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We study pseudogap phenomena and Fermi-arc formation experimentally observed in typical two-dimensional
doped Mott insulators, namely, underdoped cuprate superconductors. To develop a physically unequivocal theory,
we start from the slave-boson mean-field theory for the Hubbard model on a square lattice. Our crucial step is
to further take into account the charge dynamics and fluctuations. The extra charge fluctuations seriously modify
low-energy single-particle spectra of doped Mott insulators near the Fermi level: An electron added around an
empty site (or a hole added around a doubly occupied site) constitutes composite fermion (cofermion), called
holo-electron (or doublo-hole) at low energy in distinction from the normal quasiparticles. These unexplored
composite fermions substantiate the extra charge fluctuation. We show that the quasiparticles hybridize with the
holo-electrons and doublo-holes. The resultant hybridization gap is identified as the pseudogap observed in the
underdoped region of the high-Tc cuprates. Because the Fermi level crosses the top (bottom) of the low-energy
band formed just below (above) the hybridization gap in the hole-doped (electron-doped) case, it causes a
Fermi-surface reconstruction, namely, a topological change in the Fermi surface forced by the penetration
of zeros of the quasiparticle Green’s function. This reconstruction signals the emergence of a non-Fermi-liquid
phase. The pseudogap and the resultant formation of pocket or arc of the Fermi surface reproduce the experimental
results for the cuprate superconductors in the underdoped region. The pairing channel opens not only between two
quasiparticles, but also between a quasiparticle and a cofermion. This pairing solves the puzzle of the dichotomy
between the d-wave superconductivity and the precursors of the the insulating gap in the antinodal region. We
propose and analyze them as the mechanism of the high-temperature superconductivity for the cuprates.
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I. INTRODUCTION

The discovery of cuprate superconductors has triggered
extensive studies on the nature of low-energy electronic
excitations evolving in doped Mott insulators. The extensive
interest on the doped Mott insulators exists because it must
be directly related with the origin of the high-temperature
superconductivity itself.

From the early stage of the studies, experimental obser-
vations have indicated that quasiparticle states of normal
phases of cuprates change qualitatively with the increase of the
doping, together with changes in superconducting transition
temperatures. It has been shown1,2 that the Hall coefficient
RH changes its sign near the so-called optimal doping for
the highest superconducting transition temperatures, followed
by a steep increase of its amplitude |RH | with lowering
doping concentration, typically indicating a drastic change
in low-energy quasiparticles of the normal state between the
underdoped and overdoped regions. Such a drastic change is
also (but differently) suggested from observations of pseudo-
gap phenomena,3–8 where the spin and charge excitations are
unexpectedly suppressed in the underdoped region. Various
types of non-Fermi-liquid properties are accompanied in this
region.

Recent improved experimental tools have enabled resolv-
ing low-energy single-particle spectra near the Fermi level.
In particular, strongly momentum-dependent quasiparticle
states in the hole-underdoped cuprates9,10 observed by angle-
resolved photoemission spectroscopy (ARPES) studies have
renewed the interest in the low-energy spectrum of the cuprate
superconductors. In contrast to the overdoped region, where a
large Fermi surface crossing the region around the so-called

antinodal points (±π,0) and (0, ±π ) in the two-dimensional
(2D) Brillouin zone for the CuO2 plane is clearly observed,
low-energy quasiparticle states around the antinodal points are
missing in the underdoped cuprates. It emerges as a truncation
of the large Fermi surface observed in the overdoped region.
The resultant truncated structure is called the “Fermi arc.”

From a more fundamental point of view, the normal state of
the cuprates offers a challenge of condensed matter physics as a
typical open issue of “Mott physics,” namely, nature of strongly
correlated metals in the proximity to the Mott insulator.11–13

The experimentally observed arclike Fermi surface in the
underdoped cuprates is a hallmark of the proximity to the Mott
insulators. As we illustrate in Fig. 1, global energy spectra
of doped Mott insulators are known to consist of essentially
three energy “bands”: a coherent band around the Fermi level
μ and two incoherent bands, namely, the upper Hubbard
band (UHB) located above μ and the lower Hubbard band
(LHB) located below μ. For the hole-doped (electron-doped)
systems, the coherent band is formed around the top of the
LHB (the bottom of the UHB). The spectral weight formed
just above (below) μ within the coherent band is often called
the low-energy unoccupied spectral weight (LUSW) in the
hole-doped (electron-doped) Mott insulators.

Such a global structure of spectra can be roughly described
by a simple picture given by the dynamical mean-field
theory.14 It has unified two scenarios of earlier studies by
Hubbard15 and Brinkman and Rice16 based on the Gutzwiller
approximation.17 The Hubbard approximation captures the
formation of UHB and LHB. In the Brinkman-Rice picture,
Mott insulators appear as a consequence of homogeneous
vanishing of the quasiparticle weight uniformly on the Fermi
surface. Therefore, this approximation draws a picture that
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FIG. 1. Schematic global density of states of hole-doped Mott
insulators. The coherent band around the Fermi level μ, the upper
Hubbard band (UHB), and the lower Hubbard band (LHB) are
schematically illustrated. The low-energy unoccupied spectral weight
(LUSW) is also indicated.

quasiparticles are renormalized in a momentum-independent
fashion and the effective mass diverges independently of the
momentum position on the Fermi surface on the verge of the
Mott transition.

In infinite-dimensional systems, such a route of the Mott
transition has turned out to be correct.14,18,19 However, in
finite dimensions, this picture has turned out to be too simple
to understand the low-energy spectra and the nature of the
Mott transition: Realistic theory has to capture significant
momentum-dependent quasiparticle renormalization, as has
been experimentally observed as Fermi-arc formation in the
underdoped cuprates, and has also been revealed from various
numerical attempts.20–26 It has now become increasingly clear
that a conceptually new idea for describing Mott physics
including an emergence of the new non-Fermi-liquid phase
in the underdoped region is desired.

In this paper, we extend our previous attempt27 for de-
scribing the momentum-dependent Mott physics, including
the mechanism of Mott transitions at the level of LUSW,
and for understanding the experimentally supported dramatic
change in the electronic states of the cuprates. We give a
detailed comparison with experiments and an unconventional
superconducting mechanism based on the previous attempt,27

together with the derivation of our theoretical description
in details. We particularly pay attention to the possible
reconstruction of the Fermi surface. If the reconstruction
emerges, the doped Mott insulator becomes topologically
inequivalent to the conventional Fermi liquid and, hence,
offers an unexplored possibility for long-standing issue of
unconventional metals.

In this paper, we propose a simple and physically transpar-
ent theory that accounts for the strongly momentum-dependent
renormalization experimentally suggested in the cuprate su-
perconductors. We focus on charge dynamics involved in the
low-energy spectra of the doped Mott insulators. A key idea is
that, near the Mott insulator, an electron (a hole) added to an
empty (a doubly occupied) site costs much smaller energy than
an electron (a hole) added to singly occupied sites and behaves
as a component of a band separated from the main quasipar-
ticle. Then, near the Mott insulator, this separated excitation
contributes to the LUSW in the hole-doped (electron-doped)
Mott insulators. This is in contrast with the weakly correlated
regime, in which an added electron (hole) constitutes a uniform
excitation irrespective of the added site because the added
electron becomes uniformly and spatially extended with the
momentum as a good quantum number. In our theory, such an

electron (a hole) added to an empty site (a doubly occupied
site) forms a composite fermionic excitation (or cofermion),
which we call holo-electron (doublo-hole). The conventional
quasiparticles may be scattered by the doubly occupied site
(empty site) and are transformed to the cofermions, which
introduce finite lifetime into the quasiparticles. This scattering
and transformation may alternatively be formulated as the
hybridization between the conventional quasiparticles and
the holo-electrons and/or doublo-holes. This hybridization
naturally generates a hybridization gap and the resultant band
splitting causes the Fermi-surface reconstructions, namely,
topological changes in the Fermi surface. The hybridization
gap and the topological change account for the experimentally
suggested pseudogap and Fermi-arc formation, respectively,
in the cuprates. Our unique prediction is that the pseudogap
is independent of the precursor of the Mott gap itself, while
the pseudogap has the structure of the s-wave-type symmetry
rather than the d-wave symmetry. In addition, the pseudogap
identified here is in clear distinction from the superconducting
gap as well. We propose several experimental tests to prove or
disprove our theoretical consequences.

A way to understand topological changes in the Fermi
surface has recently been proposed to originate from the
emergence of zeros of single-particle Green’s functions, which
are the points in the (k,ω) space satisfying Re G(k,ω) = 0
for the momentum k and the frequency ω. In other words,
the single-particle self-energy �(k,ω) diverges at the zeros
of Green’s function. The idea of the emergence of the zeros
has a root in the work by Dzyaloshinskii, who examined
a possible extension of the Luttinger theorem into Mott
insulating states.28 As is reviewed in Ref. 29, this idea is
applied to the doped Mott insulators to explain the “Fermi arcs”
observed by ARPES. Recent results of numerical calculations
also suggest that the zeros emerging in doped Mott insulators
reconstruct the Fermi surface and changes its topology.23,25,26

Such a topological change is indeed claimed in a recent ARPES
measurement.30

The Fermi-surface reconstruction itself is not an unconven-
tional phenomenon if it accompanies a spontaneous symmetry
breaking such as an antiferromagnetic order. In translational-
symmetry broken phases with an ordering wave number Q,
electrons with momentum k hybridize, at least, with electrons
at momentum k + Q. Then, Fermi-surface reconstructions are
naturally understood as a consequence of the hybridization gap
as we will discuss later in detail. It is indeed able to account
for the formation of Fermi pockets or arclike Fermi surfaces if
a hybridization with other fermionic excitations exist.

However, in the hole-doped cuprates, in spite of re-
cent reports on time-reversal symmetry31–33 and rotational
symmetry34 breakings in some of the cuprate superconductors,
translational symmetry breakings have not been universally
observed.35 On the other hand, the “Fermi arc” or the truncated
Fermi surface have universally been experimentally observed
in the underdoped cuprates. To have a unified picture of
the Mott physics, it is important to understand whether the
Fermi-surface reconstruction occurs as a consequence of the
hybridization gap generated by the “hybridization” with some
hidden fermionic excitations without assuming a symmetry
broken phase. In the present theory, the hybridization between
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the conventional quasiparticles and the emergent fermionic
excitations called the holo-electron and the doublo-hole
naturally explain such a Fermi-surface reconstruction.

Now we go into some details regarding characteristic
low-energy spectra of doped Mott insulators. As is proposed
by Meinders, Eskes, and Sawatzky,36 the doping dependence
of the LUSW, formed just above μ, reflects a unique feature
of nearly Mott insulating, correlated electron systems. As we
have mentioned above, an electron added to a singly occupied
site inevitably costs the on-site Coulomb interaction U and
gives an excitation in the UHB, whereas electrons added to
empty sites exclusively contribute to the low-energy states just
above μ in the atomic limit, where the kinetic energy of the
electrons t is zero. Here, an empty site can accept an electron
irrespective of its spin state and creates two unoccupied states,
namely, up- and down-spin states. In the atomic limit, the Nh

holes create Nh empty sites and, then, create 2Nh unoccupied
states as a consequence. When the kinetic energy of the
electrons t becomes nonzero, the number of unoccupied states
increases because of the pair creation of doubly occupied and
empty sites, which is induced by the hopping of electrons and
resultant charge fluctuations. In the Mott insulating phases,
adding an electron to these empty sites, enabled by the pair
creation, costs the binding energy ∼U of a doubly occupied
and an empty site. This excitation can not contribute to LUSW.
However, in the doped Mott insulators, doped mobile carriers
screen the on-site Coulomb interaction and weaken the binding
energy. As a result, a part of the empty sites originating
from these binding states can create LUSW. Therefore, for
hole-doping concentration x = Nh/Ns with Ns being the total
number of lattice sites, the LUSW in the doped Mott insulator
is always larger than 2x. From the early stage of the studies
on the cuprates, the LUSW developing faster than 2x has been
observed by optical conductivity measurements.37 This quick
increase of the spectral weight larger than 2x requires a picture
of doped holes very different from the doped semiconductors,
where the LUSW is trivially equal to x. Our scheme presented
in this paper naturally explains this unconventional feature.

The mechanism of the superconductivity itself is a central
open issue of the physics of the cuprate superconductors. When
the LUSW in the normal state belongs to an unconventional
phase with emergent excitations, the mechanism has to be
understood based on this framework because the energy scale
of the superconductivity is even smaller than, and governed
by, the energy scale of LUSW. Our theory offers an unconven-
tional channel of the pairing and resultant superconductivity
emerging from the contribution of composite fermions never
considered in the literature. We examine an unexplored type
of quasiparticle pairing arising from the pairing potential
generated by pairing fields of cofermions, holo-electrons and
doublo-holes, and quasiparticles. Although the pseudogap
formation by the hybridization gap of quasiparticles and
holo-electrons and doublo-holes is destructive to the super-
conductivity, this unconventional pairing potential serves to
create superconductors. This dual character and two sides of
the same coin naturally accounts for the recent puzzle under
debate on the dichotomy and nature of the gap in the anitinodal
region of the underdoped cuprates.38,39

The organization of this paper is the following: In Sec. II,
we start from the Kotliar-Ruckenstein mean-field theory and

review previous extensions for correlated metals for the
self-contained description. In Sec. III, we take into account the
charge dynamics, which plays an important role in formation
of the LUSW, and explain how emergent excitations, namely,
the holo-electrons and doublo-holes emerge. The hybridiza-
tion between quasiparticles and these composite fermionic
excitations naturally causes the Fermi-surface reconstruction,
namely, the topological change in the Fermi surface. The
pseudogap phenomena observed in cuprate superconductors
also emerge because of this hybridization. In Sec. III D,
we propose an unexplored pairing mechanism evolved from
the cofermions as the mechanism of the high-temperature
superconductivity. Our results for single-particle spectra,
amplitudes of the pseudogap, Fermi-surface topology, the
specific-heat coefficient, and the density of states are presented
and compared with experimental results in Sec. IV. We also
estimate the superconducting gap amplitude and quantitative
aspects of the superconducting mechanism. Section V is
devoted to discussions and summary.

II. PREVIOUS THEORIES

A. Hubbard model

The Hubbard model,15,17,40 defined by the Hamiltonian

Ĥ =
∑
i,j

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓, (1)

is a canonical model, which describes the competition between
the kinetic energy tij and the on-site Coulomb interaction
U , where ĉ

†
iσ (ĉiσ ) is a creation (annihilation) operator of

σ -spin electron on the ith site and n̂iσ = ĉ
†
iσ ĉiσ is a number

operator. Hereafter, we focus on the Hubbard model on the
square lattice as a model for the cuprates. In this chapter,
the nearest-neighbor hopping and the next-nearest-neighbor
hopping are set as tij = −t and tij = +t ′, and further neighbor
hoppings are ignored.

