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Diagrammatic quantum Monte Carlo solution of the two-dimensional cooperon-fermion model
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We investigate the two-dimensional cooperon-fermion model in the correlated regime with a continuous-time
diagrammatic determinant quantum Monte Carlo algorithm. We estimate the transition temperature Tc, examine
the effectively reduced band gap and cooperon mass, and find that delocalization of the cooperons enhances the
diamagnetism. When applied to diamagnetism of the pseudogap phase in high-Tc cuprates, we obtain results in
qualitative agreement with recent torque magnetization measurements.
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I. INTRODUCTION

The cooperon-fermion model (for a review, see Ref. 1)
is a basic model for superconductivity that has been widely
adopted to explain the BCS-BEC crossover in ultracold
fermionic atomic gases1–3 and high-Tc superconductivity.1,4–14

The resonantly paired fermions, or cooperons, in this model
can either be locally bound pairs of small polarons due to
extremely strong electron-phonon coupling,15,16 or localized
Cooper pairs due to strong local pairing, as might be the
case in high-Tc superconductors,12 or molecular bosons in
ultracold atoms.1–3 The potential existence of finite-energy
cooperons with a local attraction was also put forward a few
years ago in a simple semiconductor system.17 One recent
work based on the four-leg ladder Hubbard model18 as well
as earlier studies in the quasi-two-dimensional (quasi-2D)
ladder Hubbard model19 reveal the important role of the
cooperon excitations in the transition from insulating state
to superconducting state.

In cuprates, the interplay between the finite-energy
cooperon excitations around the antinode and the truncated
Fermi surface around the node has recently been proposed as
a possible mechanism for the superconductivity in a two-gap
scenario.20,21 The dominant underlying mechanism for driving
superconductivity in this model is the two scattering electrons

involving a virtual cooperon c↑,k + c↓,−k
bk=0−−→ c↑,k′ + c↓,−k′ .

Compared with the attractive Hubbard model, the cooperon-
fermion model has much richer physics since it has the com-
plete dynamical information of the interaction between two
fermions and the delocalization of cooperons with decreasing
temperature.

So far, most work on this model has been done at the
mean-field level, with either the T -matrix method or various
other methods going beyond simple mean-field theory by
including more diagrams,1 but there have been few unbiased
calculations. A recent exact diagonalization study of this model
was limited by small sizes and special geometries.22 A direct
quantum Monte Carlo simulation usually suffers from a sign
problem,23 except for certain models and algorithms, such as
determinant quantum Monte Carlo simulations of the attractive
Hubbard model.

In this paper, we simulate the two-dimensional
cooperon-fermion model using a continuous-time

diagrammatic determinant quantum Monte Carlo method
(DDQMC). The Hamiltonian has the form

H =
∑
σ,k

(c†k,σ ε
f

k ck,σ + b
†
kε

b
kbk) + U

∑
i

(c†i,↑c
†
i,↓bi + H.c.),

(1)

where c†σ (cσ ) is the fermionic creation (annihilation) operator
with spin σ = {↑ ,↓} and b† (b) is the bosonic creation
(annihilation) operator of a cooperon. The interaction term
U leads to the s-wave pairing of fermions mediated by
the originally localized cooperons with a band gap � and
the delocalization of cooperons at low temperatures. The
bare dispersions are ε

f

k = 2tf [2 − cos(kx) − cos(ky)] + μ and
εb
k = 2tb[2 − cos(kx) − cos(ky)] + �. It is a trivial generaliza-

tion to include attractive interactions between the fermions.
By integrating out the bosonic degrees of freedom, an

effective action for the fermionic part can be obtained, which
has a form similar to the attractive Hubbard model but with
full dynamic properties:

Seff
f (ψ̄σ ,ψσ ) =

∫ β

0
dτ

∑
k,σ

ψ̄k,σ

(
∂τ + ε

f

k

)
ψk,σ

+U 2
∫ β

0

∫ β

0
dτ dτ ′ ∑

i,i ′
ψ̄i,τ,↑ψ̄i,τ,↓

×G
b,0
ri−ri′,τ−τ ′ψi ′,τ ′,↓ψi ′,τ ′,↑, (2)

where G
b,0
ri−ri′ ,τ−τ ′ is the bare bosonic Green’s function. The

attractive Hubbard model can be obtained by approximating
U 2G

b,0
ri−ri′ ,τ−τ ′ = UHδi,i ′δτ,τ ′ with UH ∼ −U 2/�eff (�eff is

the renormalized band gap of the cooperons) including the
dominant contribution from the renormalized k = 0 cooperon.

