
PHYSICAL REVIEW B 83, 214511 (2011)

Theory of flux cutting and flux transport at the critical current of a type-II
superconducting cylindrical wire
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I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the
magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current
in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced
by Romero-Salazar and Pérez-Rodrı́guez. The vortex dynamics depend in detail on two nonlinear effective
resistivities for flux cutting (ρ‖) and flux flow (ρ⊥), and their ratio r = ρ‖/ρ⊥. When r < 1, the low relative
efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic
longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship
between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched
between two pinning centers when the vortex is subjected to a current density of arbitrary angle φ. Simultaneous
initiation of flux cutting and flux transport occurs at the critical current density Jc(φ) that makes the vortex arc
unstable.
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I. INTRODUCTION

The behavior of type-II superconductors carrying current
in a perpendicular applied magnetic field is well understood in
terms of the critical-state theory, first introduced by Bean.1,2

The fundamental idea is that the penetration of magnetic
fields in the form of quantized vortices3 into practical type-II
superconductors is impeded by an array of pinning centers.4

The magnetic-flux distribution can be put into a variety of
metastable states, and changes in the flux distribution can occur
only when the magnitude of the local current density J =
∇ × H exceeds the critical-current density Jc, the threshold
for depinning and flux transport. The driving force per unit
volume on a vortex array carrying magnetic flux density B is
F = J × B, and the vortices move whenever the magnitude
of this force locally exceeds the average pinning force per
unit volume, Fp = JcB. Motion of the vortices with a local
velocity v gives rise to a local flux-transport electric field5

E = B × v perpendicular to B. This critical-state theory has
served us well in providing a basis for practical applications
of superconductivity, such as in magnet technology,6 where
the magnetic fields generated are practically all perpendicular
to the currents that generate the fields. In addition, this theory
has permitted a good understanding of the ac losses in many
electric power applications,7 since the local rate of power
dissipation J · E is easily calculable when J = |J | is just
above Jc.

On the other hand, the corresponding theory for the
behavior of type-II superconductors carrying current in a
parallel applied magnetic field or in a field at an arbitrary
angle relative to the current is not well developed. With
respect to the standard critical-state theory, two key questions
are, (a) If J is not perpendicular to B, how large can the
(force-free) component of J parallel to B be? Is there any
limit to this component below the depairing current density?
(b) Superconducting wires subjected to a parallel magnetic
field experimentally exhibit a finite electric field E with a
component parallel to B when the current carried by the

wire exceeds the critical current.8 How is this component of
the electric field produced? Flux cutting4,8 provides natural
answers to both of these questions: When J‖ (the component
of J parallel to B) is small, E‖ (the component of J parallel to
B) is zero, but when the magnitude of J‖ exceeds the threshold
for flux cutting, flux-cutting processes initiated by local helical
instabilities9–16 generate a finite value of E‖.

Analogous processes occur in rotating superfluid 4He,
where thermal counterflow parallel to the vortices pro-
duces turbulence initiated by the Glaberson-Donnelly helical
instability.17 The resulting energy input to the vortex system is
dissipated at the microscopic level by vortex-line reconnection
(the analog of flux-line cutting), recently filmed by Paoletti
et al., 18 who analyzed the trajectories of solid hydrogen tracers
in the superfluid to identify tens of thousands of individual
reconnection events between quantized vortices.

An extension of critical-state theory is needed to provide the
theoretical basis for calculating ac losses in superconducting
power transmission cables fabricated from multiple helically
wound layers of second-generation YBCO tapes.19 The helical
currents generate longitudinal magnetic fields inside the cable,
such that the supercurrent density J has components both
perpendicular and parallel to B.

In this paper, I extend critical-state theory to account for
both flux transport and flux cutting in type-II superconductors.
In Sec. II, I set down several of the basic equations needed
and define the parallel and perpendicular components of J
and E. I use capital letters to denote macroscopic fields of
practical interest, B, H , J , and E, which in general depend
on position r and time t . These fields are local averages
over a length scale several times the characteristic mesoscopic
lengths of type-II superconductivity, namely the penetration
depth λ, the coherence length ξ , and the intervortex spacing
a ∼ √

φ0/B. It has been known for over 50 years that in type-II
superconductors the spatial variation of the mesoscopic fields
b, h, j , and e over these mesoscopic length scales is determined
by vortices, which carry magnetic flux quantized in units of
φ0 = h/2e, the superconducting flux quantum.3 I will focus
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here on using an extended critical-state theory to calculate the
magnetic-field and current-density distributions just above the
critical current of a type-II superconducting cylinder, where
B, H , J , and E are time-independent. However, since E is
here produced by dynamic processes at the mesoscopic length
scale involving flux transport and flux cutting, we should keep
in mind that b, h, j , and e are all time-dependent quantities.

In Sec. III, I review how to use the standard critical-state
theory to examine B, H , J , and E at the critical current Ic

of the cylinder in zero applied magnetic field. In Sec. IV, I
show how to use an extended critical-state theory to calculate
the magnetic-field and current-density distributions at Ic in an
applied longitudinal magnetic field Ha . In Sec. V, I calculate
the dependence of Ic on Ha when the critical current densities
at the thresholds for flux transport and flux cutting depend upon
the local value of B. In Sec. VI, I show how an applied current
density affects the stability of a helical vortex arc stretched
between two strong pinning centers. The results provide us
with a new model for the angular dependence of the critical
current density, which simultaneously initiates flux cutting
and flux transport. In Sec. VII, I discuss how the theoretical
results qualitatively explain a variety of experiments, and I then
turn to the issues of force-free configurations, the interactions
between flux cutting and flux depinning, and the extensions
needed to treat time-dependent problems.

II. BASIC EQUATIONS

To describe the behavior at the critical current of a long
type-II cylindrical wire of radius R (much larger than λ, ξ ,
or a) subjected to a parallel applied magnetic field Ha , let us
assume that the local magnetic flux density B = B(ρ)α̂(ρ),
where α̂ = θ̂ sin α + ẑ cos α, winds helically around the z axis
with a pitch angle α(ρ), as shown in Fig. 1. Assume also that
the local current density J winds helically around the z axis
but at an angle φ(ρ) relative to B. The components of J along
α̂ and β̂ = α̂ × ρ̂ are J‖ = J‖(ρ)α̂(ρ) and J⊥ = J⊥(ρ)β̂(ρ),
where β̂ = θ̂ cos α − ẑ sin α. Similarly, when an electric field
is generated, E = E‖α̂ + E⊥β̂.