The solution of the Hubbard model on two-dimensional
lattices remains an open problem. To get an insight into
the nature of the correlated metallic phase, there exist a
variety of numerical methods, which give accurate results
for finite-size clusters such as exact diagonalization41 and
quantum Monte Carlo.42 Cluster extensions of the dynamical
mean-field theory,43,44 improved variational Monte Carlo
methods,45,46 Gaussian Monte Carlo method,47,48 and the
path integral renormalization group49–51 are also available
in the literature. However, they all have some limitations.
For example, limitations on cluster size are severe in the
exact diagonalization and the quantum Monte Carlo, while
resolutions in the momentum space are severely limited in the
cluster extension of the dynamical mean-field theory.

Without relying on accurate numerical methods, there exist
other ways to extract essential physics from analytical or
conceptually correct limits. The Landau Fermi-liquid picture52

offers such an example. Although we have no exact solutions
in the thermodynamic limit, low-energy single-particle spectra
of the Hubbard model are believed to behave following
the Landau Fermi-liquid picture for less correlated systems
except for 1D systems. The original proposal for the Mott
insulating states itself is not originally based on the numerical
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results, but proposed by Peierls and Mott from a gedanken
experiment on metallic crystalline hydrogenlike atoms.53–55

Such phenomenological theories based on physical intuitions
offer insights into difficult issues in a wide range of condensed
matter physics. In this paper, we try to make a step toward
constructing such a physically transparent theory that accounts
for the unconventional properties of doped Mott insulators.

B. Kotliar-Ruckenstein formalism

One of the simplest pictures to describe correlated metals
and metal-insulator transitions at half-filling (Mott transitions)
along the line of the original idea by Mott is the Brinkman-
Rice scenario16 based on the Gutzwiller approximation.17 As
our starting point, we employ the Kotliar-Ruckenstein (KR)
slave-boson formalism, which gives the same results as the
Gutzwiller approximation. In this section, we briefly outline
the KR slave-boson formalism for the Hubbard model56 to
make this paper self-contained. This slave-boson formalism
gives a starting point for the mean-field description of strongly
correlated electron systems by replacing original electrons
with four kinds of bosons and one kind of spinful fermion.

We start with the local Hilbert space of the Hubbard model,
which is expanded by a set of the Fock states: the empty state
(holon) |0〉, the singly occupied states | ↑〉, | ↓〉, and the doubly
occupied state (doublon) | ↑↓〉. Corresponding to each Fock
state, one slave boson is introduced as ê for |0〉, p̂σ for |σ 〉,
and d̂ for | ↑↓〉. In addition to these bosons b̂ (b = e,pσ , or
d), a fermion operator f̂σ is introduced to stand for the σ -spin
state and the fermionic nature of the original fermion operator
ĉiσ . The correspondence relation between local basis and the
lattice wave functions is given as

|0〉i .= |vac〉F
i ⊗ ê

†
i |vac〉B

i , (2)

ĉ
†
i↑|0〉i .= f̂

†
i↑|vac〉F

i ⊗ p̂
†
i↑|vac〉B

i , (3)

ĉ
†
i↓|0〉i .= f̂

†
i↓|vac〉F

i ⊗ p̂
†
i↓|vac〉B

i , (4)

ĉ
†
i↑ĉ

†
i↓|0〉i .= f̂

†
i↑f̂

†
i↓|vac〉F

i ⊗ d̂
†
i |vac〉B

i , (5)

where |vac〉F(B)
i is a vacuum of the ith site for fermionic

(bosonic) degrees of freedom. Equations (2)–(5) represent
the mapping between wave functions written by the original
electrons and the fermions f̂ combined with bosons b̂. This
mapping is derived when the electron operators are replaced
with composite ones as

ĉ
†
iσ

.= (p̂†
iσ êi + d̂

†
i p̂iσ )f̂ †

iσ . (6)

We should note that the replacement given by Eq. (6) is not
a unique one. It is known that operators equivalent to the
right-hand side of Eq. (6) can be given as

ĉ
†
iσ

.= ẑiσ f̂
†
iσ , (7)

where ẑiσ is defined56,57 as

ẑiσ = ĝ
(1)
iσ (p̂†

iσ êi + d̂
†
i p̂iσ )ĝ(2)

iσ , (8)

ĝ
(1)
iσ = (1 − p̂

†
iσ p̂iσ − ê

†
i êi )

p1 , (9)

ĝ
(2)
iσ = (1 − p̂

†
iσ p̂iσ − d̂

†
i d̂i )p2 . (10)

The operators ĝ
(1)
iσ and ĝ

(2)
iσ act as identities when these are

operated to (p̂†
iσ êi + d̂

†
i p̂iσ ) for any powers p1 and p2. This

ambiguity of the correspondence has been utilized before.56

In the expanded Hilbert space, the Hubbard Hamiltonian
[Eq. (1)] is rewritten as

Ĥ =
∑
i,j

tij ẑiσ f̂
†
iσ f̂jσ ẑ

†
jσ + U

∑
i

d̂
†
i d̂i . (11)

The on-site Coulomb interaction is replaced by a “chemical
potential” for doublons d̂

†
i . Then, the correlation among

electrons is now contained as a hopping process of fermions
f̂

†
iσ disturbed by the associated motion of slave bosons. The

fermion hopping is accompanied with four kinds of bosonic
motions generated by ẑiσ ẑ

†
jσ , namely, physical processes of

hopping of holons ê
†
i and doublons d̂

†
i , and pair creations and

annihilations of holons and doublons.
The fermion f̂iσ has been interpreted to stand for the

Landau’s quasiparticle excitation,58 especially in the mean-
field treatment for the slave bosons, which will be discussed
in the following Sec. II C. In the KR formalism, the fermions
f̂iσ do not interact with each other, and their motions are
disturbed by the slave bosons as already mentioned above.
In addition, the slave bosons just renormalize the hopping
and spectral weight of the fermions f̂iσ in the mean-field
treatment. Thus, the correspondence between ĉσ and f̂σ in
the KR formalism gives us a nonperturbative realization of the
Landau’s correspondence between an interacting many-body
fermion system and a noninteracting Fermi gas. Therefore, we
call the fermion f̂iσ quasiparticle, hereafter.

When we employ the path integral description of the
system by making use of the coherent states for bosons and
fermions, we need to introduce a set of constraints to eliminate
unphysical states in the expanded Hilbert space, which arise
when we introduce slave bosons to describe the local Fock
states. First, only one boson should occupy each local state.
There are only four local physical Fock states, and these four
states are exhausted by four different kinds of slave bosons.
Therefore, we need the first constraint

ê
†
i êi +

∑
σ

p̂
†
iσ p̂iσ + d̂

†
i d̂i = 1. (12)

Second, the number operator of the σ -spin quasiparticle is
necessarily given as

f̂
†
iσ f̂iσ = p̂

†
iσ p̂iσ + d̂

†
i d̂i . (13)

In the path integral form, the partition function for the
Hubbard model is given by

Z =
∫

D[ĉ†σ ,ĉσ ]e−S[ĉ†σ ,ĉσ ], (14)

where the action is

S[ĉ†σ ,ĉσ ] =
∑
ijσ

∫ β

0
dτ ĉ

†
iσ (τ )[(∂τ − μ)δij + tij ]ĉjσ (τ )

+U
∑

i

∫ β

0
dτ ĉ

†
i↑(τ )ĉi↑(τ )ĉ†i↓(τ )ĉi↓(τ ). (15)
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We use the same notation for both of the operators and the
corresponding Grassmann fields for simplicity.

On the other hand, the partition function in the slave-boson
formalism is

Z =
∫

D[f̂ †
σ ,f̂σ ]D[B̂

†
,B̂]D [λ] e−S . (16)

The action is rewritten as

S =
∫ β

0
dτ f̂

†
iσ (τ )

[(
∂τ − μ + λ

(2)
iσ

)
δij + ζ̂ijσ (τ )tij

]
f̂jσ (τ )

+
∫ β

0
dτ Ud̂

†
i (τ )d̂i (τ ) +

∫ β

0
dτ

[∑
i

(
ê
†
i (τ )∂τ êi (τ )

+
∑

σ

p̂
†
iσ (τ )∂τ p̂iσ (τ ) + d̂

†
i (τ )∂τ d̂i (τ )

)

+
∑

i

λ
(1)
i

(
ê
†
i (τ )êi (τ )+

∑
σ

p̂
†
iσ (τ )p̂iσ (τ )+d̂

†
i (τ )d̂i (τ )−1

)

−
∑
iσ

λ
(2)
iσ (p̂†

iσ (τ )p̂iσ (τ ) + d̂
†
i (τ )d̂i (τ ))

]
, (17)

where B̂i = (ê†i ,p̂
†
i↑,p̂

†
i↓,d̂

†
i ), λi = (λ(1)

i ,λ
(2)
i↑ ,λ

(2)
i↓ ), and

ζ̂ijσ (τ ) = ẑiσ (τ )ẑ†jσ (τ ). The Lagrange multipliers λ
(1)
i , λ

(2)
i↑ ,

and λ
(2)
i↓ are introduced to enforce the set of constraints (12)

and (13).

C. Mean-field theory for KR formalism

The mean-field approximation for Eq. (16) corresponds
to replacing bosonic fields B̂i and λi with the homogeneous
saddle point values for them as

ê
†
i , êi → e0, p̂

†
iσ , p̂iσ → p0σ , d̂

†
i , d̂i → d0,

λ
(1)
i → λ(1), λ

(2)
iσ → λ(2)

σ .

These saddle-point values are determined self-consistently
through minimizing the free energy f given in Eq. (19) below.
Then, the action for the fermionic degrees of freedom contains
only quadratic terms of fermionic fields f̂

†
iσ after the slave

bosons are replaced with c numbers e0, p0σ , and d0 as

S0 =
∫ β

0
dτ
∑
ijσ

f̂
†
iσ (τ )[(∂τ − μ) δij + ζ0σ tij ]f̂jσ (τ ). (18)

We can easily integrate out the remaining fermionic degrees
of freedom and obtain the mean-field free energy for homoge-
neous phases as

f = − T

Ns

∑
k,σ

ln[1 + e−β(ζ0σ εk−μ+λ(2)
σ )] + Ud

2
0

+λ(1)

(
e2

0 +
∑

σ

p2
0σ + d

2
0 − 1

)
−
∑

σ

λ(2)
σ

(
p2

0σ + d
2
0

)
, (19)

where Ns is the number of sites, εk is the Fourier transformation
of tij , and the mean-field quasiparticle renormalization ζ0σ is
given as

ζ0σ = [g1σ (p0σ e0 + d0p0σ )g2σ ]2, (20)

g1σ = (1 − p2
0σ − e2

0

)p1
, (21)

g2σ = (1 − p2
0σ − d

2
0

)p2
. (22)

It is known that, with this drastic mean-field approximation,
the noninteracting limit is correctly reproduced when we set
p1 and p2 defined in Eqs. (9) and (10) as p1 = p2 = −1/2. For
U = 0, the mean-field values of the density of bosons are given

as d
2
0 = (n/2)2, e2

0 = 1 − n + d
2
0, and p2

0↑ = p2
0↓ = n/2 − d

2
0.

Then, the mean-field renormalization factor turns out to be
1, correctly. Hereafter, the values of p1 and p2 are fixed as
p1 = p2 = −1/2.

The saddle-point values for bosonic fields e0, p0σ , and d0

can easily be examined in some well-defined limits. In the
strong-coupling limit U/|t | 	 1, the density of doublon is

suppressed d
2
0 ∼ 0 at any doping level. Then, the spin density

is roughly proportional to the spin-dependent electron density

p2
0σ ∼ nσ (recall the mean-field constraint nσ = p2

0σ + d
2
0). In

the hole-doping case, the density of empty site e2
0 is given by

the doping concentration e2
0 ∼ x.

In this limit, the doping dependences of ζ0σ and LUSW are
given as follows: By using the fact that nσ = n/2 = (1 − x)/2
in the paramagnetic phase, the mean-field renormalization
factor ζ0 is given as

ζ0σ = ζ0 = p2
0(e0 + d0)2

n
2 (1 − n

2 )



1 − x

2
· x

1 − x

2
· 1 + x

2

= 2x

1 + x
. (23)

By multiplying the number density of unoccupied states 1 + x

with ζ0, we obtain the LUSW as 2x. This doping dependence
of the LUSW is the same as that of the exact solution in the
strong-coupling limit.

D. Previous studies on charge fluctuations

1. Formation of upper and lower Hubbard bands

The mean-field theory only accounts for the coherent
quasiparticle excitations in the correlated electron systems. Of
course, momentum-dependent renormalizations do not appear.
For overall description of the energy spectrum including
incoherent Hubbard bands, fluctuations of the charge bosons
ê and d̂, which describe dynamics of holons and doublons,
are known to be essential when one wishes to improve
the slave-boson mean-field theory. For example, Castellani
et al. have claimed that the Gaussian fluctuations of charge
bosons around the saddle-point solution can reproduce the
structure of incoherent Hubbard bands.59 To take into account
the fluctuations of bosonic fields around the saddle-point
solutions, the Bogoliubov prescription60 is used, in which the
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boson operators are divided into condensate components and
fluctuating components out of condensation as

ê
†
i = e0 + ẽ

†
i , êi = e0 + ẽi , (24)

p̂
†
iσ = p0σ + p̃

†
iσ , p̂iσ = p0σ + p̃iσ , (25)

d̂
†
i = d0 + d̃

†
i , d̂i = d0 + d̃i . (26)

Here, the fluctuating components of the charge bosons êi , d̂i

and spin boson p̂iσ (̃ei , d̃i , and p̃iσ , respectively) describe spin
and charge fluctuations around the saddle-point solution.