We develop a continuous-time DDQMC algorithm, similar
to the algorithms for an attractive Hubbard model24,25 for the
cooperon-fermion model, and obtain the numerically exact
solution to the model at the filling value n = 0.12. The
Kosterlitz-Thouless (KT) transition temperature is estimated
from the finite-size scaling of the fermion pair correlation func-
tion and the cooperon Green’s function. The renormalization of
the cooperon band characterized by the effective gap �eff and
the effective mass meff is examined carefully. Applying these
results to study the strong diamagnetism recently observed in
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cuprates, we find that the renormalization of the cooperon
band will enhance the diamagnetism dramatically at low
temperatures, which agrees qualitatively with the experimental
data.26

II. THE ALGORITHM

Continuous-time DDQMC algorithms have been applied
successfully in the past to obtain the critical temperature in the
BCS-BEC crossover.24,25 The sign problem in these algorithms
is avoided by collecting all Feynman diagrams with the same
distribution of vertices as a single configuration, which turns
out to have a positive-definitive weight. This approach can
also be applied to the cooperon-fermion model eliminating
the severe sign problem coming from the permutations of the
fermionic lines. In the interaction picture, the partition function
for the model (1) can be expressed as

Z = Tr

[
e−β(H 0

f,↑+H 0
f,↓)e−βH 0

b

∑
n

[ ∫ β

0

∫ ]n

× 1

n!

∏
i=1,n

dridτiTτ (−Uc
†
ri ,τi ,↑c

†
ri ,τi ,↓bri ,τi

+ H.c.)

]
, (3)

where H 0
f,σ is the Hamiltonian of free fermions with the

spin σ , and H 0
b is the Hamiltonian for free cooperons, the

bilinear terms in c
†
k,σ ,ck,σ and b

†
k,bk, respectively, in Eq. (1).

To describe the Feynman diagrams, we define two different
kinds of events, shown in Fig. 1(a), representing the process of
combining two fermions with opposite spins into one cooperon
and the reverse process. For a typical Feynman diagram like

FIG. 1. (Color online) (a) Elementary interaction events (ver-
tices): two fermions are combined onto a cooperon (left) and vice
versa (right). (b) A diagram contributing to the partition function
Z. (c) A diagram sampled in the DDQMC algorithm: open ends of
the fermionic lines imply a sum over all the ways of connecting
the vertices by the fermionic lines, which is represented by the
corresponding determinant.

the one shown in Fig. 1(b), the vertices are connected by the
bare single-particle propagators

G
f,0
ra
i −rc

j ,τ a
i −τ c

j
= −Tr

[
e−βH 0

f,σ Tτ cra
i ,τ a

i ,σ c
†
rc
j ,τ c

j ,σ

]
, (4)

G
b,0
rc
i −ra

j ,τ c
i −τ a

j
= −Tr

[
e−βH 0

b brc
i ,τ c

i
b
†
ra
j ,τ a

j

]
. (5)

The superscript a (c) on ri,j is for the events with annihilation
(creation) of a pair of fermions (accompanying the creation and
annihilation of a cooperon), respectively. By applying Wick’s
theorem, the partition function can be rewritten as

Z =
∑

n

U 2n
[ ∫ β

0

∫ ]2n 1

n!n!

[ ∏
i=1,n

dDrc
i d

Dra
i dτ c

i dτ a
i

]
× det AS

′
n,↑ det AS

′
n,↓Perm

(
BS

′
n

)
, (6)

where S
′
n represents the configuration including all possible

ways of connecting a specific distribution of vertices with
the propagator lines. The matrix components [AS

′
n,σ

]i,j =
G

f,0
ra
i −rc

j ,τ a
i −τ c

j
and [BS

′
n
]i,j = −G

b,0
rc
i −ra

j ,τ c
i −τ a

j
. The determinant

of the matrix A comes from the anticommutation relation of
fermions, while the permanent Perm(BS

