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Itinerant spin excitations in SrFe2As2 measured by inelastic neutron scattering
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We report inelastic neutron-scattering measurements of the magnetic excitations in SrFe2As2, the parent of
a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of
∼260 meV. The spectrum calculated from a J1-J2 model does not accurately describe our data, and we show
that some of the qualitative features that the model fails to describe are readily explained by calculations from
a five-band itinerant mean-field model. In particular, the high-energy part of the spectra recorded above TN do
not differ significantly from those at low temperature, which is explained by the itinerant model and which has
implications for theories of electronic nematic and orbital ordering.
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I. INTRODUCTION

The new iron-based superconductors show an in-
triguing interplay between structure, magnetism, and
superconductivity.1–3 It is likely that the paradigm to under-
stand these materials will be rather different from that used to
approach the cuprate superconductors, since the parent com-
pounds for iron-based superconductors are bad metals, rather
than Mott insulators. Theoretical estimates suggest that the
electron-phonon interaction is not the primary component of
the pairing interaction in the iron-based superconductors,4 and
most attention is now on magnetic pairing mechanisms.5 Much
theoretical and experimental effort has therefore been devoted
to understanding the magnetism in this family of materials.6 A
key issue is whether the magnetism is better described within
a weak-coupling (itinerant)7 or strong-coupling (localized)8

picture.
One of the most direct ways to identify the character of

the magnetism is to study the magnetic excitation spectrum
by inelastic neutron scattering (INS). Previous INS measure-
ments of the antiferromagnetic (AFM) 122-arsenides XFe2As2

(where X is an alkali-earth metal) have been interpreted in
terms of linear spin-wave theory, predicated on local-moment
J1-J2 models.9–11 These models include nearest-neighbor
(J1) and in-plane diagonal next-nearest-neighbor (J2) Fe-Fe
exchange interactions. A particularly interesting result from
this approach when applied to CaFe2As2 is the very large
difference between J1a and J1b, the two in-plane nearest-
neighbor exchange parameters.11 Various mechanisms have
been proposed to explain this anisotropy, including electronic
nematic ordering,12 orbital ordering,13 and the crystal structure
itself.14 An important piece of information, lacking up to
now, is whether the anisotropy is modified on warming above
the combined magnetic and structural transition temperature
(TN,s), i.e., how the magnetic spectrum is modified on the
change of symmetry between low-temperature orthorhombic
and high-temperature tetragonal phases. Recent resistivity
measurements of detwinned samples of Ba(Fe1−xCox)2As2

show that there exists a large electronic anisotropy that persists
above TN,s.15 Previous INS measurements of CaFe2As2 above
TN,s (Ref. 16) probed excitations only up to ∼60 meV. Given

the possible role of magnetic fluctuations in the origin of
the superconductivity of iron pnictides, further data on the
magnetic spectrum in the tetragonal phase are of great interest.

The questions we set out to answer here are, first, are
the magnetic interactions in SrFe2As2 anisotropic in the
ordered state, as in other 122-arsenides; second, do the spin
excitation spectra change significantly on warming above
TN,s; and third, how robust is the local-moment description of
the INS spectra? The INS results we describe here probe the
magnetic excitations throughout the Brillouin zone (BZ) over
the energy range 5 < E < 260 meV, below and above TN,s.
We find that within a localized model the magnetic exchange
parameters are strongly anisotropic below and above TN,s, and
that an itinerant model gives the better qualitative description
of the data. The form of the data is not significantly altered on
warming above TN,s.

II. EXPERIMENTAL DETAILS

Single crystals of SrFe2As2 were grown by the self-flux
method.17,18 The crystals are highly homogeneous, as verified
by microprobe analysis, a well-defined magnetic-structural
transition temperature of TN,s = 192 K, and by the observation
of quantum oscillations from samples from the same growth.18

On cooling through TN,s, the crystal symmetry changes
from I4/mmm to Fmmm, and an AFM structure develops
with propagation vector QAFM = (0.5,0.5,1) referring to the
I4/mmm unit cell [wave vectors are given in reciprocal-lattice
units (rlu)]. As the magnetic dynamics in SrFe2As2 are
relatively two dimensional we will henceforth give only in-
plane wave-vector components. Further, from now on we index
wave vectors with respect to the square unit cell formed by
the Fe atoms in the paramagnetic phase (aFe = bFe = 2.8 Å).
In this convention QAFM = (0.5,0). The unit cells and their
corresponding Brillouin zones are shown in Fig. 1.