In the steady state, when there is no time dependence of B
and J , Ampere’s law and Faraday’s law require that

J = ∇ × H, (1)

∇ × E = 0, (2)

where H = (1/μ0)∇BF (B) and F (B) is the Helmholtz free
energy density in the superconducting state.20

III. FLUX TRANSPORT AT THE CRITICAL CURRENT IN
ZERO APPLIED LONGITUDINAL FIELD

We assume that the superconducting wire contains a
randomly distributed dense array of point pinning centers.
We also consider the case that the wire initially is in the
flux-free state, such that when a current I is applied along the
axis in the z direction in the absence of an applied magnetic
field, azimuthal magnetic flux penetrates in from the surface
at ρ = R with a distribution governed by a balance between
the Lorentz force density J × B and the pinning force density
Fp = ρ̂Jc⊥B. In this case, wherever B �= 0, α = π/2, α̂ = θ̂ ,

FIG. 1. Vectors used in this paper: The unit vectors in cylindrical
coordinates are ρ̂ (out of the paper), θ̂ (azimuthal), and ẑ (longitudi-
nal). The local magnetic induction B = Bα̂ winds helically around
the z axis with pitch angle α. The local current density J also winds
helically around the z axis but at an angle φ relative to B. The
components of J along α̂ and β̂ = α̂ × ρ̂ are J‖ and J⊥.

β̂ = −ẑ, φ = 0, J‖ = 0, and J⊥ = −J⊥ẑ = Jc⊥ẑ. We usually
expect Jc⊥ to be a monotonically decreasing function of B,
but for the present let us use the Bean model, for which Jc⊥ is
independent of B.

If we carefully distinguish between B and μ0 H , we note
that since H (R) = I/2πR, no vortices can enter the cylinder
so long as I < Ic1, where Ic1 = 2πRHc1, where Hc1 is the
lower critical field. (We assume here that there are no surface
barriers to vortex entry.) If Jc⊥ < Hc1/R, the critical current
is then Ic1, because any entering vortex ring of radius ρ will
simply collapse to zero radius under its own line tension, which
is φ0Hc1/ρ per unit length.

When Jc⊥ > Hc1/R, there is a minimum radius, ρc =
Hc1/Jc⊥ < R, at which a vortex ring can be held by the
pinning forces. We seek an expression for the critical current
Ic at the first appearance of a steady-state longitudinal electric
field, generated by the periodic nucleation of vortex rings at
the surface ρ = R and their periodic self-annihilation when
they are driven inward to a radius slightly smaller than
ρc. According to Faraday’s law, Eq. (2), E is a constant,
independent of ρ, which is given by the Josephson relation
E = B × v. Since here B = Bθ θ̂ and v = vρρ̂, the electric
field has only a z component, Ez = −Bθvρ . (Note that vρ =
−|vρ |, since vortices are constantly moving inward.)

When Ic1 < I < Ic, the solution of Eq. (1) is

H (ρ) = I

2πρ
− (R2 − ρ2)Jc⊥

2ρ
, ρc1 � ρ � R, (3)

where

ρc1 = ρc +
√

R2 + ρ2
c − I/πJc⊥ (4)
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is the radius at which H (ρ) = Hc1 and B(ρ) = 0. Note that
Hc1 < H (ρ) < H (R) if ρc1 < ρ < R. The critical current Ic

is the value of I at which ρc1 is reduced to ρc, such that

Ic = π
(
R2 + ρ2

c

)
Jc⊥, (5)

Ic

Ic1
= R2 + ρ2

c

2Rρc

, (6)

and

H (ρ) =
(
ρ2 + ρ2

c

)
Jc⊥

2ρ
, ρc � ρ � R. (7)

All the above results are greatly simplified if at the critical
current ρc = Hc1/Jc⊥ � R, which is equivalent to the condi-
tion that H (R) = Ic/2πR � Hc1. In high-κ superconductors
it is well known that for H � Hc1, B ≈ μ0H to good
approximation. Thus if one makes the approximation that
B = μ0H from the outset and ignores line tension effects,
this corresponds to setting Hc1 = 0 and ρc = 0 in the above
equations. When 0 < I < Ic, H (ρ) is then given by Eq. (3)
but with ρc1 =

√
R2 − I/πJc⊥ denoting the radius of the

penetrating flux front, where B = 0. At the critical current,
which becomes simply Ic = πR2Jc⊥, the field distribution is
then H (ρ) = ρJc/2, and the current density is Jz = Jc⊥. For
simplicity, we shall assume in the rest of this paper that at the
critical current the magnitude of H at the surface is much larger
than Hc1, such that the simplifying assumption B = μ0 H is a
good approximation.

IV. FLUX TRANSPORT AND FLUX CUTTING AT THE
CRITICAL CURRENT IN AN APPLIED

LONGITUDINAL FIELD

A. Extending the elliptic critical-state model

While the behavior at the critical current in zero applied
longitudinal magnetic field is described as above in terms of
widely accepted critical state concepts, what happens at the
critical current in a finite applied field is not yet well established
theoretically. I present here a theoretical description that I
believe describes the fundamental physics of the behavior
under these conditions.

Let us assume that both an electrical current I and a
magnetic field Ha are applied along the z direction, parallel to
the axis of a long type-II cylindrical wire of radius R. Under
these conditions we can expect the magnetic induction B and
the current density J to wind helically around the z axis as
indicated in Fig. 1. We need a number of equations to determine
how the physical quantities vary with the radial coordinate
ρ. For simplicity, we make the simplifying approximation
B = μ0 H . In cylindrical coordinates, Eq. (1) yields the two
equations

J⊥ = −
(

dH

dρ
+ H sin2 α

ρ

)
, (8)

J‖ = H

(
dα

dρ
+ sin α cos α

ρ

)
. (9)

For Ha = 0, we had J‖ = 0 and α = π/2, so that Eq. (9)
was satisfied, and we had J⊥ = −Jc⊥, such that the solution
of Eq. (8) for H was given by Eq. (3).

However, what determines the values of J‖ and J⊥ when
Ha > 0? One model, which we proposed in Refs. 21–25 and
has been called the generalized double-critical-state model
(GDCSM), assumed that both |J‖| = Jc‖ and |J⊥| = Jc⊥ at
the critical current. Here Jc⊥ was identified as the magnitude
of J⊥ at the threshold of flux transport (depinning), and Jc‖
was identified as the magnitude of J‖ at the threshold of flux
cutting. Recent experiments,26 however, have found that two of
the predictions of the GDCSM, a cusplike angular dependence
of the critical-current density Jc and a sawtoothlike behavior
of the direction of the electric field E just above the critical
current, are not seen experimentally. The smooth angular de-
pendence of Jc observed experimentally26–31 is in much better
agreement with an elliptic critical-state model, introduced
by Romero-Salazar and Pérez-Rodrı́guez.32,33 However, the
angular dependence of the electric field E for J just above Jc

was found to require an extension of the elliptic critical-state
model, to be described later.