′
n
) originates in the

commutation relation between cooperons. In contrast to deter-
minants, which can be evaluated efficiently, the calculation of a
permanent is an exponentially hard problem. Thus, we evaluate
the permanent by individually sampling all permutations of
the bosonic lines. A typical diagram S̃n encountered in the
Monte Carlo sampling is shown in Fig. 1(c). The open ends of
fermionic lines indicate that all possible connection ways of
the fermion lines are summed up in the determinant, while the
connection between the cooperon lines is fixed, indicating that
the specific connections are sampled individually. Summing
the fermion lines into a determinant completely removes the
fermionic sign problem. However, sampling the permanent
gives us a small remaining sign problem, which is tractable
since the distribution of values in BS

′
n

is dominantly positive
for our current choice of bare dispersion of cooperons. (Note
that the sign problem for cooperons with quadratic dispersion
is more severe.)

The weight of a configuration S̃n is

ZS̃n
= U 2n

(L2β)2n
det AS̃n,↑ det AS̃n,↓

∏
i=1,n

B
i,Pi

S̃n
, (7)

FIG. 2. (Color online) Two sets of complementary Monte Carlo
updates: (a) adding or removing one pair of vertices and (b) swapping
the end points of cooperon lines.
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where L2 is the spatial size of the system with periodic
boundary conditions. Thermal averages are calculated by
sampling all possible configurations S̃n.

Our algorithm implements three different Monte Carlo
updates: creating or deleting one pair of vertices, which
changes the order from n to n ± 1, and swapping the
connection of cooperon lines as shown in Fig. 2. To improve
the efficiency of sampling, we pick a pair of times with a prob-
ability proportional to the cooperon’s bare Green’s function
Gb,0

r,τ . Adding a pair of vertices to go from configuration S̃n to
S̃n+1 is accepted with an acceptance ratio of

Radd = min

(
1, U 2

∣∣ det AS̃n+1,↑
∣∣2∣∣ det AS̃n,↑
∣∣2

∣∣∣Bn+1,Pn+1

S̃n+1

∣∣∣ βL2

n+1

∫ β

0 dτ
∑

r Gb,0
r,τ

G
b,0
r,τ

)
(8)

and a corresponding equation for the removal.
For the self-complementary process of swapping the con-

nection of cooperon Green’s functions, the acceptance ratio
is

Rflip = min

(
1,

∣∣∣∣∣∏
i

B
i,P(i)
S̃P(n)

∣∣∣∣∣/
∣∣∣∣∣∏

i

B
i,P ′(i)
S̃P ′ (n)

∣∣∣∣∣
)

. (9)

The fermionic and cooperon Green’s functions can be
measured as

G
f

R−R′,τ−τ ′,σ = 〈
det ÃS̃n,σ

/det AS̃n,σ

〉
MC, (10)

Gb
R−R′,τ−τ ′ =

〈
G

b,0
R−R′,τ−τ ′ +

∑
l

G
b,0
R−ra

l ,τ−τ a
l
G

b,0
rc
l −R′,τ c

l −τ ′

G
b,0
rc
l −ra

l ,τ c
l −τ c

l

〉
MC

.

(11)

The matrix ÃS̃n,σ
is an (n + 1) × (n + 1) matrix extending A

by an extra column and row corresponding to the open vertices
c
†
(R′,τ ′) and c(R,τ ). The notation 〈· · · 〉MC denotes the Monte

Carlo average. The particle-particle correlation function of
fermions 〈Tτ cR,τ,↓cR,τ,↑c

†
R′,τ ′,↑c

†
R′,τ ′,↓〉 is measured as

χ
pp
R−R′,τ−τ ′ =

〈∣∣∣∣∣det ÃS̃n,σ

det AS̃n,σ

∣∣∣∣∣
2〉

MC

(12)

with the double occupancy characterizing the local pairing
strength 〈n↑n↓〉 = χ

pp
R=(0,0),τ=0− . The vertex correlation con-

tribution to the particle-particle correlation of fermions, which
indicates the formation of coherent cooper pairs, is defined as

χod
R−R′,τ−τ ′ = 〈

Tτ cR,τ,↓cR,τ,↑c
†
R′,τ ′,↑c

†
R′,τ ′,↓

〉
− 〈

Tτ cR,τ,↑c
†
R′,τ ′,↑

〉〈
Tτ cR,τ,↓c

†
R′,τ ′,↓

〉
. (13)

FIG. 3. (Color online) The Feynman diagrams comprising the
fermionic (a) and cooperon (b) Green’s function within the random
phase approximation.