2. Bosonic propagators

Propagators of the Gaussian fluctuations of the slave bosons
are given by the action SB with quadratic terms including only

the bosonic fields B̃
†
, B̃ as

SB = S
(0)
B + S

(1c)
B + S

(1s)
B + S

(1cs)
B , (27)

S
(0)
B =

∫ β

0
dτ
∑

i

{
ẽ
†
i (τ )
[
∂τ + λ

(1)
i

]̃
ei (τ )

+
∑

σ

p̃
†
iσ (τ )

[
∂τ + λ

(1)
i − λ

(2)
iσ

]
p̃iσ (τ )

+ d̃
†
i (τ )

[
∂τ + U + λ

(1)
i −

∑
σ

λ
(2)
iσ

]
d̃i (τ )

}
, (28)

S
(1c)
B =

∫ β

0
dτ
∑
ij

β i(τ )Lc
ijβ

†
j (τ ), (29)

S
(1s)
B =

∫ β

0
dτ
∑
ij

φ
†
i↑

T
(τ )Ls

ijφj↑(τ )T

=
∫ β

0
dτ
∑
ij

φ
†
i↓

T
(τ )Ls

ijφj↓(τ )T , (30)

S
(1cs)
B =

∫ β

0
dτ
∑
ijσ

[
β i(τ )Lcs

ijσφj↑
T (τ )

+φ
†
iσ

T
(τ )Lcs

ijσ
T
β
†
j (τ ) + δijK

cs
iσ

×{β i(τ ) · φ
†
iσ (τ ) + φiσ (τ ) · β

†
i (τ )}], (31)

where we use vector notations β i = (̃ei ,d̃
†
i ), φiσ = (p̃iσ ,p̃

†
iσ ),

and coefficients defined as

Lc
ij = gij

(
p2

0σ + p2
0σ 2p0σp0σ

2p0σp0σ p2
0σ + p2

0σ

)
, (32)

Ls
ij = gij

(
e2

0 + d
2
0 2e0d0

2e0d0 e2
0 + d

2
0

)
, (33)

Lcs
ijσ = gij

(
e0p0σ e0p0σ

d0p0σ d0p0σ

)
, (34)

Kcs
iσ =

∑
j

gij (e0p0σ + d0p0σ ). (35)

Here, the hopping parameter for bosons is given as gij =
tij g

2
1σ g2

2σ 〈f̂ †
iσ f̂jσ 〉, where static correlation functions for quasi-

particles 〈f̂ †
iσ f̂jσ 〉 are introduced. The average 〈· · ·〉 is defined

as

〈X〉 =
∫
D[f̂ †

σ ,f̂σ ]Xe−S0−SB∫
D[f̂ †

σ ,f̂σ ]e−S0−SB

, (36)

where S0 + SB is the approximate action used in this section.
The term 〈f̂ †

iσ f̂jσ 〉 represents the mean field that stands for
kinetic motions of quasiparticles surrounding bosons. This
mean field seems to be self-consistently determined through
Eq. (36). However, by using the approximate action S0 + SB,
we obtain 〈f̂ †

iσ f̂jσ 〉 as

〈f̂ †
iσ f̂jσ 〉 =

∫
D[f̂ †

σ ,f̂σ ]f̂ †
iσ f̂jσ e−S0∫

D[f̂ †
σ ,f̂σ ]e−S0

(37)

because SB does not contain f̂iσ and/or f̂
†
iσ . This mean field

〈f̂ †
iσ f̂jσ 〉 is obtained through decoupling the “interaction” term

ẑiσ f̂
†
iσ f̂jσ ẑ

†
jσ as

ẑiσ f̂
†
iσ f̂jσ ẑ

†
jσ 
 ẑiσ ẑ

†
jσ 〈f̂ †

iσ f̂jσ 〉 + 〈ẑiσ ẑ
†
jσ 〉f̂ †

iσ f̂jσ

−〈ẑiσ ẑ
†
jσ 〉〈f̂ †

iσ f̂jσ 〉 (38)

by neglecting fluctuations

(ẑiσ ẑ
†
jσ − 〈ẑiσ ẑ

†
jσ 〉)(f̂ †

iσ f̂jσ − 〈f̂ †
iσ f̂jσ 〉).

Averages such as 〈f̂ †
iσ f̂jσ 〉 and 〈ẑiσ ẑ

†
jσ 〉 are taken by using the

resultant action. However, we should note that, in the previous
studies,57,59 the average 〈ẑiσ ẑ

†
jσ 〉 was treated as ζ0 and the

contribution from static correlation functions of bosons such
as 〈d̃†

i ẽ
†
j 〉 was dropped. We also note that, in the mean-field

level, the dispersion of spin bosons for the paramagnetic
phase vanishes as x → 0, because of simultaneously vanishing
condensation of charge bosons: e0, d0 → 0 in Eqs. (30)
and (31).

In the close proximity to the Mott insulating states, where
e0, d0 � 1, propagators for the Gaussian fluctuations of charge
bosons β i = (β1

i ,β
2
i ) = (̃ei ,d̃

†
i ) are approximately determined

by the action S
(0)
B + S

(1c)
B as

−〈βa
Qβb†

Q〉 = Zab
+ (Q)

iωm − |Q| − Zab
− (Q)

iωm + |λQ| , (39)

where the coefficients Zab
± (Q) are given by(

Z11
± (Q) Z12

± (Q)

Z21
± (Q) Z22

± (Q)

)
= δλ + δU/2

2σQ

(
1 0
0 1

)

±1

2

(
1 0
0 −1

)
− p2

0|ε|εQ

2σQ

(
1 1
1 1

)
.

(40)

Parameters used in the above equations are given as

δλ = λ(1) − λ(2), (41)

σQ =
√(

λ(1) + δU

2
− p2

0|ε|εQ

)2

− p4
0|ε|2ε2

Q, (42)

Q = δU

2
+ σQ, (43)
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λQ = −δU

2
+ σQ, (44)

where δU = U − 2λ(2) gives the amplitude of the Hubbard
gap at half-filling n = 1, and

|ε| =
∣∣∣∣∣ 1

Ns

∑
k

εk/
[
1 + e+β(qεk−μ+λ(2))]∣∣∣∣∣ .

Raimondi and Castellani57 introduced the following ap-
proximate form of the single-particle Green’s function as

Gijσ (τ ) = −〈T ĉiσ (τ )ĉ†jσ (0)〉
= −〈T ẑ

†
iσ (τ )ẑjσ (0)f̂iσ (τ )f̂ †

jσ (0)〉

 −〈T ẑ

†
iσ (τ )ẑjσ (0)〉〈T f̂iσ (τ )f̂ †

jσ (0)〉, (45)

where vertex corrections are dropped. A further approximation
was introduced: By focusing only on the charge dynamics,
contributions from the fluctuations of spin bosons were
neglected as

〈T ẑ
†
iσ (τ )ẑjσ (0)〉 
 ζ0σ + p2

0g
2
1σ g2

2σ

×〈T b̃iσ (τ )̃b†jσ (0)〉, (46)

where b̃iσ (τ ) = ẽ
†
iσ (τ ) + d̃iσ (τ ). As a result, the approximate

Green’s function is given as

Gijσ (τ ) 
 −ζ0σ 〈T f̂iσ (τ )f̂ †
jσ (0)〉

−p2
0g

2
1σ g2

2σ 〈T b̃iσ (τ )̃b†jσ (0)〉
×〈T f̂iσ (τ )f̂ †

jσ (0)〉. (47)

The first term of the right-hand side of Eq. (47) gives the
coherent band and the second term gives the incoherent
Hubbard bands.

When we include the fluctuations of slave bosons, we
should take care of the constraint or the local conservation of
the densities of the slave bosons [Eqs. (12) and (13)]. Although
the previous theories, by including the fluctuations of charge
bosons, reproduce the incoherent Hubbard bands, there exists
a difficulty in conserving global spectral weight in the doped
systems57 because the simple decoupling of the fermionic and
bosonic degrees of freedom in Eq. (47) can violate the local
conservation of the boson density Eqs. (12) and (13).

III. COFERMION THEORY

A. Perspective

In the above sections, we reviewed the mean-field KR
theory and how fluctuations of charge bosons induce the
incoherent bands. These previous theories have drawbacks,
in spite of an advantage in the simplicity. For example, the
momentum-independent quasiparticle renormalization in the
previous theories can not account for the “Fermi arc” observed
in ARPES measurements of the cuprate superconductors.9

Since significant momentum-dependent quasiparticle renor-
malizations have been captured in numerical works through the
cluster-type extension of the dynamical mean-field theory,20–25

it is desirable to construct a theory that is physically transparent
and can examine the observed singular self-energy, which

results in, for example, the pseudogap and the Fermi arc.
We assume that the experimentally observed arclike Fermi
surface, in the hole-underdoped cuprates, is a consequence
of Fermi-surface reconstruction caused by the divergence of
the quasiparticle self-energy or emergence of zeros of the
Green’s function. The divergence means the breakdown of
the perturbation theory and, hence, the breakdown of the
Fermi-liquid theory as well. Here, we extend the previous
theories to understand this unconventional feature. Our goal is
to acquire a simple framework and an intuitive understanding.

The Fermi-surface reconstruction itself is not an uncon-
ventional phenomenon as we have discussed in Sec. I in
the example of the antiferromagnetic order in the ordinary
Slater’s mean-field description. In an antiferromagnetic metal
on square lattices with the ordering vector Q0 = (π,π ),
the up-spin electrons with momentum k hybridize with the
down-spin electrons with momentum k + Q0 through the term
�AFM[ĉ†k↑ĉk+Q0↓ + H.c.] in the presence of the mean field
�AFM.

When the bare band dispersion of electron ĉ
†
kσ is given by

ξk = ε1k + ε2k − μ,

ε1k = −2t(cos kx + cos ky),

ε2k = 4t ′ cos kx cos ky,

the Green’s function of the electron ĉ
†
kσ that hybridizes with

the electron ĉ
†
k+Q0σ

is obtained as

G(k,ω) = 1

ω − ξk − �2
AFM

ω − ξk+Q0

(48)

=

1

2
− ε1k

2
√

ε2
1k + �2

AFM

ω − ε2k + μ −
√

ε2
1k + �2

AFM

+

1

2
+ ε1k

2
√

ε2
1k + �2

AFM

ω − ε2k + μ +
√

ε2
1k + �2

AFM

. (49)

The Green’s function written in Eq. (48) shows that G(k,ω)
vanishes at ω − ξk+Q0 = 0. In other words, G(k,ω) has zero
at ω − ξk+Q0 = 0. This emergence of zeros is nothing but the
divergence of the self-energy of the electron ĉ

†
kσ , �(k,ω) =

�2
AFM/(ω − ξk+Q0 ) at ω − ξk+Q0 = 0, as is seen in Eq. (48).

As a result, the zero surface defined by ω = ξk+Q0 splits the
pole surface defined by ω = ξk into the two pole surfaces
ω = ε2k − μ ±

√
ε2

1k + �2
AFM, as is seen in Eq. (49). Then, the

Fermi surface is disconnected into pockets at the gap edge. As
an example, a zero surface, reconstructed band dispersion,
and Fermi surface are depicted in Fig. 2 for t ′ = 0.25t ,
μ = −0.75t , and �AFM. This has, to some extent, a qualitative
similarity to what is observed in the cuprates. Another
example is the case of the BCS superconductivity where
the quasiparticle ĉ

†
k↑ has a “particle-particle hybridization”

proportional to ĉ
†
k↑ĉ

†
−k↓ with ĉ

†
−k↓.61
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FIG. 2. (Color online) The left panel shows band dispersions and
zero surface along lines running from (π,π ) to (0,0), from (0,0)
to (π,0), and from (π,0) to (0,0). The right panel shows bare and
reconstructed Fermi surface and zero surface at ω = 0. The thin
(black) solid curve stands for bare band dispersion ω = ξk , and the
thin dashed (black) curve stands for zero surface ω = ξk+Q0 . Bold
(red and blue) solid curves stand for reconstructed bands.

However, as is already remarked in Sec. I, symmetry
breakings such as the antiferromagnetic orders have not been
universally observed in the hole-underdoped cuprates where
the “Fermi arc” or the truncated Fermi surface has been
experimentally suggested. Therefore, we need a mechanism
for the emergence of zeros without any symmetry breakings.
In this context, the truncated Fermi-surface scenario reviewed
in Ref. 29 gives an interesting example inspired by a result of
the renormalization-group methods, which attributes the emer-
gence of zeros to umklapp scatterings without the symmetry
breakings.62 The pseudogap in this framework is the precursor
of the Hubbard gap. We employ an alternative framework
where a zero surface with a gap formation naturally emerges
by a hybridization with some additional fermionic excitations,
as is discussed in the above example of the antiferromagnetic
ordered phase, although our additional fermions are different
from the quasiparticle at k + Q0 in the antiferromagnetic case.
Since our pseudogap (the hybridization gap) will turn out to be
different from the remnant of the Hubbard gap, our framework
will yield results qualitatively different from the scenario by
the umklapp scattering as we see in this paper.

Are there such fermionic excitations in proximity to
Mott insulators in the absence of symmetry breakings? Or
how do such fermionic excitations emerge? A hint for the
existence of such additional fermionic excitations comes
from examinations of the LUSW illustrated in Fig. 1 in the
doped Mott insulators. Hereafter, we restrict our discussion
to the hole-doped Mott insulator as in Fig. 1, with the
hole-underdoped cuprates in mind. The LUSW is defined as
the spectral weight above μ within the coherent band near the
top of the LHB.

We first recall the origin of the LUSW discussed in the
literature.36,63 First, we begin with the atomic limit, where
t = 0 and U = 0. Then, the LUSW of the hole-doped Mott
insulator consists only of states created by adding an σ -spin
electron to an empty site, namely, a holon site, to avoid creating
a doubly occupied site, doublon, and to avoid the cost of the on-
site Coulomb repulsion U . An electron added to an empty site
is confined tightly in this limit. If the electron escapes from the
holon sites, it inevitably creates a doublon and costs U . In other
words, an electron created at a holon site can contribute to the
LUSW, although this electron does not propagate coherently.

When t/U becomes nonzero, we have tightly bound
doublons and holons even in the Mott insulating phase.
Therefore, holons in the hole-doped systems consist of both of
the doped holons and the preexisting holons already present
in the insulators. Originally, the binding energy of a doublon
and a holon in the Mott insulator is the order of U . However,
for a nonzero t and a nonzero doping x, quantum fluctuations
induced by coherent carriers dramatically weaken bindings
between a doublon and a holon. Then, an electron added to this
holon only weakly bound to the doublon requires only small
energy and merges into the excitation of an added electron to
a doped holon site. In the hole-doped systems, these two types
of holons should not be distinguished and should constitute
the same object. Then, an electron added to these weakly
bound holons should also constitute LUSW. This electron
added to these holons may constitute a novel composite particle
distinguished from the original electron and offers a hint for
the additional fermionic excitations, which bring about zeros to
the quasiparticle Green’s functions, if this composite particle
hybridizes with an original quasiparticle. Actually, remnants
of doublon-holon pairs, namely, weakly bound doublon-holon
pairs, are known to play an important role in correlated electron
systems, especially in the context of variational wave-function
theories.64,65

In the KR formalism, creation (annihilation) operators
for the electron at the holon site, or the tightly bound
doublon-holon pair, are given by composite fermion operators
êi f̂

†
iσ (f̂iσ ê

†
i ). This is just a σ -spin electron in the original

Hubbard model and is definitely fermionic. A part of the tightly
bound pair e0f̂

†
iσ has already been taken into account in the

mean-field level in the previous theories (note êi f̂
†
iσ = e0f̂

†
iσ +

ẽi f̂
†
iσ ). However, it represents nothing but the renormalized

quasiparticle, which propagates in homogeneous mean fields
and has nothing to do with the above composite particle.
To substantiate our picture, we need to take into account
the composite operator including bosonic fluctuations ẽi f̂

†
iσ .