Figure 2 shows the ellipse representing the critical current
density Jc(B,φ) in the J⊥ − J‖ plane, according to the original
elliptic critical-state model,32,33 where φ is the angle between
J and B = Bα̂, and J⊥ = J sin φ and J‖ = J cos φ. In the O
zone inside the ellipse described by

sin2 φ

Jc⊥(B)2
+ cos2 φ

Jc‖(B)2
= 1

Jc(B,φ)2
(10)

FIG. 2. Behavior of a vortex array as a function of the magnitude
J and angle φ of the current density J relative to the direction of the
flux density B = Bα̂ when flux-line cutting and depinning interact
and the critical current density Jc(B,φ) is given by the elliptic critical-
state model of Refs. 32,33.
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or

Jc(B,φ) = 1

/√
sin2 φ

Jc⊥(B)2
+ cos2 φ

Jc‖(B)2
, (11)

neither flux transport (depinning) nor flux cutting occurs
(E⊥ = 0 and E‖ = 0). Flux transport, for which the vortices
are depinned and |E⊥| > 0, occurs everywhere outside the
ellipse (except when J⊥ = 0) in zones with labels including
the symbol T+ (E⊥ > 0) or T− (E⊥ < 0). Flux-line cutting, for
which |E‖| > 0, occurs everywhere outside the ellipse (except
when J‖ = 0) in zones with labels including the symbol C+
(E‖ > 0) or C− (E‖ < 0). In other words, except for the special
cases of φ = ±π/2, 0, and π , the critical current density for
flux depinning and flux cutting is the same, Jc(B,φ). When
φ = ±π/2, flux transport (but no flux cutting) occurs when
J > Jc, and when φ = 0 or π , flux cutting (but no flux
transport) occurs when J > Jc.

The magnitude of the component of the critical current
density along J⊥ associated with depinning (see Fig. 2) is

Jcd (B,φ) = Jc(B,φ)| sin φ|. (12)

For fixed J‖, the threshold for depinning is reached when
|J⊥| increases to Jcd . The magnitude of the component of the
critical current density along J‖ associated with cutting is

Jcc(B,φ) = Jc(B,φ)| cos φ|. (13)

For fixed J⊥, the threshold for cutting is reached when |J‖|
increases to Jcc. In contrast to the assumptions of the GDCSM,
important new features of the underlying physics within the
elliptic critical-state model are the assumptions that (a) the
threshold Jcd for depinning is reduced as the magnitude of
J‖ increases, i.e., we can think of Jcd is a monotonically
decreasing function of the magnitude of J‖, and (b) the
threshold Jcc for flux-line cutting is reduced as J⊥ increases,
i.e., we can think of Jcc is a monotonically decreasing function
of the magnitude of J⊥.

I propose that the above relationships between the thresh-
olds for depinning and flux cutting are an essential general
property of type-II superconductors, even if the mathematical
form of the experimentally determined Jc(φ) deviates from the
ellipse of Eq. (11) in a particular material. In other words, (a)
the threshold Jcd for depinning is always reduced to zero as the
magnitude of J‖ increases to its maximum threshold value Jc‖
and (b) the threshold Jcc for flux-line cutting is always reduced
to zero as J⊥ increases to its maximum threshold value Jc⊥.
The underlying reason for this interrelationship is that when
J is at an angle relative to B, the helical instability is the
triggering mechanism that results in both depinning and flux
cutting. A simple model calculation for the critical current
for the helical instability of an isolated vortex subsequently
leading to depinning and flux cutting is given in Sec. VI.

In summary, at the critical current density of the elliptic
critical-state model, J = Jc(B,φ), and J lies on the ellipse of
Eq. (11), such that J⊥ = Jc(B,φ) sin φ, J‖ = Jc(B,φ) cos φ,
and

Jc(B,φ) = Jc⊥(B)√
sin2 φ + tan2 φc cos2 φ

, (14)

where tan φc = Jc⊥(B)/Jc‖(B). Note that within this model
Jc⊥(B) = Jc(B,π/2) and Jc‖(B) = Jc(B,0).

Additional relations are needed to connect the components
of J and E. Here we extend the original elliptic critical-state
theory32,33 by introducing the general relations

E⊥ = ρ⊥J⊥, (15)

E‖ = ρ‖J‖, (16)

where ρ⊥ and ρ‖ are nonlinear effective resistivities, which are
expected to depend on the current density J and magnetic flux
density B. Since the physics of flux cutting is different from
that of flux depinning, we expect that ρ‖ is not the same as ρ⊥,
and hence we do not expect E to be parallel to J in general.
As shown below, a useful parameter is the ratio r = ρ‖/ρ⊥,
which has been found experimentally to be independent of J

just above Jc.26

The original elliptic critical-state theory32,33 made the
assumption that E‖/J‖ = E/Jc‖ and E⊥/J⊥ = E/Jc⊥, so that
Eqs. (15) and (16) would yield r = Jc⊥/Jc‖. However, this
assumption suffers from the deficiency that it also yields
(J⊥/Jc⊥)2 + (J‖/Jc‖)2 = 1, which can hold only when J = Jc

and E = 0. Moreover, recent experiments26 give results in
disagreement with this assumption. The main advantage of
using the more general assumptions of Eqs. (15) and (16) is
that the resulting theory is capable of treating behavior when
J > Jc and E > 0.

One could use the following model for the effective
resistivities ρ⊥ and ρ‖:

E⊥ = 0, 0 � J⊥ � Jcd, (17)

= ρd (J⊥ − Jcd ), J⊥ > Jcd, (18)

E‖ = 0, 0 � J‖ � Jcc, (19)

= ρc(J‖ − Jcc), J‖ > Jcc, (20)

such that E =
√
E2

⊥ + E2
‖ and J =

√
J 2

⊥ + J 2
‖ obey

E = 0, J � Jc(B,φ), (21)

=
√

ρ2
d sin2 φ + ρ2

c cos2 φ [J − Jc(B,φ)], J > Jc(B,φ).

(22)

Here, ρd corresponds to the flux-flow resistivity of Kim,
Hempstead, and Strnad34 and of Bardeen and Stephen,35 and
ρc is a postulated analogous quantity. (The subscripts d and c
refer to depinning and cutting.) The model of Eqs. (17)–(22)
is capable of describing the electric field components when
there is a clear-cut linear onset of an electric field as J crosses
the ellipse Jc(B,φ) shown in Fig. 2. On the other hand, if there
are flux-creep effects that make the resistive transition more
rounded, causing the critical-current density to depend on an
electric-field criterion, the more general model of Eqs. (15)
and (16) should be used.