The cooperon Green’s function and χod in the long-wavelength
and static limit for our finite system with periodic boundary
conditions can be defined as Gb

k=0,ω=0 = ∫ β

0 dτ
∑

r Gb
r,τ and

χod
k=0,ω=0 = ∫ β

0 dτ
∑

r χod
r,τ , with r being the distance confined

by the system size.
In addition to the DDQMC results, we also show results

of random phase approximation (RPA) calculations, which
only take into account the contribution from a truncated set of
Feynman diagrams whose diagrammatic representations are
shown in Fig. 3. The cooperon and fermionic Green’s functions
have the general form[

G
f/b

k,ω

]−1 = [
G

f/b,0
k,ω

]−1 − �
f/b

k,ω (14)

with the self-energies �
f/b

k,ω estimated by only including ladder
diagrams. The RPA works well at weak coupling and the high-
temperature region, and is useful as a test for our numerical
solution in that limit.

III. MAIN RESULTS

For our simulations, we choose U = 1 as the unit of energy
and set tf = 1, tb = 0.5. The bare cooperon band lies above
the bottom of the fermionic band with the offset � = 0.75 and
the total charge density is fixed at n

f

↑ + n
f

↓ + 2nb = 0.12 ±
0.002. In the parameter regime in which we are interested,
the chemical potential μ is around 0.22–0.45, resulting in the
effective renormalized gap �eff � 0.3 and the corresponding
effective attractive Hubbard interaction |UH | ∼ U 2/�eff > 3
at β > 3. For the finite-size scaling analysis, we use the
set of linear system sizes L = 11,15,21,25. The expectation
values and the error bars are obtained from 96 independent
sampling processes with different random number seeds. Each
measurement is made after two to three autocorrelation times,
i.e., around one measurement per 100L2 Monte Carlo steps at
high temperatures (β ∼ 3), and 3000–5000 L2 steps for low
temperatures (β ∼ 17).
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FIG. 4. (Color online) (a) The chemical potential vs temperature
T/U . (b) The particle density nσ of a single spin component and
the cooperon density nb vs temperature T/U . DDQMC results in
the thermodynamic limit (blue points) are extrapolated to the infinite
system size.
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FIG. 5. (Color online) The system size dependence of the on-site
double occupancy nd for various values of β.

Figure 4(a) shows the temperature dependence of the
chemical potential μ. The solid curve is the RPA result with
a mean-field critical temperature T MF

c ∼ 0.09 characterized
by the closure of the effective gap �eff . Blue diamonds are
the chemical potential at the thermodynamic limit determined
by DDQMC. The RPA generally overestimates the interplay
between fermions and cooperons at low temperatures due
to the logarithmic divergence, leading to a larger value of
the cooperon’s self-energy from the simple particle-particle
bubble diagram. As a consequence, the RPA chemical potential
is lower than the exact value in this regime. However, in
the high-temperature limit, the RPA calculation provides a
consistency check for DDQMC, and there we observe a perfect
agreement. Figure 4(b) shows the particle density nσ and nb

at the thermodynamic limit. The stopping of the suppression
of nb as the temperature is decreased, i.e., the flattening out of
nb versus T at low T (<0.1), indicates an approach to the KT
transition.

As seen from Fig. 5, the double occupancy nd =
〈ni,↑ni,↓〉 	 〈ni,↑〉〈ni,↓〉 reveals a strong on-site pairing me-
diated by cooperons. The behavior of nd is determined by
two aspects: (i) the competition between the potential energy
gain from pairing and the corresponding kinetic energy loss,
and (ii) the balance between the particle number of fermions
and cooperons. However, the latter is not expected to play an
important role at low temperatures due to the plateau in nb(T ).
The monotonous increase of nd with lowering the temperature
is analogous to recent dynamical mean-field theory (DMFT)
results for the attractive Hubbard model.27 We also note that
a different low-T behavior of nd for the attractive Hubbard
model has been reported in early QMC studies.28

The 2D superconducting state is characterized by alge-
braically decaying off-diagonal order29 in χod. Figure 6(a)
shows χod