If we treat such a composite operator ẽi f̂
†
iσ as a fermion,

overlaps between tightly bound doublon-holon pairs and
quasiparticle states cause a hybridization of fermions between
two types, where one is the quasiparticle f̂

†
iσ and the other is

the “composite fermion” or “cofermion” ẽi f̂
†
iσ . From such a

hybridization between the cofermion and quasiparticle, weakly
bound pairs discussed above will naturally be born as a
result.

If such a hybridization between the quasiparticle and the
composite fermion really exists, this hybridization would
contribute to the self-energy of quasiparticles. Depending on
the dynamics of the composite fermions, such self-energy
would have a strong momentum dependence and possibly have
poles near the zero energy. In such cases, the hybridization
between the quasiparticles and the composite particles causes
a hybridization gap near the Fermi level. This gap is expected to
account for the pseudogap phenomena. As is discussed below,
we construct an action containing both of the quasiparticles
and the composite fermions.

In the following sections, we concretely give our theoretical
treatment by introducing the composite fermions discussed
above. First, we recall shortcomings of the previous theories
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and present our guiding principle to overcome the previous
KR mean-field theory.

As is mentioned in the above section, the KR formalism
gives exact results if we thoroughly treat the fluctuations of
slave bosons and keep the constraint equations (12) and (13)
(hereafter, we call this constraint the local conservation). When
we include the fluctuations of slave bosons, we should take care
of the constraint or the local conservation of the densities of
the slave bosons, and avoid including unphysical processes.

When we impose the local constraints more strictly for
fluctuating bosons beyond the mean-field level, as discussed
below, it turns out that the term

ζ̂
(1)
ijσ = g2

1σ g2
2σ (p̃†

iσ ẽi + d̃
†
i p̃iσ )(̃e†j p̃jσ + p̃

†
jσ d̃j ) (50)

represented by the diagram in Fig. 3(a) is dominating among
all the possible diagrams for the kinetic term in the action,
Eq. (17), namely,∫ β

0
dτ
∑
ij

f̂
†
iσ (τ )tij ζ̂ijσ (τ )f̂jσ (τ ). (51)

Here, we employ g2
1σ = (1 − p2

0σ − e2
0)−1 and g2

1σ = (1 −
p2

0σ − d
2
0)−1 by following Ref. 56.

To elucidate why we retain ζ̂
(1)
ijσ , we classify the diagrams il-

lustrated in Fig. 3 into four types, categorized by the frequency
dependence of quasiparticles and the local conservation of the
boson densities:

T-1. Diagrams containing external propagators of quasipar-
ticles in addition to bosonic propagators violating the local
conservation of boson densities [Figs. 3(b)–3(d) and 3(h)].
Here, the violation means that before and after the interactions
(represented by hexagons), the number of bosons expressed
by external boson propagators is not the same.

T-2. Diagrams that contain time dependence of quasiparti-
cles, but that do not violate the local conservation [Figs. 3(a)
and 3(e)].

T-3. Diagrams that do not contain frequency dependence
of quasiparticles but do violate the local conservation [Fig.
3(f)]. Here the quasiparticles contribute by forming a fermionic
loop without momentum and frequency transfers between
quasiparticles and slave bosons. In this process, quasiparticles
do not show frequency dependence and just behave as
frequency-independent mean fields acting on the bosons.

T-4. Diagrams that neither include time dependence of
quasiparticles nor violate the local conservation [Fig. 3(g)].

Here we present our guiding principle to take account
of boson fluctuations: We exclude (T-1) because it violates
the local conservation when the quasiparticles dynamically
fluctuate. On the other hand, we retain diagrams belonging to
the categories (T-2), (T-3), and (T-4). The reason to retain these
diagrams is as follows. The diagrams in the category (T-2)
do not violate the local conservation when bosons fluctuate.
Therefore, we take the diagrams in this category into account.
On the other hand, the diagrams in the category (T-3) do
violate the local conservation. However, in these diagrams,
quasiparticles enter as fermionic loops, which behave as
frequency-independent mean fields. The real violation of the
local conservation occurs only when a dynamical quasiparticle
process is induced by fluctuating boson hoppings with the

(a)

(b-1)

(c-1)

(d-1)

(e)

(b-2)

(c-2)

(d-2)

(c-3)

(f-2)(f-1)

(h)

(g)

FIG. 3. (Color online) (a)–(e): Diagrams representing terms in
f̂

†
iσ ζ̂ij f̂jσ . (f)–(h): Examples of various diagrams on the one-loop

level generated from the coupling (polygons) and derived from the
terms (a)–(e). Solid lines with arrows represent propagators of the
quasiparticles. Wavy lines stand for the charge bosons and bold solid
lines are the spin bosons. Condensations of bosons are represented by
lines terminated at crosses. Coupling constant g2

1σ g2
2σ tij is represented

by filled polygons. Here, we do not distinguish holons and doublons.
Spins are also not distinguished in the diagram, for simplicity.

momentum and/or frequency transfers. On the contrary, the
real violation does not occur when the quasiparticles emerge
as the static mean fields as in the case of (T-3). This is the
reason to retain the diagrams in the category (T-3). Since (T-4)
does not violate local conservation, we retain it.

For the slave-particle formalism of correlated fermion
systems, it is well known that fluctuations of gauge fields
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play an important role in reinforcing the local constraint
imposed on slave particles.66 It was pointed out by Jolicoeur
and Le Guillou that the Kotliar-Ruckenstein formalism has
the U(1)×U(1)×U(1) gauge symmetry.67 It comes from the
phase symmetry of the slave-bosonic particles, namely, êi , p̂iσ ,
and d̂i .

In our theory, we treat fluctuations of such phases together
with fluctuations of the amplitude of the condensation fraction
of these slave particles by using the Bogoliubov prescription.
Therefore, the phase fluctuations are taken into account,
although the U(1)×U(1)×U(1) gauge structure is not strictly
conserved.

B. Stratonovich-Hubbard transformation

We introduce Grassmannian variables (or fermionic fields)
ϒ̂ iσ = (ψ̂iσ ,χ̂iσ )T that stand for the cofermions as are dis-
cussed conceptually in Sec. III A by using the following
identity: ∫ ∏

iσ

dϒ̂
†
iσ dϒ̂ iσ eA = det[T̃↑T̃↓], (52)

where matrices T̃ σ are defined as

(T̃ σ )ij = g2
1σ g2

2σ tij

[
p̃
†
iσ p̃jσ p̃

†
iσ p̃

†
jσ

p̃iσ p̃jσ p̃iσ p̃
†
jσ

]
, (53)

and

A =
∫ β

0
dτ
∑
ijσ

[(ϒ̂
†
iσ (τ ) − Ĉ

†
iσ (τ ))

×(T̃ σ )ij (ϒ̂jσ (τ ) − Ĉjσ (τ ))]. (54)

Here, we use vector notations as

Ĉ
†
iσ = (̃ei ,d̃

†
i )f̂ †

iσ , Ĉ iσ = f̂iσ (̃e†i ,d̃i )T . (55)

The identity Eq. (52) gives the transformation for a coupling
term of the quasiparticles and fluctuating bosons depicted in
Fig. 3(a),

La =
∑
ijσ

Ĉ
†
iσ (τ )(T̃ σ )ij Ĉjσ (τ ), (56)

as

exp

[
−
∫ β

0
dτLa

]
=

∫ ∏
iσ

dϒ̂
†
iσ dϒ̂ iσ e− ∫ β

0 dτL′
a

det[T̃↑T̃↓]
, (57)

where

L′
a = L′

a1 + L′
a2, (58)

L′
a1 =

∑
ijσ

ϒ̂
†
iσ (τ )(T̃ σ )ij ϒ̂jσ (τ ), (59)

L′
a2 = −

∑
ijσ

{Ĉ
†
iσ (τ )(T̃ σ )ij ϒ̂jσ (τ ) + ϒ̂

†
iσ (τ )T̃ ij Ĉjσ (τ )}.

(60)

These transformed Lagrangians L′
a1 [Fig. 4(a)] and L′

a2

[Fig. 4(b)] lead to the cofermions’ self-energy and the hy-
bridization between the quasiparticles and cofermions, respec-
tively, after integrating out the fluctuating bosonic degrees of

(a) (b)

FIG. 4. (Color online) Diagrams for transformed Lagrangians
defined in Eqs. (58)–(60). The solid and dashed lines with arrows
represent propagators of the quasiparticles and cofermions, respec-
tively. The wavy lines represent the charge bosons and bold solid
lines are the spin bosons. (a) The diagram represents the Lagrangian
L′

a1 [Eq. (59)]. (b) The diagrams stand for terms in the Lagrangian
L′

a2 [Eq. (60)].

freedom. It will be discussed below by using a set of the Dyson
equations.

C. Prescription for self-consistent procedure
and Green’s functions

Here, we construct approximated Green’s functions for
the Gaussian fluctuations of the bosons, quasiparticles, and
cofermions by using a set of Dyson equations as is depicted
in Fig. 5: Wavy lines and bold gray lines stand for the Green’s
functions of the charge bosons Aab(r,τ ) = −〈Tβa

i (τ )βb
j

†
(0)〉

+

+

+

=

=

=

++

+

++

+=

=

FIG. 5. (Color online) Diagrams for Dyson equations. The solid
and dashed lines with arrows represent propagators of the quasipar-
ticles and cofermions, respectively. Other notations are the same as
Fig. 3. The bold (thin) lines are for renormalized (bare) propagators.
Filled (blue) circles are amplitudes of the hybridization between
quasiparticles and cofermions.
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and the spin bosons Cab(r,τ ) = −〈T φa
i (τ )φb

j

†
(0)〉, respec-

tively, where a,b = 1,2, r = i − j , (β1
i ,β

2
i ) = (̃ei ,d̃i ), and

(φ1
i ,φ

2
i ) = (p̃iσ ,p̃

†
iσ ). Bold lines with arrows represent the

quasiparticle propagator G(f )
σ (r,τ ). On the other hand, thin

wavy lines and thin lines represent bare propagators of
the charge bosons Aab

0 (r,τ ) and the spin bosons Cab
0 (r,τ ),

respectively, determined by L̂(0)
B , in which self-energy effects

are not taken into account. Thin lines with arrows stand for
bare propagators of the quasiparticles G(f )

0σ (r,τ ) determined by

L̂0 =
∑
ij

f̂
†
iσ (τ )[(∂τ − μ)δij + ζ0σ tij ]f̂jσ (τ ), (61)

where ζ0σ = g2
1σ g2

2σ (p0σ e0 + d0p0σ )2. The Lagrangian L̂0 is
obtained by decoupling the fluctuating bosons from the KR
action [see Eq. (17)]. Bold and thin dashed lines stand for
the cofermions’ propagators Fab and bare propagators Fab

0 =
δa,b/ε (ε → 0), respectively.

In the set of Dyson equations (Fig. 5, we neglect the
coupling between charge and spin bosons described by
propagators such as 〈p̃†

iσ ẽi〉, at the Gaussian level, since
these coupling terms are higher-order contributions. Below,
we explain that the coupling gives higher-order contributions
with respect to the hole-doping rate x, in proximity to Mott in-
sulating states: Since operators including both charge and spin
such as p̃

†
iσ ẽi do not conserve the electric charge, propagators

such as 〈p̃†
iσ ẽi〉 should vanish in the Mott insulating phase,

where the charge can not fluctuate. Therefore, the charge and
spin excitations are well separated in the Mott insulating phase.

When hole carriers are doped, p̃
†
iσ ẽi can have a nonzero

expectation value, at most, scaled by the condensate fraction
of holons e0, which gives a rough estimate of the amplitude
of charge fluctuations. From a relation e2

0 ∝ x held in the
KR theory for the hole-doped case, we obtain 〈p̃†

iσ ẽi〉 ∝ √
x.

Furthermore, there is an additional constraint for the coupling
terms such as 〈p̃†

iσ ẽi〉: they do not appear alone in calculations
of physical quantities. To conserve charge and spin on average,
〈p̃†

iσ ẽi〉 appears with 〈̃e†i p̃iσ 〉 in pair, for example. Therefore,
the contribution of the coupling between charge and spin
bosons to physical quantities is scaled by (

√
x)2. It concludes

that the coupling between the charge and spin bosons gives
contributions as a higher order in terms of x in physical
quantities.

By solving the set of Dyson equations, we obtain the
propagators for the quasiparticles and cofermions. Here,
the bosonic degrees of freedom are taken into account in
a self-consistent fashion through the cofermion self-energy
�(cf)

σ (r,τ ) and the amplitude �ij of hybridization between the
quasiparticles and cofermions, each of which we detail below.

The Lagrangian for the cofermions is given by

L̂cf = −
∑
ijσ

ϒ̂
†
iσ (τ )

[
�(cf)

σ (r,τ )
]
ϒ̂jσ (τ ), (62)

where ϒ̂
†
iσ = (ψ̂†

iσ ,χ̂
†
iσ ) is a vector notation for the cofermions,

and r = i − j . The cofermion self-energy �(cf)
σ (r,τ ) is a 2×2

symmetric matrix

�(cf)
σ =

[
�11

σ �′
σ

�′
σ �22

σ

]
. (63)

The details for the self-energy matrix are given in Appendix A.
On the other hand, the hybridization between the quasiparticles
and cofermions is described by

L̂hyb =
∑
i,j,σ

[ϒ̂
†
iσ (τ )�ij f̂jσ (τ ) + f̂

†
iσ (τ )�T

ij ϒ̂jσ (τ )], (64)

where �T
ij = (�(ψ)

ij ,�
(χ)
ij ). For details for �ij , see Appendix B.

As a result, the effective Lagrangian for the quasiparticles
and cofermions L̂eff is given as

L̂eff = L̂0 + L̂cf + L̂hyb. (65)

When the charge gap is relatively small, �11
σ 
 �22

σ

and �
(ψ)
ij 
 �

(χ)
ij hold approximately. When the charge gap

collapses, �11
σ = �22

σ and �
(ψ)
ij = �

(χ)
ij hold exactly. In our

results, we employ approximate relations � = �11
σ 
 �22

σ and
�ij = �

(ψ)
ij 
 �

(χ)
ij . Then, a cofermion mode (ψ̂kσ + χ̂kσ )/

√
2

hybridizes with quasiparticles through the amplitude �(k),
which is depicted in Fig. 5 as closed (blue) circles, where k is
a momentum. The inverse of cofermion propagator (namely,
the cofermion self-energy) for (ψ̂kσ + χ̂kσ )/

√
2 is given as

−1
2 [�σ (k,iεn) + �′

σ (k,iεn)] = γkiεn − αk + O
(
ε2
n

)
, (66)

where εn is a fermionic Matsubara frequency.
Then, the Fourier transformation of the Green’s function

for the quasiparticles G(f )
ijσ (τ ) = −〈T f̂iσ (τ )f̂ †

jσ (0)〉 is given as

G(f )
σ (k,iεn → ω + iδ)

= G(f )
σ (k,ω)



[
ω + iδ − ζ0σ εk + μ − �(k)2

γk(ω + iδ) − αk

]−1

, (67)

where εk is the Fourier transformation of tij and μ is the
chemical potential. Here, we note that the weights of the two
quasiparticle bands split by the zero surface defined by ω =
αk/γk are not the same in our theory.