The INS experiments were performed on the MER-
LIN time-of-flight (TOF) chopper spectrometer at the ISIS
facility.19 Twenty-one single crystals were co-aligned to give
a mosaic sample of mass 5.4 g, with a uniform mosaic of
4◦ (full width at half maximum). Spectra were recorded at
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FIG. 1. (Color online) (a) Projection of the real-space crystal
structure onto the ab plane, with As atoms omitted for clarity. The
solid (black) square is the unit cell of the Fe sublattice, the dashed
(blue) square is the orthorhombic unit cell (space group Fmmm),
and the dotted (red) diamond is the tetragonal I4/mmm unit cell.
(b) Corresponding Brillouin zones. Referring to the Fe sublattice, the
standard square-lattice symmetry points are � = (0,0), X = (0.5,0),
and M = (0.5,0.5), and X is the AFM ordering wave vector. The
arrows labeled α and β indicate the direction of one-dimensional
(1D) cuts and 2D slices shown in Figs. 2 and 3.

temperatures of 6,212 (TN,s + 20 K), and 300 K with neutrons
of incident energy Ei = 50, 100, 180, 300, and 450 meV. The
sample was aligned with the c axis parallel to the incident
neutron beam, and the a axis horizontal. Data from equivalent
positions in reciprocal space were averaged to improve
statistics. The scattering from a standard vanadium sample
was used to normalize the spectra, S(Q,E), and place them on
an absolute intensity scale, with units mb sr−1 meV−1 f.u.−1,
where 1 mb = 10−31 m2 and f.u. stands for formula unit of
SrFe2As2.

III. RESULTS AND ANALYSIS

The general form of the scattering at T = 6 K � TN,s is
illustrated by the energy-momentum slice in Fig. 2(a). The
magnetic spectrum is similar to that of CaFe2As2,10,11 with
intensity dispersing out of the QAFM positions. The dispersion
is revealed in more detail in Fig. 3, which presents wave vector
scans at four different energies. A single peak centered on
QAFM = (0.5,0) at low energies develops into a pair of peaks
at ∼75 meV, which continue to separate and broaden with
increasing energy. These peaks converge on Q = (0.5,0.5)
at E ∼ 230 meV. Figures 2(b) and 2(c) show that at T =
212 K > TN,s and T = 300 K � TN,s the spectrum remains
very similar to that of the ordered state, which means that
strong AFM correlations persist well into the paramagnetic
phase.

Figure 4 provides a comparison of the spectra recorded at
6, 212, and 300 K for wave vectors near (0.5,0) and (0.5,0.5).
The signals at 212 and 300 K are somewhat broader than that at
6 K, but otherwise there are no marked differences associated
with the change of crystal structure, even well above TN,s.

We first compare the data with the linear spin-wave spec-
trum calculated from a local-moment Heisenberg Hamiltonian.
This model is the standard one used to interpret the spin
excitations in the parent 122 compounds,9–11 and is described
in detail in the Appendix. The key exchange parameters in this
model are J1a , J1b, and J2, which define the exchange along