Rx,max,ω=0 for different system sizes, where Rx,max =
(L − 1)/2 is the maximum distance in the x direction on the
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FIG. 6. (Color online) (a) System-size dependence of off-
diagonal order χ od

Rx,max,ω=0 at distance Rx,max. (b) The cooperon
Green’s function Gb

Rx,max,ω=0. Rx,max = (L − 1)/2 is the maximal
distance along the x direction in our system with periodic boundary
conditions.

lattice with periodic boundary conditions. We also plot the
size dependence of the cooperon Green’s function Gb

Rx,max,ω=0

in Fig. 6(b), which behaves very similarly to χod
Rx,max,ω=0. Both

grow substantially with decreasing the temperature, indicating
that the Cooper pairs and cooperons become coherent.

We next perform a finite-size scaling analysis for the
pair correlator χod

k=0,ω=0 and the cooperon Green’s function
Gb

k=0,ω=0. For Tc > T > 0, one expects χod
r,ω=0 to exhibit a

power-law decay with an exponent η(T ), such that η(Tc) = 1/4
and η(T = 0) = 0, indicating the emergence of the true long-
range order at T = 0. Above Tc, χod

r,ω=0 shows an exponential
decay. The pair correlator at T > Tc should obey the scaling
formula30,31

χod = L2−η(Tc)f (L/ξf ) for L 	 1,T → T +
c (15)

with ξf ∼ eA/
√

T −Tc . Since the critical behavior in both
subsystems of cooperons and fermions is a manifestation
of one and the same superfluid transition, Gb

k=0,ω=0 is also
supposed to exhibit the scaling given by Eq. (15). The
parameters A and Tc are chosen so that measurements of
χod

k=0,ω=0 and Gb
k=0,ω=0 for different system sizes collapse in

the vicinity of the phase transition, as shown in Fig. 7, resulting
in A = 0.55 ± 0.1 and Tc = 0.03 ± 0.01. The uncertainties in
A and Tc are estimated from observing a noticeable distortion
of the data from a single smooth curve as the parameters are
varied beyond the claimed error bars.

The most important properties of cooperons are their
effective band gap �eff and effective mass meff renormalized
by interactions mediated by fermions. As we shall discuss in
more detail in the next section, these parameters will allow us
to obtain an estimate of the diamagnetic susceptibility, which
is expected to rise dramatically due to the quasicondensation
upon approaching Tc. Figure 8(a) shows the dependence of
�eff , which is obtained from the cooperon Green’s function
according to �eff = −[Gb

k=0,ω=0]−1, on the linear system size.
The value �eff,L→∞ in the thermodynamic limit, obtained from
the extrapolation in the system size, is shown in Fig. 8(b). At
T > 0.1, the gap �eff,L→∞ is quite close to the RPA estimate.
Due to the logarithmic divergence of the bare particle-particle
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FIG. 7. (Color online) Finite-size scaling of χod
k=0,ω=0 and

Gb
k=0,ω=0 according to Eq. (15); the error bars are smaller than

the symbol size. The uncertainties of A = 0.55 ± 0.1 and Tc =
0.03 ± 0.01 are estimated from a breakdown of the shown data
collapse.

bubble, the RPA leads to a substantially higher mean-field
critical temperature T MF

c ∼ 0.09.
The effective cooperon mass is calculated as

m−1
eff =

∑
r Gb

r,ω=0r
2[

Gb
k=0,ω=0

]2 , (16)

where the factor of r2 in the sum shows the importance of the
long-range behavior of the Green’s function in determining
meff . Since the finite size of the system along with the
periodic boundary conditions will enhance Gb

r,τ at large r , the
straightforward evaluation of meff using Eq. (16) is inadequate.
To get rid of the finite-size effects, we fit the measured Gb

r,τ

according to

Gb
r,τ =

∑
m,n

Gb
(rx+mL,ry+nL),τ (17)
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FIG. 8. (Color online) (a) Finite-size extrapolation of the renor-
malized cooperon gap �eff . (b) Comparison of the extrapolated �eff at
L → ∞ with the RPA results. Tc = 0.03 obtained in Fig. 7 is shown
by the arrow. The error bars are smaller than the symbol sizes.
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FIG. 9. (Color online) (a) The suppression of the renormalized
cooperon mass with decreasing temperature. The red curve corre-
sponds to the RPA result. The blue (black) dots are for lattice size
L = 11,15. The same fitting process fails for larger lattice sizes
L = 21,25 due to the too small measured Gb

r,τ close to the lattice
boundary and very large sampling error bars. (b) Comparison of the
renormalized cooperon’s dispersion εb

k,eff from RPA calculation and
our simulation with L = 11. The fitting process [Eq. (17)] is applied
to obtain εb

k,eff in our simulation. The error bars are smaller than the
symbol.

with Gb
r,τ = ae−b|r| for large |r| (both a and b depend on τ ).