In our calculations, we define the doping rate x by using
the quasiparticle Green’s function as

1 − x = lim
T →0+

T

Ns

∑
k,iεn,σ

G(f )
σ (k,iεn), (68)

where T stands for temperature and Ns is the number of sites.
The Green’s function for the electrons, instead of the

quasiparticles, is given as

Gijσ (τ ) = −〈T ĉiσ (τ )ĉ†jσ (0)〉

 −〈T ẑ

†
iσ (τ )ẑjσ (0)〉

× 〈T f̂iσ (τ )f̂ †
jσ (0)〉

= 〈T ẑ
†
iσ (τ )ẑjσ (0)〉G(f )

ijσ (τ ), (69)
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where the bosonic and fermionic degrees of freedom are
decoupled because the resultant action in our theory does not
contain the hybridization between bosons and fermions. The
bosonic part in Eq. (69) is given by

〈T ẑ
†
iσ (τ )ẑjσ (0)〉 
 g2

1σ g2
2σ 〈T [b̂

†
i (τ ) · p̂iσ (τ )]

×[ p̂†
jσ (τ ) · b̂j (τ )]〉, (70)

where we use vector notation as b̂
†
i = (ê†i ,d̂i ), p̂†

iσ = (p̂†
iσ ,p̂iσ ).

Because we adopt the boson dynamics in which charge and
spin bosons are decoupled, this bosonic part of the Green’s
function is rewritten as

〈T ẑ
†
iσ (τ )ẑjσ (0)〉


 g2
1σ g2

2σ

〈
T
[
b0 · pT

0σ ][ p0σ · b
T

0

]〉
+ g2

1σ g2
2σ

〈
T
[̃
b
†
i (τ ) · pT

0σ ][ p0σ · b̃j (τ )
]〉

+ g2
1σ g2

2σ

〈
T
[
b0 · p̃iσ (τ )][ p̃†

jσ (τ ) · b
T

0

]〉
+ g2

1σ g2
2σ 〈T [̃b

†
i (τ ) · p̃iσ (τ )][ p̃†

jσ (τ ) · b̃j (τ )]〉, (71)

where b0 = (e0,d0) and p0σ = (p0σ ,p0σ ). If we retain only
the first and second lines of the right-hand side of Eq. (71), the
electron Green’s function is reduced to that already obtained
in Ref. 57. The contribution of the fourth line in the right-hand
side of Eq. (71) is small compared with these from other lines
in Eq. (71) because it is the fourth order in the terms of the
fluctuation denoted by tildes, and we ignore the fourth term.

The present theory inherits a difficulty of the previous
theory57 on the Gaussian fluctuations of the slave bosons
(see Sec. II) and still violates conservation of the total
spectral weight of the coherent and incoherent bands as

(a) (b) (c)

FIG. 6. (Color online) Interactions between quasiparticles and
cofermions mediated by exchanging one charge boson.

the previous theories do. Unfortunately, the formation of
the cofermions does not affect the spectrum of high-energy
excitations covering both LHB and UHB, which is crucial in
the conservation of the global spectral weight. A practical way
to enforce the conservation is a self-consistent renormalization
of the “coupling constant” g2

1σ g2
2σ in Eq. (71), as is already

discussed in Ref. 57.

D. Superconductivities mediated by cofermions
and charge bosons

In this section, we examine how the present insight
from the cofermion excitations offers the mechanism for the
emergence of superconductivity. Here, we examine the singlet
superconductivity induced by exchanging one charge boson
(see Fig. 6).

We start from the mean-field action for the singlet super-
conductivity. Here, the effective interaction of quasiparticles
and cofermions is induced by exchanging one charge boson.
The mean-field action SSC is defined as

SSC =
∑
k,iεn

�
†
k(iεn) [G(k,iεn)]−1 �k(iεn), (72)

where �
†
k(iεn) and �k(iεn) are defined as

�
†
k(iεn) = [f̂ †

k↑(iεn),ψ̂†
k↑(iεn) + χ̂

†
k↑(iεn),f̂−k↓(−iεn),ψ̂−k↓(−iεn) + χ̂−k↓(−iεn)], (73)

�k(iεn) = [f̂k↑(iεn),ψ̂k↑(iεn) + χ̂k↑(iεn),f̂ †
−k↓(−iεn),ψ̂†

−k↓(−iεn) + χ̂
†
−k↓(−iεn)]T . (74)

The inverse of the matrix form of the Green’s function is given by

[G(k,iεn)]−1 =

⎡⎢⎣ iεn − ξk �k Mk k

�k γkiεn − αk k 0
Mk k iεn + ξk −�k

k 0 −�k γkiεn + αk

⎤⎥⎦

=

⎡⎢⎣1 0 0 0
0

√
γk 0 0

0 0 1 0
0 0 0

√
γk

⎤⎥⎦
⎡⎢⎢⎣

iεn − ξk �̃k Mk ̃k

�̃k iεn − α̃k ̃k 0
Mk ̃k iεn + ξk −�̃k

̃k 0 −�̃k iεn + α̃k

⎤⎥⎥⎦
⎡⎢⎣1 0 0 0

0
√

γk 0 0
0 0 1 0
0 0 0

√
γk

⎤⎥⎦ , (75)

where ξk = ζ0εk − μ, and Mk and k are superconducting order parameters as is explicitly given in Eqs. (88) and (89). Here,
the superconducting order parameters are given as

Mk(iεn) = T

Ns

∑
iωm,Q

t̃k̃ tk+Q〈̃b†Q(iωm)̃bQ(iωm)〉
⎡⎣(e0 + d0√

2

)2

[G(k + Q,iεn + iωm)]13 + e0 + d0√
2

[G(k + Q,iεn + iωm)]14

⎤⎦
(76)
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and

k(iεn) = T

Ns

∑
iωm,Q

t̃k̃ tk+Q〈̃b†Q(iωm )̃bQ(iωm)〉
[

[G(k + Q,iεn + iωm)]14 + e0 + d0√
2

[
G(k + Q,iεn + iωm)

]
13

]
, (77)

where [G(k + Q,iεn]ij is the (i,j )th element of the matrix G. We should note that there are quasiparticle-quasiparticle and
cofermion-quasiparticle singlet pairings, which are described by the following anomalous Green’s functions:

[G(k,iεn)]13 = 2α̃k�̃k̃k − Mk[(iεn)2 − α̃2
k ][

(iεn)2 − λ2
k+
] [

(iεn)2 − λ2
k−
] , (78)

[G(k,iεn)]14 = 1√
γk

−Mk�̃k(iεn − α̃k) + ̃k

[
̃2

k + �̃2
k − (iεn − α̃k) (iεn + ξk)

][
(iεn)2 − λ2

k+
] [

(iεn)2 − λ2
k−
] , (79)

where

λk± =

√
Xk ±

√
X2

k − 4Yk

√
2

, (80)

Xk = α̃2
k + ξ 2

k + 2�̃2
k + 2̃2

k + 2M2
k , (81)

Yk = (̃αkMk + 2�̃̃k)2 + [̃αkξk + (̃2
k − �̃2

k

)]2
. (82)

For simplicity, we introduce the cutoff frequency

ωc = max
{
ζ0t,

√
̃2

k + M2
k

}
(83)

to the bosonic propagators for charge fluctuations b̃
†
i = ẽ

†
i +

d̃i and apply a quasistatic approximation to solve the gap
equations as

Mk(iεn)

[(
e0 + d0√

2

)2

[G(k + Q,iεn + iωm)]13 + e0 + d0√
2

[G(k + Q,iεn + iωm)]14

]
(84)


 1

Ns

∑
Q

t̃k̃tk+Q〈̃b†Q(ωc )̃bQ(ωc)〉T
∑
iωm

[(
e0 + d0√

2

)2

[G(k + Q,iεn + iωm)]13

+ e0 + d0√
2

[G(k + Q,iεn + iωm)]14

]
(85)

and

̃k(iεn)

[
[G(k + Q,iεn + iωm)]14 + e0 + d0√

2
[G(k + Q,iεn + iωm)]13

]
(86)


 1√
γk

· 1

Ns

∑
Q

t̃k t̃k+Q〈̃b†Q(ωc )̃bQ(ωc)〉

× T
∑
iωm

[
[G(k + Q,iεn + iωm)]14

e0 + d0√
2

[G(k + Q,iεn + iωm)]13

]
. (87)

Then, we obtain the superconducting states induced with
electron-electron and cofermion-electron pairs formed by
exchanging one charge boson.

We solve the gap equations (85) and (87) with an assump-
tion for the symmetry of the superconducting order parameters.
Here, we assume a simple dx2−y2 symmetry, which has
experimentally been suggested for the hole-doped cuprates,
for the singlet electron-electron and cofermion-electron pairs
as

Mk(iεn) =
Md

x2−y2 (iεn)

2
(cos kx − cos ky), (88)

̃k(iεn) =
̃dx2−y2 (iεn)

2
(cos kx − cos ky). (89)

As a consequence of the quasistatic approximation, the gap
amplitudes Mdx2−y2 (iεn) and ̃dx2−y2 (iεn) become constant
independently of the Matsubara frequency. Of course, we
expect that the amplitudes of Mdx2−y2 (iεn) and ̃dx2−y2 (iεn)
will damp for ωc � |iεn|.

Here, we note how the cofermion-quasiparticle pairs,
namely, [G]14, enhance the quasiparticle-quasiparticle pairing.
First, it is clearly seen in Eqs. (76) or (85) that the cofermion-
quasiparticle pairs contribute to the superconducting order
parameters of the quasiparticle-quasiparticle channel Mk(iεn).
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FIG. 7. (Color online) Spectral function A(k,ω) along lines
running from (0,0) to (π,π ), from (π,π ) to (π,0), and from (π,0)
to (0,0). Here, we use a finite broadening factor δ = 0.05t .

This contribution becomes a constructive one only when the
phases of the cofermion-quasiparticle and the quasiparticle-
quasiparticle pairs are the same, namely, Mk · k > 0. In this
case, the interaction illustrated in Fig. 6(b) behaves as an
attractive interaction between the cofermion-quasiparticle and
the quasiparticle-quasiparticle pairs. Then, the formation of
the cofermion-quasiparticle pairs enhances the quasiparticle-
quasiparticle pairing through this attraction, and, indeed,
enhances the pairing in our self-consistent solution of
Eqs. (85) and (87).

IV. RESULTS

In this section, we show how our theory predicts physical
properties of our interest. We estimate the quasiparticle and
electron Green’s function obtained in the above section (Sec.
III C). We show the results for the Hubbard model defined
in Eq. (1) on a square lattice at U = 12t and t ′ = 0.25t to
get insight into the cuprate superconductors. We restrict the
mean-field solutions to the homogeneous and paramagnetic
ones. All the calculations are done at zero temperature. At this
parameter and within the present calculation, the amplitude
of the Hubbard gap δU at half-filling n = 1 is estimated
to be 3.6t .

First, we give the spectral functions calculated from the
electron Green’s function given in Eq. (69), and show the
global structure of the spectra obtained from the electron
Green’s function. We define the retarded Green’s function at
the frequency ω as

Gσ (k,ω) = Gσ (k,iεn → ω + iδ), (90)

where δ → +0. Then, the spectral function is given by

A(k,ω) = − 1

π
Im [Gσ (k,ω)] . (91)

In Fig. 7, we show the result for x = 0.05. There are two
main features. The first is the coherent band seen around the
Fermi level, i.e., ω = 0. The second is the incoherent spectrum
induced by the charge- and spin-boson dynamics. As is already
discussed in Ref. 57, the remnant of the upper Hubbard band
is seen above ω 
 6t , while the lower Hubbard band is seen
between the coherent band and ω 
 −8t . The gap seen in the
spectral function at 2t � ω � 6t is nothing but the remnant
of the Hubbard gap. Here, an additional incoherent band is
seen just above the Fermi level up to ω 
 2t . This additional
incoherent band originates from the dynamics of the spin

 0
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FIG. 8. (Color online) (The bold (red) solid curve shows doping
dependence of low-energy spectral weight. The thin (black) solid
line represents 2x and the thin (black) dashed line stands for x.
Open circles and closed squares illustrate Neff given in Ref. 37 for
La2−xSrxCuO4 and in Ref. 68 for Ca2−xNaxCuO2Cl2, respectively.

bosons. The spectral function shown in Fig. 7 is qualitatively
consistent with the results of the quantum Monte Carlo
simulations done by Preuss et al.,42 although their simulations
were done for t ′/t = 0, U/t = 8, and T = 0. We note that
the dispersion of the coherent band is given by poles of the
quasiparticle Green’s function. Below, we concentrate on the
low-energy excitations within the coherent band. Therefore,
we focus on the quasiparticle Green’s functions instead of the
electron Green’s functions.

In Fig. 8, we show the LUSW defined by (1 + x)ζ0 as
a function of x. The quick increase of the LUSW larger
than 2x is clearly seen in Fig. 8. We refer to the data on
the effective electron number Neff estimated from the optical
conductivity measurement,37,68 which shows nice agreement
with the present LUSW at the small doping as is expected. For
larger doping, the LUSW and Neff become trivially different
because Neff is also proportional to the population of the
occupied states and decreases when the number of occupied
states becomes small, while the LUSW expresses only the
population of unoccupied states and should always be larger
than 2x. LUSW and Neff become identical in the small doping
asymptotically. The quick increase of LUSW indicates that the
Mott gap collapses and is interrupted by the quick emergence
of the low-energy unoccupied states. This LUSW comes from
the quasiparticle band hybridized with the cofermions. The
quick increase of the LUSW is also related with a positive
feedback of the doping, where the hole doping introduces
additional screening of carriers leading to a further increase
of unbound holon and doublon. Although the Mott transition
is continuous in the low-energy limit at the Fermi level as
the ground-state properties, this positive feedback gives a
character close to the first-order transition in the energy scale
of the LUSW, namely, in the low-energy excitation spectra.
It may be related to the tendency for the phase separation
universally suggested in the doped Mott insulators (including
the cuprate superconductors), which has been discussed from
several different viewpoints.69

A. Fermi-surface topology

Now we show how the reconstruction of the Fermi surface
occurs in our theory. The quasiparticle Green’s function

G(f )
σ (k,ω) = G(f )

σ (k,iεn → ω + iδ)
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FIG. 9. (Color online) The left panel shows band dispersions and
zero surface calculated for x = 0.05 along lines running from (π,π )
to (0,0), from (0,0) to (π,0), and from (π,0) to (0,0). The right
panel shows bare and reconstructed Fermi surface, and zero surface
at ω = 0. The thin solid (black) curve gives the bare band dispersion
ω = ζ0σ εk − μ, and thin dashed (black) curve represents the zero
surface γkω = αk . The thick (blue and red) solid curves stand for
reconstructed bands.

is given as

G(f )
σ (k,ω)

=
[
ω+iδ−ζ0σ εk+μ− �2

k

γk(ω + iδ)−αk

]−1

(92)

=
⎡⎣1

2
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k√
(d−

k )2 + �2
k/γk
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√
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k )2+�2
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+
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− d−
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k )2+�2
k/γk

⎤⎦ 1

ω+iδ − d+
k +
√

(d−
k )2+�2

k/γk

,

(93)

where d±
k = 1

2 (ζ0εk − μ ± αk/γk).
The Green’s function given in Eq. (92) shows the divergence

of the quasiparticle self-energy given by �2
k/(γkω − αk)

at γkω − αk = 0. In other words, the zero surface defined
by γkω = αk emerges. Then, the zero surface splits the
band dispersion defined by ω = ζ0σ εk − μ into two bands
as ω = d+

k ±
√

(d−
k )2 + �2

k/γk , as is depicted in Fig. 9. For
small doping such as x = 0.05, our theory predicts that the
reconstructed Fermi surface becomes a small pocket, as is
seen in the right panel of Fig. 9.