FIG. 2. (Color online) Energy–wave-vector slices through the
INS datasets at (a) T = 6 K, (b) T = 212 K, and (c) T = 300 K.
Panels (d) and (e) show simulations of the spectrum over the same Q
and energy range using a local-moment spin-wave model with J1a �=
J1b, J1b < 0, and J1a = J1b, respectively. Panels (f) and (g) show
the calculated χ ′′(Q,E) for the AFM phase and the paramagnetic
phase, respectively; both taken from Ref. 27, and convoluted with
the instrumental resolution, with the energy rescaled by a factor
0.85. Data are from the run with Ei = 450 meV, and the intensity
of both data and simulations have been multiplied by E to improve
clarity. The Fe form factor has been included in the simulations.
Dashed lines in panels (d) and (e) indicate the simulated dispersion
relations for the high-energy parameters (see caption to Fig. 3) and for
J1a = J1b, respectively. Dashed lines in panels (f) and (g) are the loci
of maximum intensity for the calculated χ ′′(Q,E). (The calculated
low-energy incommensurate behavior in (g) is discussed in Ref. 27
and likely arises from limitations of the model. See text for further
discussion of this point.)

the a and b directions and the ab diagonal, respectively, as
well as interplanar exchange Jc.

To fit data of the type presented we incorporated the
resolution of the spectrometer in (Q,E) space, since the widths
of peaks in the scattering are often very strongly coupled to
the instrumental resolution, which is itself a function of Ei.
We used the TOBYFIT software,20 which uses Monte Carlo
methods to account for the effects of the (Q,E) resolution of
TOF spectrometers. We fitted the measured scattering cross
section, in the form of a set of one-dimensional cuts, over
the entire energy range for which magnetic excitations were
extant, convoluting the cross section with the spectrometer
resolution.

Neutron inelastic-scattering measurements of SrFe2As2

performed on a triple-axis spectrometer with relatively low-
energy transfers21 reveal a single gap of 6.5 meV in the
excitation spectrum. There is no evidence for two gaps, so
we set the two modes described by Eq. (A2) in the Appendix
to be degenerate, i.e., C = 0 in Eq. (A3) and the in-plane
and out-of-plane single-ion anisotropy terms are equal (Kab =
Kc = K). The single-ion anisotropy terms are thus determined
by the size of the gap �, which is given by

�2

16S2
= K2 + [J1a + 2J2 + Jc]K. (1)

214519-2



ITINERANT SPIN EXCITATIONS IN SrFe2As2 . . . PHYSICAL REVIEW B 83, 214519 (2011)

−0.25   0 0.25 0.5
0.6

0.8

1

1.2

1.4

1.6

(0.5−K,0.5+K) [r.l.u.]

160<E<180 meV(d)

0.3

0.4

0.5

0.6

0.7

0.8

0.9200<E<220 meV(b)

75<E<90 meV(c)

(0.5,K) [r.l.u.]
−0.5 −0.25   0 0.25 0.5
1

2

3

4

5

103<E<124 meV(a)

S
(Q

,E
) 

[m
b 

sr
−1

 m
eV

−1
 f.

u.
−1

]

1.5

2

2.5

3

3.5

4

FIG. 3. (Color online) Wave-vector cuts through the data taken
at T = 6 K with incident neutron energies (c) Ei = 180 meV; and
(a), (b), and (d) Ei = 450 meV. Solid (red) and dashed (blue) lines
are calculated from fits to the local-moment J1a − J1b − J2 model
with the low-energy and high-energy best-fit parameters, respectively.
For lower energies best fits were obtained with Seff = 0.30 ± 0.01,
SJ1a = 30.8 ± 1 meV, SJ1b = −5 ± 5 meV, SJ2 = 21.7 ± 0.4 meV,
and SJc = 2.3 ± 0.1 meV. This is in contrast to higher energies,
where we found Seff = 0.69 ± 0.02, SJ1a = 38.7 ± 2 meV, SJ1b =
−5 ± 5 meV, and SJ2 = 27.3 ± 0.7 meV. SJc cannot be determined
from cuts taken above the maximum of the dispersion along (0,0,L)
of ∼53 meV. Dotted (black) lines indicate the estimated nonmagnetic
scattering at Q = (1,0).