We are now ready to write down all the equations needed to
calculate the current-density and magnetic-field distributions
at the critical current of a cylinder. Consistent with the usual
critical-state approach for describing the behavior in the
absence of a longitudinal field, we assume that just at the

214511-4



THEORY OF FLUX CUTTING AND FLUX TRANSPORT AT . . . PHYSICAL REVIEW B 83, 214511 (2011)

critical current we have both |J⊥| = Jcd and |J‖| = Jcc. For
a current I and a magnetic field Ha both applied in the z

direction we therefore have J⊥ = Jc sin φ, where φ < 0, and
J‖ = Jc cos φ, which results in the two equations

Jc sin φ = −
(

dH

dρ
+ H sin2 α

ρ

)
, (23)

Jc cos φ = H

(
dα

dρ
+ sin α cos α

ρ

)
. (24)

An additional equation is needed to relate α and φ. This
comes from Eq. (2), which in cylindrical coordinates tells us
that E = E0ẑ, where E0 > 0, so that E⊥ = −E0 sin α and
E‖ = E0 cos α. Combining these equations with Eqs. (15) and
(16) yields

tan φ = −r tan α, (25)

where r = ρ‖/ρ⊥. We see immediately for the special case
of r = 1 that we would have φ = −α, such that (see Fig. 1)
J would have only a z component; Eq. (1) then tells us that
the solution for H would have the property that Hz(ρ) = Ha .
For arbitrary values of r , however, we can use Eq. (25) to
eliminate φ in favor of α, which yields the following first-order
differential equations for H and α:

dH

dρ
=−H sin2 α

ρ
+ r sin α√

r2 sin2 α
/
J 2

c⊥+cos2 α
/
J 2

c‖
, (26)

dα

dρ
=− sin α cos α

ρ
+ cos α

H

√
r2 sin2 α

/
J 2

c⊥+cos2 α
/
J 2

c‖
. (27)

I shall refer to the collection of Eqs. (10), (23), (24), and (25)
as the extended elliptical critical-state model, since the new
equation, Eq. (25), goes beyond what was assumed in Refs. 32
and 33. Note, however, that these equations are specialized for
cylindrical geometry and would need generalization for other
geometries.

B. B consumption by flux cutting

As was noted in Refs. 4,5,8, and 36, the steady-state
time-averaged voltage produced along a current-carrying
type-II superconductor in a longitudinal magnetic field cannot
be described as a flux-flow voltage generated by an inward
collapsing array of helical vortices in the absence of flux
cutting. The reason for this is that if no flux cutting is occurring,
the electric field is given by E = B × v,5,34,37 where B is the
locally averaged magnetic flux density generated by an array of
vortices moving with a velocity v. According to Faraday’s law,
∂ B/∂t = −∇ × E, a helical array of vortices continuously
nucleating at the surface and moving inward with a velocity v

while carrying a longitudinal component of B would produce
an azimuthal component of the electric field, thereby leading
to an ever-increasing longitudinal magnetic flux density.

Flux cutting is the means by which the time derivative of
B can be reduced to zero.21 Multiplying Faraday’s law by
the unit vector α̂ and making use of Eq. (9), we obtain the

following equation describing the time rate of increase of B,
the magnitude of B, in cylindrical geometry:

∂B

∂t
= −∂E⊥

∂ρ
− E⊥ cos2 α

ρ
− J‖E‖

H
. (28)

The first two terms on the right-hand side of this equation,
which could be expressed as (∂B/∂t)transport, is simply the rate
at which the local value of B is increased by the transport of B
toward the cylinder axis with a velocity v = E × B/B2. For
the experimental conditions considered here, (∂B/∂t)transport is
always positive. The third term on the right-hand side, which
could be expressed as (∂B/∂t)cutting, is the rate at which the
local value of B is increased as a consequence of flux-line
cutting. However, since J‖E‖ is the rate of energy dissipation
per unit volume, we see that (∂B/∂t)cutting is always negative
wherever flux cutting is occurring. In the steady state, when
∂B/∂t = 0, the local rate of increase of B due to flux transport
is exactly balanced by the local rate of decrease of B due to
flux cutting, as can be shown with the help of Eqs. (23)–(25).

According to the Josephson relation, in the presence of
flux cutting, a uniform steady-state longitudinal electric field
must be given by E0 = hν ′/2e = φ0ν

′, where ν ′ is the rate per
unit length with which azimuthally directed flux quanta move
inward and intersect a line parallel to the cylinder axis. Cyclic
flux-cutting processes initiated by local helical instabilities9–16

allow helical vortices of one pitch to enter the cylinder and an
equal number of vortices of longer pitch to exit the cylinder
in such a way that on the average there is no net change in
the number of longitudinal flux quanta in the cylinder. For this
reason the time-averaged azimuthal component of the electric
field is zero.

We have seen in the above discussion that there is a
competition between flux transport, which tends to increase B

inside the cylinder, and flux cutting, which tends to decrease B.
The efficiency of cutting relative to transport, as represented
by the ratio r = ρ‖/ρ⊥ [see Eqs. (15) and (16)] determines
whether Hz, the average of Hz over the sample volume, is
greater than, equal to, or less than the longitudinal applied field
Ha . If r < 1, corresponding to a low efficiency of flux cutting,
we obtain Hz > Ha and a paramagnetic longitudinal magnetic
moment. If r = 1, corresponding to equal efficiencies of flux
cutting and flux transport, we obtain Hz = Ha . If r > 1,
corresponding to a high efficiency of flux cutting, we obtain
Hz < Ha and a diamagnetic longitudinal magnetic moment.

C. Sample calculations

I now present a few results of sample calculations of the
magnetic-field and current-density distributions at the critical
current of a type-II superconducting cylinder. Let Ha denote
the longitudinal applied magnetic field, and assume that there
is no surface barrier at the superconductor’s surface at ρ = R,
such that H (R) cos α(R) = Ha . (For simplicity, we consider
here only the case Ha > 0.) By Ampere’s law, at the critical
current Ic where a finite steady-state electric field E = E0ẑ

first appears, we also have H (R) sin α(R) = Ic/2πR. The
behavior depends in important ways on the value of r =
ρ‖/ρ⊥ < 1 [see Eqs. (15) and (16)].

Depending on the values of r (assumed here to be
independent of J and H ) and Ha , the field along the axis
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FIG. 3. Solutions of Eqs. (26) and (27) vs ρ for r = 1, H (0) =
1, and R = 1. (a) H (solid), Hz (dashed), Hθ (dot-dashed), and α

(dotted). (b) Jz (solid), Jθ = 0 (solid), J‖ (dashed), and J⊥ (dot-
dashed) with the constants Jc‖ = 2 and Jc⊥ = 1 shown as dotted
lines.

H (0) = H0 can be either finite or zero. When H0 > 0, we
must have α(ρ) = kαρ as ρ → 0, where kα = Jc‖/2H0, as can
been seen from Eq. (27). On the other hand, if H (0) = 0, we
may have α(0) = α0, where 0 < α0 � π/2, but then we must
have H (ρ) = kHρ as ρ → 0, where

kH = r sin α0

(1 + sin2 α0)
√

r2 sin2 α0/J
2
c⊥ + cos2 α0/Jc‖

, (29)

as can be seen from Eq. (26).

1. No magnetic moment for r = 1

Numerical solutions of Eqs. (26) and (27) for r = 1 are
shown in Fig. 3. Note that Hz is a constant, equal to the applied
longitudinal field when r = 1, as discussed in Sec. IV B. The
reason for this is that when r = 1 [see Eqs. (15) and (16)], J is
parallel to E, and since E = E0ẑ, J has only a z component,
such that Jθ = −dHz(ρ)/dρ = 0 and Hz = Ha .