To show changes in the Fermi-surface topology with
increasing doping, the single-particle spectral function at
ω = 0 is given for the hole-doping rate x = 0.05, 0.15, 0.20 in
Figs. 10(a)–10(c), with δ = 0.05t . The topological transitions
occur at x 
 0.13 and 0.18, as is depicted in Fig. 10(e). In
the region 0.13 � x, only small Fermi pockets exist, where
the zero surface smears out the outer part of the pocket
yielding an arc structure as we see in Fig. 10(a) (note that the
damping is large near the zero surface because of an enhanced
self-energy), consistently with the experimental signature in
Fig. 10(d) as we discuss below. For 0.13 � x, a completely
different topology with large Fermi surfaces appears instead
of Fermi pockets. For 0.13 � x � 0.18, a holelike surface
centered at (π,π ) [depicted by the solid curve in Fig. 10(b)] and
an electronlike one centered at (π,π ) [depicted by the dashed
curve in Fig. 10(b)] coexist. These two surfaces together figure
out an enclosed hole (electron unoccupied) strip between the

solid and dashed curves. However, the electronlike surface (the
dashesd curve) is hardly seen because the zero surface exists
near this electronlike surface. On the other hand, for 0.18 � x,
there exists an electronlike surface centered at (0,0) [depicted
by the solid curve in Fig. 10(c) and an electronlike one centered
at (π,π ) [depicted by the dashed curve in Fig. 10(c)]. The
electronlike surface centered at (π,π ) becomes less visible
for the used broadening factor δ = 0.05t than the electronlike
surface centered at (π,π ) for x � 0.18.

The quantum transition at x 
 0.18 is a trivial one expected
from the single-particle picture. The topology of the Fermi
surface at this quantum transition point changes from a
holelike surface centered at (π,π ) depicted for x = 0.15
in Fig. 10 by the solid curve to an electronlike surface
centered at (0,0) depicted for x = 0.20 in Fig. 10 by the
solid curve. This topology change is essentially understood
from the noninteracting picture, where the band disper-
sion εk = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky with t ′/t =
0.25 shows the transition from the electronlike to the holelike
Fermi surfaces with the increasing electron concentrations.
When the Fermi level is shifted by doping and touches the
saddle points at (±π,0) and (0, ±π ), such topological changes
occur.

However, our solution shows another nontrivial topo-
logical transition at x 
 0.13. The topology in the phase
x < 0.13 is highly nontrivial, and is not adiabatically con-
nected with the conventional Fermi liquid. Such a topolog-
ical change never occurs without the zeros of the Green’s
function.

For comparison with experiments, we refer to the ARPES
spectrum of La2−xSrxCuO4 (Ref. 10) in Fig. 10(d). Arclike
Fermi surfaces observed for x = 0.03 and 0.07 show overall
consistency with our result for x = 0.05. On the other hand,
so-called nodal metallic behaviors, i.e., large amplitude of
the spectral weight allowed only around the nodal direction
[line running from (0,0) to (π,π )] are not seen in our results.
Instead, in our theory, the weight is rather larger near the
endpoint of the arc than the nodal point as we see in Fig. 10(a).
This subtle discrepancy is likely to originate from additional
self-energy effects, which are not included in the present
theory. For example, fluctuations of d-wave superconductivity

FIG. 10. (Color online) (a)–(c) Single-particle spectral function
at ω = 0. Solid and dashed lines illustrate the poles of quasiparticles.
(d) Fermi surface observed by ARPES (Ref. 10). (e) Phase diagram of
Fermi-surface topology in our theory. Topological phase boundaries
exist at the doping x = 0.13 and 0.18.
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and/or short-range antiferromagnetic fluctuations are possible
candidates. However, we note that these fluctuations with finite
correlation length by themselves never induce changes in the
Fermi-surface topology.

When the large Fermi surface appears for x � 0.13, the
Fermi surface always extends across the Brillouin zone
boundary or the lines, which connect the � point, (0,0),
and the antinodal points (±π,0) or (0, ±π ). However, the
single-particle excitation from the Fermi level now has a
gap due to the hybridization gap �k in Eq. (92) in the
quantum phase characterized by the nontrivial Fermi-surface
topology for x � 0.13. In Fig. 11, the single-particle spectral
function is depicted along the symmetry lines in the Brillouin
zone. A gap measured from the Fermi level emerges, which
corresponds to the pseudogap in the ARPES measurements.
Hereafter, we define the amplitude of the pseudogap in the
single-particle spectrum � as the gap amplitude between
the Fermi level μ and the maximum of the single-particle
dispersion below μ along the line running from (0,0) to (π,0)
and the line running from (π,0) to (π,π ). We also reproduce the
ARPES dispersion observed in La2−xSrxCuO4 for x = 0.10
(Ref. 70) for comparison in Fig. 11 (indicated by bold dashed
curve). Here, we employ a widely accepted parameter t =
400 meV. Indeed, the dispersion has an excellent sim-
ilarity. The quasiparticle dispersion does not touch the
Fermi level along the Brillouin zone boundary, here the
line connecting (π,0) and (π,π ), in both our result and
the ARPES measurement. In other words, the pseudo-
gap amplitude � is finite for both cases. However, the
quasiparticle state at (π,0) in the ARPES data has lower
energy than our result and the discrepancy is up to
20 meV. We expect some additional factors to push the
dispersion down around the antinodal points (±π,0) and
(0, ± π ). As is discussed above, fluctuations of d-wave
superconductivity and/or short-range antiferromagnetic fluc-
tuations are possible candidates of the origin of this
discrepancy.

B. Pseudogap

The pseudogap in single-particle excitations defined in
the above section characterizes a quantum phase with the
nontrivial Fermi surface because a nonzero pseudogap in-
duces the breakdown of the trivial large Fermi surface. In
our theory, the pseudogap is induced by the hybridization
gap between the cofermions and quasiparticles. Therefore,
the amplitude of the pseudogap is roughly determined by

A
(k,ω

)

 0-0.5

 0  0

-0.2

ω
/t

ω
(eV)

(0,0) (π,0) (π,π)
x=0.10

FIG. 11. (Color online) Single-particle spectral function near
antinodal point for x = 0.10. The thin solid and dashed lines illustrate
poles of quasiparticles. The white bold dashed line represents the
ARPES spectrum observed in La2−xSrxCuO4 for x = 0.10 (Ref. 70).

the hybridization gap �k/
√

γk . The explicit evaluation of the
amplitude of �k is done by using Eq. (B3) in Appendix B,
in the lowest order of tij . The amplitude of �k is roughly
estimated as t2/W multiplied by a numerical factor, where
W is the bandwidth of original electrons. Here we note that
the denominators in Eq. (B3) include the dispersion of the
charge and spin bosons. The bandwidth of the charge and spin
bosons is roughly equal to the bandwidth of original electrons
W 
 8t , and the bandwidth of the spin wave J ∼ 4t2/U ,
respectively. For U = 12t , the bandwidth of the charge bosons
dominates that of the spin bosons, namely, W > J . Therefore,
the denominators appearing in Eq. (B3) are roughly scaled by
W . On the other hand, the amplitude of γk is roughly estimated
as t2/W 2 multiplied by a numerical factor through Eq. (A17).
Therefore, the amplitude of the hybridization gap �k/

√
γk

is roughly estimated as (t2/W )/
√

t2/W 2 = t multiplied by a
numerical factor. The present result for the energy scale of
the pseudogap is consistent with previous studies based on
the cluster perturbation theory22 and, later, cellular dynamical
mean-field theory (DMFT).71

We discussed the pseudogap � along the definition often
used in ARPES measurements in Sec. IV A. Here, we discuss
the behaviors of the hybridization gap between two bands given
in Eq. (93) and illustrate them in Fig. 9. First, the hybridization
gap �k/γk in our theory does not have nodes and is s-wave-like
in the momentum space, although, as is illustrated in Fig. 12,
the gap seems to be smaller in the nodal direction [the line
running from (0,0) to (π,π )] than around the antinodal points
(±π,0) and (0, ±π ).

Below the transition point x 
 0.13, the density of states
(DOS) of the original electrons ĉ

†
kσ at the Fermi level ρF,

defined as

ρF = ζ0
1

Ns

∑
kσ

[
− 1

π
ImGf σ (k,ω = 0)

]
, (94)

is clearly suppressed, as is illustrated in Fig. 13. We compare
ρF with the specific heat measured for La2−xSrxCuO4.72,73

The specific-heat coefficient γ is expected to be pro-
portional to the DOS. In the Sommerfeld’s free electron
model, the specific-heat coefficient γ at T = 0 is given
by γ = π2ρF /3. Here, we use this relation and t = 400
meV to calculate the expected values for γ with our
theory.

We note that γ in Fig. 13 indicated by closed (blue) circles is
obtained through a linear extrapolation from low-temperature
data in Ref. 72, and shows the possible lower limit for
γ . From the data in Ref. 72, γ in the underdoped region
shows three characteristic temperature ranges. For example,
the data for x = 0.08 (see the inset of Fig. 13) show (i)
for 100 K � T � 200 K, a linear-temperature dependence,
(ii) for 50 K � T � 100 K, another linear-temperature
dependence but with different slope from (i), and (iii) for
T � 50 K, the BCS-type jump. We linearly extrapolate γ for
50 K � T � 100 K and obtain γ at T = 0. On the other hand,
data for γ indicated by closed (red) squares73 in Fig. 13 may
set an upper limit for γ because to exclude the influences from
superconductivities, the authors of Ref. 73 used extrapolation
from Zn-doped samples, which tend to show larger γ than
samples without Zn doping.
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FIG. 12. (Color online) Band dispersion of quasiparticles for x =
0.05. A full gap structure is clear.

Our result for γ is consistent with the experiments, although
we do not choose parameters specific to La2−xSrxCuO4. On
the other hand, the extrapolated γ [closed (blue) circles in
Fig. 13] indicates further reduction of the density of states
at the Fermi level. It suggests possible roles of fluctuations
from the d-wave superconductivity and/or antiferromagnetism
in the lower energy scale, which is left for future studies beyond
the scope of this paper.

C. Superconductivities

In studies on high-Tc superconducting cuprates, the mech-
anism of the superconductivity is of course the central issue.74

However, the consensus on the mechanism has not been
reached after more than 20 years of the discovery. Here,
we show how the novel cofermion mechanism for super-
conductivities developed in Sec. III D works and reproduces
experimental observations on the high-Tc superconducting
cuprates.

We examine the doping dependence of the single-particle
excitation gap in the superconducting state based on the
formalism developed in Sec. III D. The result is shown in Fig.
14 (bold dashed line). We adopt, as a definition of the amplitude
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FIG. 13. (Color online) Density of states (DOS) of electrons given
as a function of hole-doping rate x. The thin dashed curve represents
the DOS of the noninteracting case. The closed (blue) circles show γ

extrapolated from experimental data of La2−xSrxCuO4 in Ref. 72. The
closed (red) squares represent experimental data of La2−xSrxCuO4 in
Ref. 73. The inset shows an example for the extrapolation used here
[ see the text below Eq. (94) for details].

of the gap in the superconducting state, the minimum of
the single-particle excitation gap along the Brillouin zone
boundary and the line connecting the � point (0,0) and the
antinodal points (±π,0) and (0, ±π ), which is the same
definition for the pseudogap in the normal state. This definition
of the amplitude of the gap is consistent with the data analysis
of the ARPES measurements. As is shown in Fig. 14 (bold
dashed line), the single-particle excitation gap is still finite
around x = 0.3 for the d-wave superconducting state in the
present treatment, which is quantitatively inconsistent with
the experimental fact that the superconductivity disappears
for x � 0.26 in the high-Tc cuprates. To highlight a possible
origin of this inconsistency, we also show a result for the
single-particle excitation gap in Fig. 14 (thick solid line)
calculated by rescaling the quasistatic boson propagator as

〈̃b†Q(ωc )̃bQ(ωc)〉 → (1 − ζ0) 〈̃b†Q(ωc )̃bQ(ωc)〉.
By the rescaling, the single-particle excitation gap is clearly
suppressed around x = 0.3. The reason why we consider such
a rescaling is the following: In our treatment, the charge
fluctuations, especially holon fluctuations, remain finite even
in the dilute limit x → 1, where holons fill all the sites
and should be localized as hard-core bosons. Holons are
completely localized and form the “Mott insulating” state for
x = 1. The fluidity of the holons for x � 1 originates from
finite electron density,1 − x = 0 because the finite electron
density introduces “vacancies” in the holon’s Mott insulating
state, and causes the fluidity of the holons. On the other
hand, doublons vanish at the limit x → 1. Near this limit,
the density of the doublons is scaled by (1 − x)2. Therefore,
for large doping x, the weight of fluctuating charge bosons
should vanish as a function of 1 − x. We note that, for
x 
 1, 1 − ζ0 
 1 − x. On the other hand, for x 
 0, the
charge fluctuating bosons have the weight 1 − ζ0 because the

 0
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FIG. 14. (Color online) Doping dependence of excitation gaps.
The thin (black) solid line represents the pseudogap amplitude in the
normal state. This amplitude shows the contribution that has nothing
to do with the superconductivity but rather has to do with the precursor
of the Mott gap. The bold (black) dashed line represents the minimum
of the single-particle excitation gap in the superconducting state
along the Brillouin zone boundary or the diagonal line connecting
the � point and the antinodal points. The bold (black) solid line
shows a refined estimate of the single-particle excitation gap in the
superconducting state obtained from the pair potential mediated by
exchanging one charge boson, where the potential is multiplied by a
scale factor (1 − ζ0). The x dependence of excitation gaps observed by
ARPES for Bi2Sr2CaCu2O8+δ (Ref. 75) is indicated by the thick (blue)
dotted line. The open square represents the superconducting gap of
optimally doped La2−xSrxCuO4 estimated by ARPES measurements
(Ref. 76). The thin (black) dashed curve represents the density of
superconducting electrons ns.
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incoherent band induced by fluctuating bosons shares the total
spectral weight with the coherent band, which has the weight
ζ0. Therefore, for all the doping range, the rescaling of the
boson propagators is naturally interpolated by 1 − ζ0.