Because the c axis was parallel to the incident neutron
beam, the (0,0,L) component of the spectrum was coupled
to time of flight, and hence to excitation energy. However,
by using several Ei one can determine the dispersion along
(0,0,L), and hence determine the interlayer exchange Jc. We
found, as expected from the calculated response functions,9

that at low temperature the cross section is a maximum
for odd-integer values of L, and minimum for even-integer
values, and that SJc = 2.3 ± 0.1 meV. For energies above
the BZ boundary energy along (0,0,L), for which K = 0,
{16(2SJ2 + SJ1a)SJc}1/2 � 53 meV, the INS spectrum is
almost independent of L. Thus the fits performed where only
data above ∼100 meV were considered could not constrain
Jc, in which case we fixed Jc to the value determined from the
low-energy fits.

IV. DISCUSSION

Superficially, the spin-wave model provides a reasonable
overall description of the low-temperature data, as illustrated
in Fig. 2(d). One robust outcome from the analysis was a large
difference between J1a and J1b (see the caption to Fig. 3),
similar to the anisotropy found in CaFe2As2.11 Another clear
finding was that the damping term in the spectrum is energy
dependent, with a steady increase at low energies followed by
a rapid increase at about 80 meV.

However, the spin-wave model fails in two important
respects. First, good fits could only be achieved by fit-
ting the lower energy (E � 100 meV) and higher energy
(E � 100 meV) parts of the low-temperature INS spectra
separately—the low-energy parameter set is unable to account
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FIG. 4. (Color online) Energy cuts at constant in-plane Q through
the data taken with Ei = 450 meV. The left-hand panels show data
at T = 6 K, with (a) Q = (0.5,0.15) and (d) Q = (0.5,0.5). The
middle panels (b) and (e) show data at T = 212 K at the same
two wave vectors. The right-hand panels (c) and (f) show data at
T = 300 K, also at the same two wave vectors. Solid (red) and dashed
(blue) lines are calculated from the low-energy and high-energy
fit parameters, respectively. The dotted (black) lines indicate the
background, which is zero here because the nonmagnetic background
signal from Q = (1,0) has been subtracted from these data for clarity.
The calculations for different temperatures differ only in the damping
fitted—the exchange parameters are the same for all six cuts.

for the existence of an appreciable signal above ∼200 meV, as
seen in Figs. 3(b) and 4(d), while the high-energy parameters
predict that the spin-wave branches below ∼150 meV are
unresolved, inconsistent with the data in Figs. 3(a) and 3(c).
Second, the high-temperature spectra are inconsistent with the
tetragonal symmetry, which constrains J1a = J1b for T > TN,s.
This is illustrated in Fig. 2(e), which shows that the spin-wave
spectrum when J1a = J1b is gapless at (0.5,0.5). The origin
of this softening is frustration. When J1a = J1b, the nearest-
neighbor interactions are frustrated. The AFM structure can
then be regarded as two decoupled, interpenetrating AFMs,
each on a square lattice of dimensions

√
2aFe × √

2aFe, the
real space and Brillouin zone of which are shown as dotted
(red) lines in Fig. 1. The magnetic unit cell and corresponding
magnetic Brillouin zone for the uncoupled AFMs are indicated
by the dashed (blue) squares in Figs. 1(a) and 1(b). The wave
vectors X = (0.5,0), and M = (0.5,0.5) are both magnetic
zone centers for the uncoupled AFMs, and therefore equivalent
by symmetry. For the Fe sublattice, however, X and M are
not equivalent by symmetry, and M is on the magnetic zone
boundary for an itinerant AFM with QAFM = (0.5,0). So the
fact that the spin-wave energy goes to zero at (0.5,0.5) for the
tetragonal structure is purely a property of the local-moment
treatment of the magnetic interactions.

These results raise the question as to whether there
exists a mechanism that maintains an anisotropic exchange
coupling (J1a �= J1b) in the paramagnetic phase, or whether
the local-moment model must be abandoned. One possible
mechanism is electronic nematic order, which has been widely
discussed in connection with anisotropic properties of several
other classes of strongly correlated electron systems.22–24 The
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existence of an electronic nematic state has recently been
proposed to explain anisotropy in the in-plane resistivity15

and elastic properties25 of iron pnictides. In some cases the
electronic nematic order is predicted to persist above TN,s,12

although by only a few degrees at most. Thus any evidence of
broken symmetry above TN,s is unlikely to be due to nematic
order directly, but could perhaps be ascribed to nematiclike
fluctuations, as in Ref. 25, in which it is suggested that nematic
fluctuations might persist up to room temperature. Our higher
temperature measurements were performed at both 20 K above
TN and room temperature, and as can be seen in Figs. 2(b) and
2(c), and Fig. 4, the neutron-scattering spectra are very similar.
Although one might expect some change in the spectra over
such a wide temperature range, we cannot completely rule out
the existence of nematic fluctuations.