The function Gb
r,τ obtained thereby is then used instead of Gb

r,τ

in Eq. (16). The result obtained using the data for L = 11,15 is
shown in Fig. 9(b). The RPA calculation gives similar values at
T > 0.15. At lower temperatures, the effective mass decreases
continuously and tends to a finite value. Fits to Eq. (16) allow
us to estimate the renormalized dispersion of the cooperon
band εb

k,eff as shown in Fig. 9 using the Green’s functions for
the case L = 11. For comparison, the RPA curve εb

k,eff is also
shown in Fig. 9, which agrees with the Monte Carlo results at
high temperatures.

IV. APPLICATION TO THE STRONG DIAMAGNETISM
IN THE CUPRATES

Many anomalous properties of the pseudogap phase have
been reported since the early stage of high-Tc studies, including
the existence of the partial gap, the linear resistivity, and
the proportionality of the charge-carrier density to doping
concentration.21,32 Strong superconducting fluctuations have
been observed in a large temperature region in recent Nernst
and torque magnetometry measurements.33,34 In contrast
to conventional BCS superconductors, where the Gaussian
(amplitude) fluctuations are dominant and the pairing length is
quite long, in the cuprates the fluctuations of the phase rigidity
are predominant while the cooper pairs are strongly bound
with the energy scale around the spin-spin superexchange
J ∼100 meV, and they are localized in a small spatial area
with ξ ∼ 3–4 lattice constant (a = 3.8 Å).

In momentum space, the pseudogap phase is highly
anisotropic. More and more evidence shows that the states
at the antinode and node are intrinsically different.35 In
the pseudogap phase, the single-particle gap is partially
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opened only around the antinode, leaving either “arcs” or
holelike Fermi pockets around the nodes.36–38 Recent angular-
resolved photoemission spectroscopy (ARPES) experiments
have observed the existence of such a pocket and unmasked
the particle-hole symmetry of the spectrum around the
antinode and the particle-hole asymmetry around the node.37

Evidence from scanning tunneling microscopy (STM) reveals
that the low-energy states around the nodes are homogeneous
and of long-range correlation length, and quantum interference
STM observed well-defined Fermi surface only inside an
AF reduce Brillouin zone.39 Meanwhile the high-energy
states around the antinodes are inhomogeneous with a short
correlation length around four lattice constants. Some evidence
of particle-hole symmetry in ARPES37 around the antin-
odes is consistent with the functional renormalization-group
calculations,40 showing that the strong umklapp scattering
enhances the cooperon channel.

Some possible scenarios leading to superconductivity by
finite-energy cooperon excitations and the fermion sea have
been proposed from the Hubbard mode on a ladder18,19 and
semiconductors,17 which may shed some light on the case for
cuprates.21 So far the possible interplay between the states
residing on the node and the antinode is still an open question.
The superconducting gap on the Fermi surface around the node
in the SC state may be driven by this effect.

It is reasonable to treat the states around the node as a
free Fermi gas and the component around the antinode as
tightly bound cooperons with a pairing gap of the order
of J ∼ 100 meV as sketched in Fig 10. Our model (1)
can thus be a simplified picture for the cuprate pseudogap
phase by ignoring the multipatch structure and the d-wave
phase of the momentum-space localized cooperons. There
has been a great deal of work done attempting to use this
model for the phenomenology of the pseudogap phase (for
a review, see Ref. 1). However, most of these are based on
mean-field calculations, but an exact solution is still missing.
Our numerical simulations can give useful quantitative insight.
Here we will focus on the strong diamagnetism observed
recently. From the recent phenomenological Yang-Rice-Zhang
(YRZ) theory,20 it is reasonable to further propose that the
fermionic particles around the node are itinerant holes, and
the cooperons around the antinode are tightly bound hole
pairs. To describe the underdoped phase, we assume the
total charge carrier density is around 0.12, which is obtained
by a value of μ ∼ 100 meV (with U ∼ 250 meV), which
is in a reasonable regime based on early analysis of the
YRZ model.41 The bare hopping tf = 250 meV is chosen
comparable to the nearest-neighbor hopping integral in the
cuprates.