Then we compare our result with the experimentally
observed gap �. The result of � without rescaling of the
propagators given by the thick dashed curve in Fig. 14 shows
a rough qualitative agreement with the ARPES result obtained
from the single-particle excitation gap at low temperatures
(T = 14 K) for Bi2Sr2CaCu2O8+δ (Ref. 75) [dotted (blue)
line in Fig. 14]. However, our result without the rescaling
overestimates � around x = 0.3, where the superconducting
phase is not observed in any of the cuprates. On the other
hand, the single-particle excitation gap calculated by using
the rescaled boson propagator shows a suppression of �

around x = 0.3. The single-particle excitation gap � for
x ∼ 0.1 is consistent with the superconducting gap of
optimally doped La2−xSrxCuO4 estimated by ARPES
measurements76 (open square in Fig. 14). On the other hand,
the rescaled boson propagator appears to be still overesti-
mated for the overdoped region x ∼ 0.3. The origin of such
overestimated fluctuating charge bosons in our theory may
be ascribed to the approximation on the bosonic propagators
given in the Dyson equations shown in Fig. 5: Lifetime of the
coherent propagation of the fluctuating charge bosons is not
taken into account in our theory. There exist two possible
origins of the finite lifetime. The first is damping caused
by single-particle excitations, namely, the Landau damping.
When the doping increases, the motion of the coherent carriers
may disturb the propagation of the fluctuating charge bosons
seriously. The second is the separation of charge and spin
fluctuations, which becomes a good approximation for x 
 0.
Such separation of charge and spin fluctuations may become
worse for large x because the motion of the coherent carriers
mixes the charge and spin modes. The mixing of charge
and spin fluctuations also disturbs the propagation of the
fluctuating charge bosons and gives a finite lifetime. Therefore,
these factors neglected in our theory will suppress the charge
fluctuations and, consequently, the superconductivities.

The single-particle gap � decreases monotonically as the
doping x increases. It is consistent with ARPES measurements.
On the other hand, the critical temperature of the superconduc-
tivity Tc shows a peak around the x ∼ 0.15 in La2−xSrxCuO4

and exhibits a domelike structure as a function of x. To estimate
the tendency of Tc from our results for T = 0, we show the x

dependences of the density of superconducting electrons ns in
Fig. 14 (thin dashed curve) defined as

ns =
∣∣∣∣∣∣ζ0

T

Ns

∑
k,iεn

(cos kx − cos ky) [G(k,iεn)]13

∣∣∣∣∣∣ . (95)

The pairing mechanism proposed here includes the con-
tribution of the cofermion-quasiparticle pairs in addition to
the quasiparticle-quasiparticle pairs. This contribution of the
cofermion-quasiparticle pairs itself is an unexplored perspec-
tive introduced in this paper. Furthermore, it offers an insight
into one of the most interesting issues in the physics of the
cuprate superconductors, namely, relationship between the
pseudogap formation and the high-Tc superconductivity. The
cofermions induce the hybridization gap around the Fermi

level and, as a result, the pseudogap. The pseudogap formation
itself reduces the DOS around the Fermi level and is harmful
for the high-Tc superconductivity. However, the cofermions
support the high-Tc superconductivity through the cofermion-
quasiparticle pairing simultaneously. Therefore, the pseudo-
gap structure does not necessarily destroy the superconducting
pairing. The pseudogap formation is the other side of the coin
of the cofermion pairing contributing to the superconductivity.
This dual character offers an insight into the recent controversy
called dichotomy observed in ARPES measurements. 38,39

There exist two major pictures for the relationship between
the pseudogap and high-Tc superconductivity: One tells us
that the pseudogap is a precursor of the Mott gap62 and
coexists with the superconducting gap; the other claims that
preformed pairs of strong-coupling superconductivities induce
the pseudogap.77 The present theory offers an alternate route
of understanding that reconciles the dichotomy.

By exchanging one charge boson, attractive interactions are
induced for forward scattering channels. Even though there
is the strong on-site repulsion U , such attractive interactions
may favor anisotropic superconductivities, including not only
the dx2−y2 -wave superconductivity but also, for example, dxy-
wave and extended s-wave superconductivities. In the present
theory, however, a simple extended s-wave superconducting
parameter proportional to cos kx + cos ky does not develop.

D. Metal-insulator transitions

We propose a scenario for the filling control metal-Mott-
insulator transitions based on our theory. Before going into
our scenario, we note that there is a difficulty in our theory in
the small doping limit x → +0. In this limit, we have Fermi
pockets with small but finite volume depending on parameters
such as t ′/t and U/t . It is in contrast to the zero-doping limit
of the ordered insulators. In our theory, the weights of the two
bands split by the zero surface illustrated in Fig. 9 are not the
same. From Eq. (93), these weights are given as

1

Ns

∑
k

⎡⎣1

2
± d−

k√
(d−

k )2 + �2
k/γk

⎤⎦ . (96)

In the case of the antiferromagnetic ordered state, the counter-
parts of these weights are given by

1

Ns

∑
k

⎡⎣1

2
± ε1k

2
√

ε2
1k + �2

AFM

⎤⎦ (97)

from Eq. (49) and are the same because of

1

Ns

∑
k

ε1k

2
√

ε2
1k + �2

AFM

= 0. (98)

The weight compensation between these two bands split by
the zero surface is needed to reproduce ordered insulating
phases. On the other hand, our theory does not offer this weight
compensation. Therefore, our theory does not necessarily
predict that the small hole pockets seen in Fig. 10(a) shrink
to points at the small doping limit x → +0. In addition, in
the limit x → +0, the imaginary part of the quasiparticle
and cofermion self-energy, which is not taken into account
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in the present theory, may affect the weight compensation.
Higher-order corrections to the cofermion dynamics will also
affect the structure of the zero surface in this limit.

Despite these limitations, our result still suggests a possible
scenario for the filling control metal-Mott-insulator transitions.
If the small Fermi pockets seen in Fig. 10(a) shrink to the Fermi
points, the filling control metal-insulator transition occurs as
a topological transition. On the other hand, if the small Fermi
pockets do not shrink to the Fermi points, the quasiparticle
weight of the Fermi pockets becomes zero, in spite of the
finite volume of pockets. Then, the insulating state appears
because of the fading out of the coherent band. In both of the
two cases, a small but finite DOS is expected in the limit x →
+0. It should be noted that, anyway, a nontrivial topological
transition is expected to occur at a finite doping before the
system becomes insulating.

Here, we note that the order of the three quantum phase
transitions, namely, the Mott transition at x = 0 and the two
topological transitions at x ∼ 0.13 and 0.18 are all continuous
within the present calculated results, although in general, the
first-order transition is not a priori excluded. If a topological
quantum phase transition takes place as a continuous one at
T = 0, it becomes just a crossover at nonzero temperature
because the Fermi surface blurs at T > 0 and the topological
character of the Fermi surface loses well-defined meaning
at T > 0 anymore. It has been stressed in the literature31–34

that the sharp change between the overdoped and underdoped
regions is associated with some kind of quantum criticality
triggered by a quantum phase transition of the symmetry-
breaking order. In this conventional quantum criticality, the
phase transition usually extends to nonzero temperature as the
border of the symmetry-broken phase. However, the present
quantum criticality is completely different from this category,
where not the symmetry breaking but the topology change
drives the transition.78–81

V. SUMMARY AND DISCUSSIONS

In this paper, we have proposed a microscopic mechanism
for the Fermi-surface reconstruction and non-Fermi-liquid
behaviors emerging in proximity to the Mott insulators,
motivated by puzzles experimentally observed in the under-
doped cuprates. We construct our theory starting from one
of the simplest theories for correlated metals, namely, the
slave-boson mean-field theory for the Hubbard model by
Kotliar and Ruckenstein (KR). Then, a special emphasis is
placed on the role of extra charge dynamics on low-energy
spectra. We find that hidden cofermionic particles constructed
from composite fermions play a crucial role in addition to
the quasiparticles described by the previous KR theory. The
additional cofermions called holo-electrons and doublo-holes
represent substantial low-energy parts of the charge dynamics.

Thus, these introduced cofermions hybridize with the
quasiparticles and cause a hybridization gap represented by
zeros of the quasiparticle Green’s functions. As a result,
although the explicit symmetry breaking is absent, the gap
identified as the pseudogap of the cuprates naturally comes
out. Although the origin of the gap has an apparent similarity to
the case of the symmetry-broken phases such as commensurate
antiferromagnetic metals, in the sense that both of them can

be ascribed to a hybridization gap, the mechanism of the
hybridization and the partner of the hybridization are very
different from the simple symmetry breaking. The origin of
the gap is also different from the Mott gap itself. The large
Mott gap in the insulating phase is quickly replaced with the
present, much smaller, hybridization gap upon doping because
the LUSW above the hybridization gap emerges. In the result of
the cellular dynamical mean-field theory,25 this hybridization
gap coexists with the clear remnant of Mott gap structure
in a much larger energy scale. This indicates that the two
gaps are separated phenomena. Thus, the pseudogap or the
hybridization gap in the underdoped region is not really the
precursor of the Mott gap.

When the cofermion strongly hybridizes with the quasipar-
ticles and the resultant hybridization gap splits the quasiparti-
cle band around the Fermi level, Fermi-surface reconstruction
occurs in a natural way. The hybridization gap indeed leads
to a break-up of the Fermi surface into small hole pockets
around the nodal direction, and a phase topologically different
from the prediction of the weak-coupling picture emerges.
This phase realized in the underdoped region is separated by
a topological phase transition from the normal Fermi-liquid
phase in the overdoped region. Our result clearly shows
that an unconventional non-Fermi-liquid phase emerges in
the underdoped region. Such topological changes and an
emergence of a new phase are consistent with experimentally
observed “Fermi-arc” formation in hole-underdoped cuprates.

The topological quantum phase transition between the
conventional Fermi liquid and the non-Fermi liquid is a
continuous one at T = 0 within the present approximation.
This implies that it transforms to a crossover at nonzero
temperature because the continuous topological transition is
well defined only at zero temperature. In principle, it does
not exclude a possibility of the first-order transition of the
topological change, which extends to nonzero temperatures
with the critical end point at a nonzero temperature.80 The
present results do not support the existence of such a first-order
transition in agreement with the absence of the clear indication
of the first-order transition in the experiments.

Our formulation offers a concept for the “pseudogap”
phenomena observed in hole-underdoped cuprates. It proposes
that the pseudogap in the single-particle spectrum results
from the hybridization gap between the cofermions and
the quasiparticles. The part below the Fermi level has the
maximum in the antinodal region and has a structure similar
to the dx2−y2 symmetry, in agreement with the experimental
observation. The main part of the gap lies, however, above the
Fermi level. The total hybridization gap has the structure of
the s-wave gap.

Consequently, the characteristic energy scale of the pseudo-
gap is identified as that of the hybridization gap amplitude and,
thus, basically scaled by the bandwidth (kinetic energy) of the
bare electrons t multiplied by a numerical factor. Therefore,
the energy scale of the pseudogap has nothing to do either
with the Hubbard gap, the on-site Coulomb repulsion U , or
with the superexchange interaction J ∼ t2/U .

We have also numerically studied the relevance of our
theory in the realistic condition. For the on-site Coulomb
repulsion U large enough to create the Hubbard gap U � 10t

and small amount of hole doping x � 0.1, regarded as a
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relevant parameter for the high-Tc cuprates, the structure of the
momentum dependence and the amplitude of the pseudogap
below the Fermi level has a quantitative consistency between
the ARPES measurements for the hole-doped cuprates and
the present results. Doping dependence of the pseudogap
amplitude is also consistent with the experimental observation.

Reduction of the electronic density of states induced by
the pseudogap formation gives another consistency with the
experiments as observed as specific-heat coefficients. The
pseudogap formation in our theory also induces asymmetry
of the DOS around the Fermi level, which naturally explains
the asymmetric STM spectra.82,83 The overall consistency
supports that the cofermions, holo-electrons, and doublo-holes
are indeed a relevant object to be considered in the physics of
the cuprate superconductors.

The present theory has further consequences and predic-
tions for experiments. The hybridization gap basically has an
s-wave-like symmetry and a major part of the gap lies above the
Fermi level for the model of the hole-doped cuprates. Although
the present resolution limit of the inverse photoemission
does not allow determination of the detailed structure of the
unoccupied electronic states, we propose that our prediction of
this s-wave-like gap structure accompanied by the main part
of the LUSW lying above the hybridization gap can be tested
experimentally if some high-resolution measurements of the
unoccupied spectra are provided. The optical conductivity
σ (ω), especially mid-infrared peak and a long tail of σ (ω)
observed in the underdoped cuprates, indeed supports the
existence of such LUSW.37,68

So far, direct measurement of the cofermions appears to be
difficult because the dispersion of the cofermions corresponds
to the zeros of the quasiparticles, while the zeros are in general
hard to detect. In addition, the cofermion does not have a charge
and does not allow an electromagnetic detection. However, it
contributes to the entropy and thermal transport. Since the
electric conduction is contributed only from the quasiparticle,
while the thermal transport can arise from the cofermion as
well, we expect a serious breakdown of the Wiedeman-Franz
(WF) law. The WF law predicts that the ratio of the thermal
conductivity κ to the electric conductivity σ is equal to L0T ,
namely, L0 = κ/T σ , where L0 is a universal constant given
by L0 = (π2/3) · (kB/e)2, namely, the Lorenz number. On the
other hand, in our theory, the ratio L = κ/T σ is predicted
to be larger than L0 in proximity to Mott insulators because
the cofermions carry additional energy and contribute to κ .
Indeed, the breakdown of the Wiedeman-Franz law reported
recently in hole-underdoped cuprates84 supports the present
prediction.

We propose a scenario for the filling control metal-
Mott-insulator transitions in two dimensions based on the
introduced cofermions. We predict a pseudogap formation
and consequently a nontrivial change in the Fermi-surface
topology in the underdoped region. Then, the criticality of
the small Fermi pockets determines the nature of the Mott
transition if the transition is continuous. Two scenarios remain
possible: On the verge of the Mott transition, it may either
shrink to points before vanishing by keeping the quasiparticle
weight nonzero, or the quasiparticle weight decreases to vanish
by keeping a finite volume of the Fermi surface. In the
former case, the filling control metal-Mott-insulator transitions

occur as a topological one. The density of states remains
nonzero and finite on the verge of the transition because
of the two dimensionality. In the latter case, the effective
mass diverges. These two possibilities are essentially identical
to the two types discussed in the literature.85 Although the
present numerical accuracy is not sufficient for determining the
ultimate criticality, the shrinkage of the pocket and arc overall
supports the former scenario, while the reduction of the DOS
suggests only a part of the pocket contributes to low-energy
excitations as the arc. This agrees with the experimental results.
More detailed and accurate determination of the criticality is
left for future studies.

