that for T = 0.9Tc, the ES = 0 (white) and κ∗ = 1/

√
2

(black) curves coincide for small n1/n2 and large v1/v2.
This behavior persists even at lower temperatures, as shown
in Fig. 3(c). However, in the opposite case (large n1/n2

and small v1/v2), the curves separate, forming a region of

FIG. 3. (Color online) (a) The long-range vortex interaction
(v1/v2,n1/n2,T ) phase diagram for LiFeAs for other parameters
taken from Ref. 3. The shown isosurface corresponds to κ∗ = 1/

√
2

and the change of the long-range vortex-vortex interaction. (b)–(d)
2D cuts of (a) in the T = 0.9Tc, v1/v2 = 0.722, and n1/n2 = 1.384
planes, respectively. Black (white) lines correspond to κ∗ = 1/

√
2

(ES = 0).

nonmonotonic vortex interaction in the phase diagram which
grows larger as temperature decreases [see Fig. 3(d)]. This
broad temperature range for the observation of partial vortex
attraction is important experimentally, to discriminate the
nonmonotonic vortex interactions from irregular vortex lattices
formed due to intrinsic defects in the material26 (with latter
being dominant only at temperatures where the vortex core and
the defects are similar in size, unless defects are of magnetic
nature).

IV. CONCLUSIONS

In conclusion, we have demonstrated the semianalytic
method to relatively easily determine the nature of vortex-
vortex interaction in two-band superconductors. This is of
significant theoretical and experimental importance, as Figs. 2
and 3 sketch just two examples of many possibilities attainable
by two-band hybridization. Note that a plethora of transitions,
even reentrant behaviors, can be found as a function of the
microscopic parameters, which can be tuned experimentally
(to some extent) by, for example, carrier injection.27 Finally,
with appropriate modifications of the initial energy functional
our approach can also provide insight in similar situations
encountered in nanoscale superconducting films, tailor-made
two-component superconducting hybrids, and dirty two-band
compounds.
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