2. Paramagnetic moment for r < 1

Solutions for r = 0.5 are shown in Fig. 4. When r < 1, J
is no longer parallel to E, and as field lines of H wind around
the z axis as right-handed helices with a pitch angle α(ρ) > 0,
streamlines of the current density J also wind around the z

axis as right-handed helices with a pitch angle [see Eq. (25)]

ψJ = α + φ = tan−1

[
(1 − r) tan α

1 + r tan2 α

]
. (30)

Since tan α > 0, ψJ > 0 when r < 1. Since Jθ =
−dHz(ρ)/dρ > 0, Hz decreases monotonically with increas-
ing ρ, resulting in a paramagnetic magnetic moment per unit
volume Mz = Hz − Ha > 0. As discussed in Sec. IV B, B

consumption due to flux cutting [see Eq. (28)] is needed to
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FIG. 4. Solutions of Eqs. (26) and (27) vs ρ for r = 0.5, H (0) =
1, and R = 1. (a) H (solid), Hz (dashed), Hθ (dot-dashed), and α

(dotted). (b) Jz (solid), Jθ (solid), J‖ (dashed), and J⊥ (dot-dashed)
with the constants Jc‖ = 2 and Jc⊥ = 1 shown as dotted lines.

prevent an ever-increasing buildup of longitudinal flux. When
r = ρ‖/ρ⊥ < 1, flux cutting is less efficient in consuming B,
and this allows a larger value of Hz in the steady state.

When r < 1, the application of even a very small longi-
tudinal magnetic field Ha can lead to a much larger value
of the field Hz along the axis of the cylinder. Calculations
illustrating this effect are shown in Fig. 5. (It is an unintended
coincidence that the values of r , Jc‖, and Jc⊥ chosen to
demonstrate the effects shown in Figs. 4 and 5 are in the
ratio r = Jc⊥/Jc‖, the same as assumed in the original elliptic
critical-state model.32,33)

3. Diamagnetic moment for r > 1

Solutions for r = 2 are shown in Figs. 6 and 7. When r > 1,
as field lines of H wind around the z axis as right-handed
helices with a pitch angle α(ρ) > 0, streamlines of the current
density J wind around the z axis as left-handed helices, i.e.,

r 0.5

Jc 1

Jc 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1
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0.3

0.4
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H
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FIG. 5. Hz calculated from Eqs. (26) and (27) vs ρ for r = 0.5,
Jc‖ = 2, Jc⊥ = 1, and R = 1, showing a pronounced buildup of
longitudinal flux along the cylinder axis even for very small values
of the applied field Ha = Hz(R).
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FIG. 6. Solutions of Eqs. (26) and (27) vs ρ for r = 2, H (0) =
1, and R = 1. (a) H (solid), Hz (dashed), Hθ (dot-dashed), and α

(dotted). (b) Jz (solid), Jθ (solid), J‖ (dashed), and J⊥ (dot-dashed)
with the constants Jc‖ = 2 and Jc⊥ = 1 shown as dotted lines.

with a negative pitch angle ψJ < 0 [see Eq. (30)]. Since
Jθ = −dHz(ρ)/dρ < 0, Hz increases monotonically with
increasing ρ, resulting in a diamagnetic magnetic moment per
unit volume Mz = Hz − Ha < 0. As discussed in Sec. IV B,
flux cutting [see Eq. (28)] prevents an ever-increasing buildup
of longitudinal flux. When r = ρ‖/ρ⊥ > 1, flux cutting is more

a r 2

H

Hz

Hθ

α

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

ρ

H
z,

H
θ,

H
,a

nd
α

b r 2

Jz

J

Jθ
J

Jc

Jc

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

ρ

J
,J

θ
,J

,a
nd

J z

FIG. 7. Solutions of Eqs. (26) and (27) vs ρ for r = 2, H (0) = 0,
α0 = π/4, and R = 1. (a) H (solid), Hz (dashed), Hθ (dot-dashed),
and α (dotted). (b) Jz (solid), Jθ (solid), J‖ (dashed), and J⊥ (dot-
dashed) with the constants Jc‖ = 2 and Jc⊥ = 1 shown as dotted
lines.
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FIG. 8. ic = Ic/Ic⊥ (solid) vs Ha for r = 0.5, 1, and 2, calculated
assuming R = 1, Jc‖ = 2 (dotted), and Jc⊥ = 1 (dotted), where Ic⊥ =
πR2Jc⊥ (see text).

efficient in consuming B and this results in a smaller value of
Hz in the steady state.

4. Critical current vs Ha

Shown in Fig. 8 is the critical current ic = Ic/Ic⊥, where
Ic = 2πRHθ (R) and Ic = πR2Jc⊥, as a function of Ha =
Hz(R), obtained from solutions of Eqs. (26) and (27), for
several values of r assuming R = 1, Jc‖ = 2, Jc⊥ = 1, and no
B dependence of Jc (Bean model).

Surprisingly, numerical calculations reveal that, depending
upon the value of r , the critical current Ic = 2π

∫ R

0 Jz(ρ)ρ dρ

can be less than Ic⊥ = πR2Jc⊥. (For example, when r = 2,
Ha = 0.113, ic = 0.9987, with all values of ic dipping slightly
below 1 for small values of Ha in Fig. 8.) The reason for this
is that Jz = J‖ cos α − J⊥ sin α, and at the critical current we
have

Jz = r sin2 α + cos2 α√
r2 sin2 α

/
J 2

c⊥ + cos2 α
/
J 2

c‖
. (31)

As shown in Fig. 9, Jz can be less than Jc⊥ for some
combinations of r and α, such that the integral over ρ yielding
Ic can be less than Ic⊥, the effect being most pronounced for
large values of r .
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FIG. 9. Jz [Eq. (31)] vs ρ for r = 0.3, 1, 3, and 10 with the
constants Jc‖ = 2 and Jc⊥ = 1 shown as dotted lines.
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V. ACCOUNTING FOR FIELD DEPENDENCE
OF Jc⊥ AND Jc‖

For simplicity, the above sample calculations were carried
out using the assumption that Jc was a function of the
angle φ between J and B but was a constant independent
of B or H , analogous to the commonly used Bean model.
However, because the solutions of Eqs. (26) and (27) are
obtained numerically, it is straightforward to incorporate
field dependence into Jc(B,φ). As an example, shown as
the solid curves in Fig. 10 are sample plots of Ic for Ha

applied parallel to the cylinder axis, calculated assuming that
Jc(B,φ) has the same dependence as in the Kim model,
Jc(B) = Jc(0)/(1 + B/B0). For simplicity, in this paper we
have assumed B = μ0H , so that for calculations of Ic when a
longitudinal field is applied, Jc‖ and Jc⊥ in Eqs. (26) and (27)
are replaced by their Kim-model analogs, Jc‖/(1 + H/H0) and
Jc⊥/(1 + H/H0). Note that self-field effects reduce the critical
current in zero applied field to the value Ic(0) = 2.47, below
the Bean-model result, Ic⊥ = πR2Jc⊥ = 3.14. Although Ic

for parallel Ha depends upon r for relatively small fields, note
that Ic ≈ πR2Jc‖/(1 + Ha/H0) for large Ha , independent of
r , because in this case α(ρ) and φ(ρ) are both very close to
zero for all ρ.