Orbital ordering has also been suggested to explain the
anisotropy.13 In this case it has been predicted that a spin-wave
mode would exist at high energies at Q = (0.5,0.5). The
same calculations also indicate that on warming the energy
of this mode softens slightly, and the peak height of the
dynamical response function Sαβ (Q,E) decreases rapidly. The
broadening and lack of appreciable softening of the mode at
Q = (0.5,0.5) agree well with our data. However, as shown in
Figs. 4(c)–4(e), the peak intensity is essentially unchanged, at
variance with the calculation. Note that in Ref. 13 the orbital
order parameter is treated as an Ising-like parameter, so it
is possible that if one considered instead a case in which
there was partial orbital polarization the form of Sαβ(Q,E)
vs temperature may be altered.

If the local-moment model cannot be reconciled with
our data, as seems likely, then what about itinerant-electron
models,26,27 or hybrid models that combine both local mo-
ments and itinerant electrons?28 In order to capture the key
features of the data it is likely that a relatively detailed
model will be required. Indeed, a comparison of the calculated
χ ′′(Q,E) from a minimal band model26 shows that it does
not provide a good description of our data, except for
� 50 meV.

However, a mean-field model based on a more realistic five-
band structure27 appears to give quantitatively good agreement
with some of the features observed here. We illustrate this
in Figs. 2(a) and 2(f), which show the low-temperature INS
data together with the calculated dynamical susceptibility
χ ′′(Q,E), convoluted with our instrumental resolution. We
also over-plot the locus of maximum intensity from the itin-
erant model calculation. This curve is rather more structured
than the smooth dispersion curves shown in Figs. 2(d) and
2(e), with several abrupt changes of gradient, which would
of course be parametrized in a local-moment treatment by
exchange parameters that changed with energy. The energy
scale of the calculated χ ′′(Q,E) has been changed by a factor
∼0.85 compared to the published calculation. This rescaling
is likely due to the fact that in a mean-field approximation
the energy scale typically needs to be renormalized down
due to correlation effects not included in the model. The
calculations in Ref. 27 were performed with a Coulomb
interaction U = 1.2 eV and Hund coupling J = 0.22 eV,
chosen to yield the observed ordered moment of 0.8μB. There
has, however, been some debate as to the strength of the

electron correlations, as characterized by U and J , in iron
pnictides.29–31

Fine tuning of the model parameters, i.e., U and J , would
no doubt improve the description of the data, but the present
set seems to work reasonably well. Thus the spin fluctuation
spectrum of SrFe2As2 that we measured indicates that this
122-arsenide exhibits rather weak electron correlations. In
addition we note that the calculations from Ref. 27 show that
χ ′′(Q,E) does not soften at Q = (0.5,0.5) in the paramagnetic
phase [Fig. 2(g)], which is also in agreement with our data
[Fig. 2(b)]. However, as noted in the caption of Fig. 2, the
itinerant model of Ref. 27 does have some shortcomings,
in particular the form of the scattering at low energies
in the paramagnetic phase. The calculation yields a signal
at an incommensurate wave vector, which is not seen in
the data. This incommensurability most likely arises from
partial nesting in the paramagnetic band structure used in
the mean-field calculation. Thus in order to obtain a better
agreement between calculations and our results one would
need to use a more detailed, experimentally determined,
band structure, and also perhaps go beyond the mean-field
approximation.