We also propose a mechanism for high-temperature super-
conductivity driven by the cofermion-quasiparticle pairing.
It offers a new insight into the relationship between the
pseudogap formation and the high-Tc superconductivity. The
cofermions introduced in this paper induce the hybridization
gap around the Fermi level and, as a result, the pseudogap.
This pseudogap formation itself reduces the DOS around the
Fermi level and destroys superconductivity. On the other hand,
the cofermions enhance the high-Tc superconductivity through
the cofermion-quasiparticle pairing, simultaneously. At the
present level of approximation, in the overdoped region, a
process exchanging one charge boson overestimates the charge
fluctuations and predicts much larger single-particle gap in
superconducting phases than in experimentally observed gaps.
It is left for future studies to correct such an overestimate
of charge fluctuations. In addition to one-charge-boson ex-
change processes, cofermion polarization will help the pairing
between quasiparticles, which is not taken into account
as a higher-order contribution in this paper. However, the
superconducting gap obtained from the present approximation
already reproduces the domelike structure as a function of the
doping concentration with a right order of magnitude if we
compare with the cuprates.

Although we focus on the hole-doped cuprates in this paper,
electron-underdoped cuprates are also interesting from the
viewpoint of the present cofermion theory. In the electron-
underdoped systems, our theory will predict the emergence
of two electron pockets centered at (π,0) and (0,π ) even
in the absence of antiferromagnetic long-range orders. Such
a Fermi-surface topology may reduce instabilities toward
antiferromagnetic orders, and will make dx2−y2 -wave super-
conductivities stable: The electron pocket formation prevents
the nesting of the Fermi surface, and allows an emergence
of full-gapped superconductors, but with the dx2−y2 -wave
symmetry, because the node lines run the momenta where
the original electron pockets are absent.

Here, we make some remarks in regard to the relationship
with other theoretical approaches. In contrast to our approach,
the high-energy charge degrees of freedom to do with the
UHB have often been integrated out to extract the low-energy
physics from the Hubbard model. The t-J model is a typical
effective model derived from such a treatment and has been
studied as a canonical model describing the doped Mott
insulator. The gauge theory based on the t-J model has
been intensively studied to explain the low-energy physics
of cuprate superconductors as doped spin liquids.66 Wen and
Lee86 proposed that a hole-doped spin-liquid state may exhibit
hole pockets. According to this theory, the optical or direct gap
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of this phase is d-wave-like: there is no optical gap along the
nodal direction. Although the gapless excitation is present in
the nodal direction by the electron-hole excitation through
the hole pocket even in our theory, the gauge-theory scenario
by Wen and Lee is, in contrast to our result, predicting that
a relatively small but nonzero amplitude of the optical gap
even along the nodal direction is superimposed, namely, a
s-wave-like optical gap should be visible between the two
bands separated by the hybridization gap. The s-wave-like
pseudogap is also supported in the previous numerical studies
by Stanescu and Kotliar23 and Sakai et al.25 in support of
the present theory. An earlier exact diagonalization study
without any bias has indicated that even the doped t-J
model has a similar s-wave-like pseudogap structure in
agreement with our theory.87 As we mentioned already, it is
desired to test against the two contradicting predictions of
our theory and the gauge theory by inverse photoemission
spectroscopies or by more sophisticated and high-resolution
experimental tools to measure the unoccupied states in the
future.

Another crucial difference between the present theory and
the gauge theory can be tested by the breakdown of the
Wiedeman-Franz law. In the gauge theory, the breakdown
is due to the contribution from the spinons.88 However, if
the arc structure is observed, the d-wave-like gap needs to
be developed by the flux fluctuations, which lead to the
confinement of a holon and a spinon generating a quasiparticle
in the nodal direction. It should recover the Wiedeman-Franz
law in this region of the arc formation. Therefore, at low
temperatures in the underdoped region, the Wiedeman-Franz
law should eventually be followed. On the contrary, in the
present case of the cofermions, the contribution continues even
at low temperatures and the breakdown of the Wiedeman-
Franz law is robust. Recent experimental results appear to
support our prediction.84,89

Integrating out the “high-energy”-charge degrees of free-
dom represented by the existence of a doublon thoroughly
leads to the ignorance and overlook of important aspects
of the low-energy spectrum of the Hubbard model. There
exist a variety of experimental facts that are not accounted
for by the t-J physics; an example is the estimate of the
LUSW by using Neff(ω) observed in the optical conductivity
measurement.37 Choy et al. have made a careful treatment
to extract the low-energy effective action, with the failure of
the t-J model kept in mind.90 They claim the weight transfer
among the coherent band, the LHB, and the UHB described
by hidden 2e bosons. In spite of the illuminating proposal,

their effective action could not be solved exactly. Approximate
evaluations of their theory show a soft gap behavior and predict
a semiconducting behavior in the “pseudogap phase,” where
resistivity ρ is expected to diverge as ρ ∝ T −1 with lowering
temperatures. In the present theory, the Fermi pocket appears
in the pseudogap phase in the underdoped region, say, for
x � 0.13. Therefore, we predict metallic conduction in the
pseudogap phase, in sharp contrast to the hidden 2e-boson
theory.

As the authors have already discussed in Ref. 27, the
formation of the cofermions shares profound similarity with
that of the excitions in semiconductors. In the so-called d-p
model for the cuprates, which contains both d electrons on
the copper sites and p electrons on the oxygen sites, it has
been claimed that the excitionic effects due to d-p interactions
strongly affects its excitation spectrum.91 The relationship
between excitonlike features of the cofermions and excitionic
effects studied in the d-p model are also desired to be clarified
in the future.

Our theory has been constructed to account for the charge
dynamics more seriously than the literature and proposed
the topological changes of the Fermi surface in proximity
to the Mott insulators. The reconstructed Fermi surface also
offers an unexplored avenue at smaller energy scale if it is
combined with other possible fluctuations such as spin and
superconducting fluctuations. Clarifying possible emergence
of antiferromagnetic orders in the small doping region x �
0.02 by using a unified scheme is left for future studies. It is also
left for future studies as to how the topological changes affect
various possible symmetry breakings such as time-reversal
symmetry breakings, stripe formation, and incommensurate
charge orders including phase separations. Experimentally
suggested nodal metallic behaviors should also be examined in
more detail. Our theory will give a new insight into emergence
of these competing orders, the high-Tc superconductivity, and
the anomalous metallic state.
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APPENDIX A: SELF-ENERGY FOR THE
COFERMIONS

Here, we calculate the self-energy for the cofermions in
Dyson equations (see Fig. 5).

The self-energy matrix in Eq. (63) is calculated by

�cd (k) = T 3

N3
s

∑
P,Q,R

∑
a,b=1,2

(g1σ g2σ )4
〈
βa

Qβb†
Q

〉[
tk+P tk+R〈φa†

Pσφc
Pσ 〉〈φb

Rσφd †
Rσ

〉〈f̂k+Qσ f̂
†
k+Qσ 〉

+(tk+R
)2〈φa†

Pσφb
Pσ 〉〈φc

Rσφd †
Rσ

〉〈f̂k+Q−P+Rσ f̂
†
k+Q−P+Rσ 〉], (A1)
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where we use vector notations, k = (iεn,k), Q = (iω�,P), Q = (iωm, Q), and R = (iωn,R). When we use the mean-field
propagators for the quasiparticle 〈f̂kσ f̂

†
kσ 〉, we obtain a simple analytic expression for the self-energy matrix as

�cd (k) = − 1

N3
s

∑
P,R

∑
a,b=1,2

(g1σ g2σ )4 tk+P tk+R〈φa†
Pσφc

Pσ 〉〈φb
Rσφd †

Rσ

〉

×
∑

Q

[
θ (εk+ Q − μ)Zab

− ( Q)

iεn − |εk+ Q − μ| − |λQ| + θ (μ − εk+ Q)Zab
+ ( Q)

iεn + |εk+ Q − μ| + |Q|
]

+ 1

N3
s

∑
P, Q,R

∑
a,b=1,2

(g1σ g2σ )4 (tk+R)2

[
θ (εk+ Q−P+R − μ)Zab

− ( Q)Wab
+ (P)Wcd

− (R)

iεn − |εk+ Q−P+R − μ| − |λQ| − |�P | − |�R|

+ θ (μ − εk+ Q−P+R)Zab
+ ( Q)Wab

− (P)Wcd
+ (R)

iεn + |εk+ Q−P+R − μ| + |Q| + |�P | + |�R|
]

, (A2)

where the propagators for the spin bosons are given by

−〈φa†
Qφb

Q

〉 = Wab
+ ( Q)

iωm − |�Q| − Wab
− ( Q)

iωm + |�Q| , (A3)

−〈βa
Qβb†

Q

〉 = Zab
+ ( Q)

iωm − |Q| − Zab
− ( Q)

iωm + |λQ| , (A4)

where the coefficient matrices Wab
± and Zab

± are given as(
W 11

± ( Q) W 12
± ( Q)

W 21
± ( Q) W 22

± ( Q)

)
= ±1

2

(
1 0
0 −1

)
− δλ − a1

|ε|
2 εQ

2�Q

(
1 0
0 1

)
− b1

|ε|
2 εQ

2�Q

(
0 1
1 0

)
, (A5)

(
Z11

± ( Q) Z12
± ( Q)

Z21
± ( Q) Z22

± ( Q)

)
= δλ + δU/2

2σQ

(
1 0
0 1

)
± 1

2

(
1 0
0 −1

)
− c1

|ε|
2 εQ

2σQ

(
1 0
0 1

)
− d1

|ε|
2 εQ

2σQ

(
0 1
1 0

)
. (A6)

The parameters used in the above equations are given as δλ = λ(1) − λ(2),δU = U − 2λ(2), |ε| = | T
Ns

∑
k,iεn

εkG(f )
σ (k,iεn)|,

�Q =
√(

δλ − a1
|ε|
2

εQ

)2

− b2
1

|ε|2
4

ε2
Q, (A7)

σQ =
√(

λ(1) + δU

2
− c1

|ε|
2

εQ

)2

− d2
1

|ε|2
4

ε2
Q, (A8)

Q = δU

2
+ σQ, (A9)

λQ = −δU

2
+ σQ . (A10)

The coefficients a1, b1, c1, and d1 are determined as,

a1 = e2
0 + d

2
0 + 〈̃ei ẽ

†
j 〉 + 〈d̃†

i d̃j 〉, (A11)

b1 = 2e0d0 + 〈̃ei d̃j 〉 + 〈d̃†
i ẽ

†
j 〉, (A12)

c1 = 2p2
0 + 〈p̃†

iσ p̃jσ 〉 + 〈p̃iσ p̃
†
jσ 〉, (A13)

d1 = 2p2
0 + 〈p̃iσ p̃jσ 〉 + 〈p̃†

iσ p̃
†
jσ 〉, (A14)
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where we only take into account nearest-neighbor pairs for (i,j ).
To derive Eq. (A2), we also use following relations:

T
∑
iωm

1

iεn + iωm − ξ

1

iωm − λ1
= θ (ξ )θ (−λ1) − θ (−ξ )θ (λ1)

iεn − ξ + λ

(A15)

and

T 3
∑
iω�

∑
iωm

∑
iωn

1

iεn + iωm − iω� + iωn − ξ

1

iωm − λ1

1

iω� − λ2

1

iωn − λ3

= θ (ξ )θ (−λ1)θ (λ2)θ (−λ3) − θ (−ξ )θ (λ1)θ (−λ2)θ (λ3)

iεn − ξ + λ1 − λ2 + λ3
. (A16)

Derivatives of �cd (k) with respect to iεn give γk after taking a limit iεn → 0, as is mentioned in Sec. III C. Here we give the
derivatives as

∂�cd

∂iεn

∣∣∣∣
iεn→0

= 1

N3
s

∑
P,R

∑
a,b=1,2

(g1σ g2σ )4 tk+P tk+R〈φa†
Pσφc

Pσ 〉〈φb
Rσφd †

Rσ 〉

×
∑

Q

[
θ (εk+ Q − μ)Zab

− ( Q)

(|εk+ Q − μ| + |λQ|)2
+ θ (μ − εk+ Q)Zab

+ ( Q)

(|εk+ Q − μ| + |Q|)2

]

− 1

N3
s

∑
P, Q,R

∑
a,b=1,2

(g1σ g2σ )4 (tk+R)2

[
θ (εk+ Q−P+R − μ)Zab

− ( Q)Wab
+ (P)Wcd

− (R)

(|εk+ Q−P+R − μ| + |λQ| + |�P | + |�R|)2

+ θ (μ − εk+ Q−P+R)Zab
+ ( Q)Wab

− (P)Wcd
+ (R)

(|εk+ Q−P+R − μ| + |Q| + |�P | + |�R|)2

]
. (A17)

APPENDIX B: HYBRIDIZATION

The amplitudes of hybridization between quasiparticles and cofermions

�T
ij = (�(ψ)

ij ,�
(χ)
ij

)T
(B1)

are given as (�1
k,�

2
k) = (�(ψ)

k ,�
(χ)
k ). Its Fourier transformation is given as

�d
k = T 2

N2
s

∑
P,R

∑
q

∑
a,b,c=1,2

tk+R
(
g2

1σ g2
2σ

)2 〈
βa

P−Rβb†
P−R

〉〈φa†
Pσφb

Pσ 〉〈φd
Rσφc†

Rσ

〉
bc

0tq+R〈f̂ †
qσ f̂qσ 〉, (B2)

where we use vector notations b0 = (b1
0,b

2
0) = (e0,d0), β i = (β1

i ,β
2
i ) = (̃ei ,d̃

†
i ), and φi = (φ1

i ,φ
2
i ) = (p̃iσ ,p̃

†
iσ ). Here, if we use

the mean-field propagators for the quasiparticle, we obtain

�d
k = − 1

N2
s

∑
P,R,q

∑
a,b,c=1,2

tk+R
(
g2

1σ g2
2σ

)2
tq+Rnq

×
[
Zab

+ (P − R)Wab
− (P)Wdc

+ (R)

|P−R| + |�P | + |�R| + Zab
− (P − R)Wab

+ (P)Wdc
− (R)

|λP−R| + |�P | + |�R|
]

, (B3)

where we use the following relation:

T 2
∑
iω�

∑
iωn

1

iω� − iωn − λ1

1

iω� − λ2

1

iωn − λ3
= θ (λ1)θ (−λ2)θ (λ3) + θ (−λ1)θ (λ2)θ (−λ3)

λ1 − λ2 + λ3
. (B4)

Equation (B3) will help us to estimate the amplitude of the pseudogap in our theory.
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