When Ha is applied perpendicular to the cylinder axis,
Ic(Ha) must reduce to its self-field value when Ha = 0
and to Ic(Ha) ≈ πR2Jc⊥/(1 + Ha/H0) when Ha is much
greater than the self-field. However, application of an arbitrary
perpendicular field destroys the azimuthal symmetry of the
field and current distributions, which now must depend on
both the radial and azimuthal coordinates. Nevertheless, for
simplicity, I have calculated the critical current using α = π/2
and H (ρ) = Hθ (ρ) for ρ < R obtained as the solution of

dH

dρ
= −H

ρ
+ Jc⊥

1 + √
H 2 + H 2

a

/
H0

, (32)

an interpolation approximation that yields the correct Ic in
both the self-field limit and the large-Ha limit.
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FIG. 10. Ic vs Ha parallel to I (solid) and Ic vs Ha perpendicular
to I (dashed) for r = 0.5, 1, and 2, calculated assuming R = 1,
Jc‖ = 10, Jc⊥ = 1, and Kim-model field dependence of Jc with H0 =
1 (see text). The dotted curve shows πR2Jc‖/(1 + Ha/H0), while
πR2Jc⊥/(1 + Ha/H0) is indistinguishable from the dashed curve on
this plot.

VI. SINGLE-VORTEX MODEL FOR Jc

I next present a simple model that shows an intimate
connection between the thresholds for depinning and flux
cutting. Consider for simplicity a vortex segment stretching
between two very strong pinning centers at r± = (x,y,z) =
(0,0, ± c) (see Fig. 11). Assume that the vortex is subjected
to a current density J = ŷJy + ẑJz, where Jy = J sin φ and
Jz = J cos φ. (For simplicity, we here consider behavior in
a Cartesian coordinate system rather than the cylindrical
coordinate system used in Fig. 1. However, in both cases we
may think of the z axis as the vortex direction, and φ as the
angle of J away from the vortex direction, as in Figs. 1 and
2.) Since the Lorentz force per unit length of magnitude Jyφ0

due to the component Jy is perpendicular to the vortex line,
it causes the vortex to bow out in the x direction, where the
displaced vortex intersects the x axis at xd . The bent vortex
also experiences a Lorentz force due to the component Jz,
causing the vortex to bend into the shape of a helical arc. For
small values of J , the helical distortion is stable, because the
inward restoring force per unit length due to the vortex’s line
tension ε� is able to balance the outward Lorentz force per
unit length. However, when J reaches a critical value Jc, the
helical arc becomes unstable and the vortex expands to ever
larger radii, allowing it not only to escape the pinning centers
and become depinned but also to grow outward, where it can
meet other expanding vortices and undergo flux cutting. The

y

z
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z 'j 1.603
c 1
xdmax 0.634

2.313
8
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φ
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1.5 1.0 0.5 0.0 0.5 1.0 1.5
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FIG. 11. Helical vortex arc viewed looking down the x axis,
calculated at the critical current for the helical instability when
φ = π/8 and c = 1 (the corresponding parameters are shown in the
inset). The current density J is parallel to the z′ axis, and the helical
arc wraps more than halfway around the cylinder of radius a (dashed),
which is centered on the z′ axis. The z′ axis intersects the x axis at
x = x0 = xd max − a = 0.201. The vortex arc intersects the x axis at
xd max = 0.634, and the ends of the arc are attached to strong pins at
r± = (0,0,±1).
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critical current density Jc can be calculated as follows, using
an extension of an approach used in Ref. 38.

Let us describe the helical arc using the coordinates
(x ′,y ′,z′) with unit vectors (x̂ ′,ŷ ′,ẑ′), where the x ′ axis lies
along the x axis and the y ′ and z′ axes are tilted relative to the y

and z axes by an angle φ such that the z′ axis is parallel to J (see
Fig. 11). Points on the helical arc are described by vector r ′ =
x̂ ′a cos kz′ − ŷ ′a sin kz′ + ẑ′z′. The origin of the primed frame
is chosen to be at r0 = (x,y,z) = (x0,0,0), where x0 = xd − a,
such that the coordinates of any point in the primed frame
are related to those in the unprimed frame via (x ′,y ′,z′) =
(x − x0,y cos φ − z sin φ,y sin φ + z cos φ). In particular, the
strong pins at r± = (0,0, ± c) have the coordinates r ′

± =
(x ′

±,y ′
±,z′

±) in the primed frame, and since these points
lie at the ends of the helical arc, we have x ′

± = a − xd =
a cos(kc cos φ), y ′

± = ∓c sin φ = ∓a sin(kc cos φ), and z′
± =

±c cos φ.
The unit vector tangent to the helical arc in the primed

frame is

T̂ ′(z′) = r ′(z′)
ds ′ = −x̂ ′ka sin kz′ − ŷ ′ka cos kz′ + ẑ′

√
1 + k2a2

, (33)

and its derivative is

dT̂ ′(z′)
ds ′ = N̂ ′(z′)

ρc

= k2a(−x̂ ′ cos kz′ + ŷ ′ sin kz′)
1 + k2a2

, (34)

where N̂ ′(z′) = −x̂ ′ cos kz′ + ŷ ′ sin kz′ is the inward-directed
unit normal to the helical arc and

ρc = 1 + k2a2

k2a
(35)

is the radius of curvature.
The equation that determines the equilibrium radius a for a

given current density is the force-balance equation f d + f r =
0, where the inward restoring force is

f r = ε�

dT̂ ′(z′)
ds ′ = ε�k

2aN̂ ′

1 + k2a2
, (36)

and the outward driving force per unit length is, since J = J ẑ′,

f d = J × φ0T̂
′ = − Jφ0ka√

1 + k2a2
N̂ ′. (37)

The ratio of the magnitudes of the restoring and driving forces
is

R = ε�k

Jφ0

√
1 + k2a2

, (38)

and the two forces are exactly balanced when this ratio is equal
to 1.

In the absence of any pinning centers, Eq. (38) when a = 0
tells us that a long, straight isolated vortex subjected to a
parallel current density J is unstable to the growth of a helical
perturbation of any wave vector k < Jφ0/ε�, because then
R < 1. For wave vectors k > Jφ0/ε�, on the other hand, it is
possible for the restoring and driving forces to be balanced
when a = au =

√
(ε�/Jφ0)2 − 1/k2, but this is a point of

unstable equilibrium. For a > au, R < 1, the outward driving
force exceeds the inward restoring force, and the helix grows,
while for a < au, R > 1, the inward restoring force exceeds
the outward driving force, and the helix shrinks to zero

radius. Thus a straight vortex is stable against infinitesimal
perturbations with wave vector k > Jφ0/ε�. However, since
fluctuations of all wave vectors k are possible, we see that a
long, straight isolated vortex is unstable to the growth of helical
perturbations; in other words, in the absence of pinning, both
Jc‖ = 0 and Jc⊥ = 0.