The key advantages of the itinerant model are thus that
(i) it results in a more structured signal, as observed, which
the local-moment model can only explain with discontinuous
exchange parameters; (ii) it gives an explanation, in the form of
particle-hole excitations, for the energy-dependent damping;
and (iii) one does not need to invoke further phenomenology
to explain the absence of a soft mode at Q = (0.5,0.5) in the
paramagnetic phase.

As mentioned above, there have been proposed recently
hybrid models that combine both local moments and itinerant
electrons.28 In the AFM phase the calculations yield a high-
energy mode at Q = (0.5,0.5), as we observe. They also
yield a rather more structured dispersion relation than a
straightforward local-moment treatment, which also qualita-
tively agrees with our measurements. It is not clear, however,
how the spectra would change on warming above TN,s, which
is a crucial discriminant between local-moment and itinerant
models.

V. CONCLUSIONS

In conclusion, our analysis shows that although superfi-
cially a local-moment model can be used to explain the nature
of the spin fluctuations in SrFe2As2, close examination shows
that it fails in several respects. In particular the data cannot
be fitted with a single parameter set, and a soft mode does
not appear at Q = (0.5,0.5) on warming above TN,s. On the
other hand, an itinerant model appears to be able to explain
both of these features. Thus it is not necessary to invoke further
symmetry breaking, such as electronic nematic or orbital order,
to explain the lack of soft mode at Q = (0.5,0.5).
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APPENDIX: LOCAL-MOMENT SPIN-WAVE ANALYSIS

The local-moment Hamiltonian used in the linear spin-wave
analysis is

H =
∑
〈jk〉

JjkSj · Sk+
∑

j

{
Kc

(
S2

z

)
j
+Kab

(
S2

y − S2
x

)
j

}
.

(A1)

The first summation is over nearest-neighbor and next-
nearest-neighbor pairs with each pair counted only once.
The Jjk are exchange parameters J1a , J1b, and J2, along
the a and b directions and the ab diagonal, respectively, as
well as interplanar exchange Jc. We also include in-plane
and out-of-plane single-ion anisotropy constants Kab and
Kc. Diagonalization of Eq. (A1) leads to two nondegenerate
branches with dispersion9

h̄ω1,2(Q) =
√

A2
Q − (C ± DQ)2, (A2)

where

AQ = 2S{J1b[cos(Q · b) − 1] + J1a + 2J2 + Jc}
+ S(3Kab + Kc),

C = S(Kab − Kc),

DQ = 2S

{
J1a cos(Q · a) + 2J2 cos(Q · a) cos(Q · b)

+ Jc cos

(
Q · c

2

)}
. (A3)

Note that in Eq. (A3) a and b are the basis vectors of the Fe
square lattice, whereas in Ref. 9 the corresponding equations
are given with respect to the Fmmm space group. The in-plane
cell parameters for the Fmmm space group are twice those of
the Fe square lattice, as shown in Fig. 1(a). Note also that in
Ref. 9 a factor of two was missed from the term containing Jc

in the equation for DQ.
The response functions per SrFe2As2 formula unit for

magnon creation, Sαβ(Q,ω), which relate to the neutron-
scattering cross section,32 are given by9

Syy(Q,ω) = Seff
AQ − C − DQ

h̄ω1(Q)
{n(ω) + 1}δ[ω − ω1(Q)],

Szz(Q,ω) = Seff
AQ + C − DQ

h̄ω2(Q)
{n(ω) + 1}δ[ω − ω2(Q)],

(A4)

where Seff is the effective spin and n(ω) is the boson occupation
number. Only the transverse correlations (yy and zz for
SrFe2As2) contribute to the linear spin-wave cross section.
In linear spin-wave theory Seff = S, but we keep them distinct
here because in the analysis the natural independent parameters
are the energies SJ1a,SJ1b, . . . SKab,SKc and the effective
spin Seff of the fluctuating moment in the local moment
approximation. To account for the finite lifetimes of the
excitations we replace the δ functions in Eq. (A4) by damped
harmonic oscillator functions.33 Eqs. (A2-4) were used to
calculate the neutron scattering cross-section using Ref. 9,
Eq. (4).
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