In conventional BCS theory,42 the contributions of the
fermionic pairing fluctuation to diamagnetism are substantial
only in a very narrow temperature region above Tc. In our
model, however, the renormalized cooperon band contributes
dominantly to the diamagnetism in a wide temperature range
above Tc in the pseudogap phase. Since it is computationally
extremely demanding to calculate the numeric value of the
second-order coefficient in q of the current-current correlation
function Kq,ω=0, we approximate the diamagnetization of
cooperons as that of free bosons with renormalized gap �eff

FIG. 10. (Color online) A schematic demonstration of one possi-
ble scenario of the anisotropy in momentum space in the pseudogap
phase with localized tightly bound cooperons located at the antinodes
and a holelike Fermi sea residing on the nodes. The superconductivity
may be driven by the interplay between the states at antinodes and
nodes.

in the limit L → ∞ and the effective mass meff at L = 11
(see Fig. 9). In CGS units [1/(4π )], it has the form43

χ = (2e)2

c2meffd

nb
k=0

6
, (18)

where d = 6 Å is the interlayer distance for cuprates.
The value (2e)2/(c22med) corresponds to M = 7.5 A/m at
H = 1 T.

The experimentally observed singular behavior M(T ,H ) ∼
−H 1/δ(T ) with δ → 0 at small H and T → T +

c might be
related to the mesoscopic Meissner effect or the fragile
London rigidity.33 Thermally excited vortices with exponen-
tially increased intervortex length, however, are not sufficient

 0

 20
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/m
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FIG. 11. (Color online) The temperature dependence of the
magnetization at B = 1 T calculated using Eq. (18).The x axis is
normalized by Tc ∼ 0.03 (∼80 K with U = 250 meV). Red dots
are from the torque magnetization experiments with Tc = 50 K.33

Note that there is no parametric fitting to the experimental data.
While strong damping of cooperons at high temperature suppresses
the magnetization at T 	 Tc, the exponential increase close to Tc will
not be affected.
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to explain the experimental observation. In Fig. 11, we show
the diamagnetism at H = 1 T with M = χH and χ calculated
from Eq. (18). Strong diamagnetism prevails in a very wide
temperature region above Tc; this is in agreement with the
experimental data (with Tc = 50 K). Note that even though
the experimental data show a much narrower temperature
region, they are still orders of magnitude wider than that
predicted by the conventional BCS theory. In the cooperon-
fermion model, the strong damping of the cooperon at high
temperature will suppress the diamagnetism greatly but will
leave the exponential increase of diamagnetism at T close to
Tc unchanged. We also note that an alternative explanation of
the strong diamagnetism based on a vortex liquid picture has
been proposed by Oganesyan et al.44

V. SUMMARY

We have developed a continuous-time diagrammatic
determinant quantum Monte Carlo algorithm for the cooperon-
fermion model. Our results for the fermionic part of the model
show similar behavior to its twin model, the attractive Hubbard
model, which is often used to describe the BCS-BEC crossover
in the systems of ultracold atoms, where the cooperon-fermion
model is the relevant model on the BEC side.

In addition to the critical temperature, we have calculated
the renormalized band gap and mass of the cooperons. The

decrease of the mass and the suppression of the renormalized
gap have important effects on the thermodynamic properties of
the cooperons. Applied to cuprate superconductors, the inter-
play between the cooperons at the antinode and the fermions
at the node is expected to delocalize the cooperons and finally
lead to a substantial enhancement of the diamagnetism in
a wide temperature range. That could explain the strong
diamagnetic signal observed recently in the underdoped state.

The numerical method developed here can be used to study
the BCS-BEC crossover on lattices in the framework of the
cooperon-fermion model, which gives direct access to the
paring physics via the cooperon part. The universal results in
terms of the s-wave effective coupling between the fermions
can be obtained in principle in the low-density limit, as was
done, e.g., in Ref. 24.
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