Returning to the model of the helical arc stretching between
two strong pinning centers, we note that the pins place addi-
tional constraints on k and a via the equations cos(kc cos φ) =
1 − xd/a and sin(kc cos φ) = (c/a) sin φ. Accordingly, we can
write the force ratio as R(j,φ,x̃d ) = f/j , where x̃d = xd/c and

j = J/Jc⊥, (39)

Jc⊥ = ε�/φ0c, (40)

f (φ,x̃d ) = γ ka/
√

1 + (ka)2, (41)

ka = cos−1

(
sin2 φ − x̃2

d

sin2 φ + x̃2
d

) /
γ cos φ, (42)

γ = c/a = 2x̃d

/(
sin2 φ + x̃2

d

)
. (43)

In the limits φ → 0 and φ → ∞,

f (0,x̃d ) = π/
√

1 + (πx̃d/2)2, (44)

f (π/2,x̃d ) = 2x̃d/(1 + x̃2
d ). (45)

As illustrated in Fig. 12, when j is not too large, the
restoring and driving forces are balanced (R = 1) at two
displacements xd of the vortex arc along the x axis, a stable
point xds and an unstable point xdu. Note that for xd slightly
larger than xds , R > 1 and the inward restoring force exceeds
the outward driving force, such that xd is driven back down
to xds , but for xd slightly smaller than xds , the opposite is
true, R < 1 and xd is driven back up to xds . On the other

j 1.4
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xdmax cxds c xdu c
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π 32

π 16
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2
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FIG. 12. f [solid, Eq. (41)] vs x̃d = xd/c for φ = 0, π/32, π/16,

π/8, π/4, and π/2. For φ = π/8, the forces are balanced (R = 1)
for j = 1.4 (dashed) at two values of xd/c (black points), a stable
equilibrium point at xds/c = 0.368, and an unstable equilibrium
point at xdu/c = 1.080. As j increases, the two equilibrium points
merge at the maximum of f , where j = jc and J = Jc. For φ =
π/8, this occurs at xd max/c = 0.634 (large black point), where the
dimensionless critical current density is jc(φ) = 1.603.
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FIG. 13. Jc(φ)/Jc(π/2) (solid) and xd max/c (dashed) vs φ/(π/2)
obtained using the helical-instability calculation described in the text,
for which Jc(π/2) = Jc⊥ = ε�/φ0c and Jc(0) = Jc‖ = πε�/φ0c. The
dot-dashed curve shows the pin-distribution average (46) obtained
by convolving the helical-instability Jc(φ) with the gaussian of
Eq. (47) with �φ = π/20, which yields Jc(0)/Jc(π/2) = 2.455. For
comparison, the dotted curve shows the angular dependence of the
elliptic model [Eq. (11)] for the same Jc‖/Jc⊥ = 2.455.

hand, for xd slightly larger than xdu, R < 1 and the outward
driving force exceeds the inward restoring force, such that
xd is driven to ever larger values, while for xd slightly
smaller than xdu, the opposite is true, R > 1 and xd is driven
down to xds . As j increases to the value jc, the equilibrium
points merge to the point xd max, where f has its maximum
value, fmax(φ) = jc and R = 1. However, for any values of
j > jc(φ), the force ratio R = f/j is less than 1, indicating
that the outward driving force exceeds the inward restoring
force for all values of xd , and the helical arc must expand
to ever-increasing displacements. Thus when j > jc(φ) or
J > Jc(φ), the vortex arc undergoes a helical instability that
not only leads to flux-line cutting with other vortices in the
sample but also allows the free portion of the vortex to escape
from the strong pins and undergo flux flow.

Results for Jc and xd max vs φ obtained using this simple
model are shown in Fig. 13. The key features are that (a)
Jc‖ is proportional to Jc⊥, consistent with the experimentally
observed correlation between these critical currents, (b) the
same helical instability leads to both depinning and flux
cutting, showing that there is an intimate connection between
these processes, and (c) the threshold Jcd for depinning is
reduced to zero as the magnitude of J‖ increases to its
maximum threshold value Jc‖ while the threshold Jcc for
flux-line cutting is reduced to zero as J⊥ increases to its
maximum threshold value Jc⊥.

On the other hand, deficiencies of this model are that (a) the
ratio Jc‖/Jc⊥ = π, but experimentally this ratio is apparently
sample- and field-dependent, (b) it is an isolated-vortex model,
which ignores the intervortex interactions that are generally
important in type-II superconductors, (c) it does not reproduce
the experimentally observed angular dependence of Jc(φ),
which is often well described using the elliptic model, and
(d) the pinning model used here is greatly oversimplified
and would need extensions to account for more realistic
distributions of pinning centers. The latter effect can be
crudely estimated by convolving the helical-instability Jc(φ)

obtained above with a gaussian distribution function to obtain
a pin-distribution average,

Jc,avg(φ) =
∫ π

−π

g(φ − ψ)Jc(ψ)dψ, (46)

g(ψ) = (1/
√

π�φ) exp(−ψ2/�φ2), (47)

where �φ is a measure of the width of the distribution of
the pin-to-pin vectors around the z axis. Jc,avg(φ) is plotted
for �φ = π/20 as the dot-dashed curve in Fig. 13, where a
corresponding plot of the elliptic model is shown as a dotted
curve.

VII. DISCUSSION

A. Relation to experiments

The theoretical calculations of Sec. IV C relate most closely
to pioneering experiments by Walmsley.8 His experiments
were carried out using a cylinder of Pb-40 at.% Tl alloy,
subjected to combinations of a magnetic field Ha and electrical
current I , while both the axial magnetization and the axial re-
sistance were simultaneously monitored. As Ha was held fixed,
a paramagnetic axial magnetization was found to develop as
the current I increased above the critical current Ic and flux
flow occurred. This corresponds qualitatively to the behavior
when r < 1 discussed in Sec. IV C 2 and shown in Fig. 4.
The experimentally observed behavior can be interpreted as
resulting from the nucleation of helical vortices produced
by the combination of the applied longitudinal field and the
self-field. The helical vortices move toward the center of the
cylinder, building up a longitudinal paramagnetic moment. As
discussed in Sec. IV B, there is a balance between flux transport
and flux cutting, but when r < 1, which corresponds to a low
efficiency of flux cutting for reduction of B, a paramagnetic
longitudinal moment is produced.

The experiments8 also revealed that when the applied
magnetic field was reduced to a nominally zero value, a
spontaneous longitudinal magnetic moment of either sign
developed when I > Ic. Our interpretation of this effect is that,
although the longitudinal field was adjusted to a very small
value, it could not be made exactly zero, and as a result helical
vortices penetrated from the surface during flux flow, carrying
longitudinal magnetic flux toward the center. Figure 5 shows
calculations for r < 1 revealing large positive values of Hz in
the interior of the sample even for very small positive values
of Hz = Ha at the surface. Similarly, large negative values
of Hz in the interior of the sample would also be expected
theoretically for very small negative values of Hz = Ha at the
surface.

The theoretical calculations of Sec. V provide a qualitative
explanation of experiments by Karasik and Vereshchagin39

showing striking differences between the critical currents of
Ti-22 at.% Nb and Ti-36 at.% Nb wires measured in longitu-
dinal and transverse magnetic fields. The critical currents in
longitudinal fields Ha were all observed to increase initially
with Ha and to exhibit high peaks, where the longitudinal
critical current was one or two orders of magnitude larger than
the transverse critical current at the same field. Such behavior
can be understood qualitatively as discussed in Sec. V and
shown in Fig. 10.
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Various researchers experimentally studying the electric
field in longitudinal geometry have found inhomogeneities in
E along the sample length.8,40–44 However, such effects cannot
be understood in terms of the present theory, which assumes
uniformity of E just above the critical current.

B. Force-free configurations

In analyzing his experiments revealing a paramagnetic
moment in current-carrying on Pb-40 at.% Tl alloy cylinders
subjected to a parallel magnetic field, Walmsley8 compared his
results with force-free field theory, in which J is parallel to
H . Using the terminology of the present paper, in cylindrical
geometry force-free fields are those for which J⊥ = 0. After
setting J⊥ = 0, we can integrate Eq. (8) to obtain45

H (ρ) = H (0) exp

[
−

∫ ρ

0
r−1 sin2 α(r)dr

]
, or (48)

= H (R) exp

[
−

∫ R

ρ

r−1 sin2 α(r)dr

]
. (49)

Since these equations hold for any arbitrary function α(ρ),
there is an infinite number of possible force-free solutions. For
each α(ρ), the corresponding J‖(ρ) can be calculated from
Eq. (9).

Walmsley8 focused his attention on Bessel-function solu-
tions, which follow from the assumption that J‖(ρ) = kH (ρ),
where [see Eq. (9)]

k = dα

dρ
+ sin α cos α

ρ
(50)

is a constant. This equation is satisfied when45

α(ρ) = tan−1[J1(kρ)/J0(kρ)], (51)

such that

Hz(ρ) = H (0)J0(kρ), (52)

Hθ (ρ) = H (0)J1(kρ), (53)

H (ρ) = H (0)
√

J 2
0 (kρ) + J 2

1 (kρ). (54)

Since 0 < Hz(R) < H (0) and I = 2πRHθ (R) > 0 when 0 <

kR < 2.4048, solutions for k in this range yield paramagnetic
force-free solutions for a cylinder of radius R carrying a current
I in the z direction in a parallel field Ha = Hz(R). These
solutions were found to be in good agreement with many of
the measurements.8

However, the above Bessel-function solutions are only
one of infinitely many possible force-free solutions, and
all such solutions fail to describe the full physics of the
dynamical processes occurring at the critical current Ic of
a superconducting cylinder in a parallel applied field. Force-
free solutions do not satisfactorily explain the origin of the
longitudinal electric field that appears above Ic. If we had a
truly force-free situation where J⊥ = 0 and J‖ > 0, then we
would also have E⊥ = 0 and E‖ > 0, which violates Faraday’s
law. As a consequence, it would be impossible to balance
the transport and cutting contributions to ∂B/∂t appearing in
Eq. (28).

C. Interactions between flux cutting and flux depinning

Further theoretical work should be done to examine flux
cutting in the presence of pinning centers. What initiates
flux cutting evidently is the helical expansion instability first
discussed in a geometries with linear dimensions of the order
of the penetration depth λ,9,12–16 such that interactions with the
surface could stabilize the vortex against the helical expansion
instability for small currents. However, Brandt10,11 showed
that, because of their collective behavior, an array of vortices
parallel to the axis of a cylinder of radius much larger than
the intervortex spacing is unstable to a collective helical
expansion instability in arbitrarily small longitudinal currents.
These results suggest that pinning centers help to stabilize
the vortex array against the helical expansion instability.
This is consistent with the experimental observation that
the longitudinal and transverse critical currents are roughly
proportional to each other.

The intimate relationship between flux-line cutting and
flux depinning is also worthy of deeper study. Numerous
experiments have revealed that the critical-current densities in
longitudinal and transverse applied fields usually are roughly
of the same order of magnitude, although the critical current
in a longitudinal field is generally somewhat higher than
that in a transverse field. This suggests that the thresholds
for flux-line cutting and flux depinning are closely linked.
The model described in Sec. VI, in which the same helical
instability simultaneously initiates flux cutting and flux trans-
port, should point the way to deeper understanding of this
interrelationship.

D. Accounting for both flux cutting and flux depinning in
time-dependent problems

While the present paper has dealt only with a steady-state
problem in which there is no time dependence of the time-
averaged quantities B, H , and E, it should be possible to
extend the above approach to solve problems in which these
quantities are time-dependent at frequencies of interest to
power applications. The equations needed are simplest when
the superconductor is macroscopically isotropic, i.e., when the
penetration depth λ and coherence length ξ are the same along
different crystallographic directions, and the critical current
densities for flux depinning and flux cutting depend only upon
the magnitude of B and the angle φ between J and B. The
basic equations are then

J = ∇ × H, (55)

∇ × E = −∂ B/∂t, (56)

where H = ĤH , H (B) = (1/μ0)∇BF (B), and F (B) is
the Helmholtz free energy density in the superconducting
state.20 The displacement current can safely be neglected
at low frequencies. H (B) can be obtained using standard
magnetization measurements. Introducing the unit vector α̂ =
B/B = H/H , we can define the component of J along B as
J‖ = α̂J‖. The component of J perpendicular to B is then
J⊥ = J − J‖. Similarly, the components of E parallel and
perpendicular to B are E‖ = α̂E‖ and E⊥ = E − E‖. What

214511-11



JOHN R. CLEM PHYSICAL REVIEW B 83, 214511 (2011)

is also needed, but seldom experimentally determined to date,
are the dependencies of ρ‖ and ρ⊥ in the expressions

E‖ = ρ‖ J‖, (57)

E⊥ = ρ⊥ J⊥, (58)

bearing in mind that in type-II superconductors each of the
quantities ρ‖ and ρ⊥ depends strongly upon its corresponding
current density, with a well-defined increase when its threshold
value (Jcc = Jc| cos φ| or Jcd = Jc| sin φ|, as in Fig. 2) is
exceeded. Finally, what is needed is a model for the behavior of
Jc(B,φ), similar to the elliptic critical-state model of Eq. (11),
as shown in Fig. 2, where φ is the angle between J and B.
In many practical cases, it is likely that the time evolution of
the magnetic-field and current-density profiles will need to be
determined numerically by solving Eq. (56) step by step in
time, as has been done in Refs. 23,46, and 47.

Further extensions of the above procedure would be
necessary to incorporate the effects of anisotropy in both the
intrinsic properties [i.e., if λ, ξ , and H(B) differ along different

crystallographic directions] and extrinsic properties (e.g., if
the pinning centers have linear character and are aligned along
different crystallographic directions), along the lines of the
theoretical approaches of Refs. 46 and 48.
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