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Metallic nanograins: Spatially nonuniform pairing induced by quantum confinement
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It is well known that the formation of discrete electron levels strongly influences the pairing in metallic
nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not
studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels
form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can
exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-
confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the
chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider
spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a
rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter,
compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further
increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric
confining geometries and/or in the presence of disorder. However, it always remains of importance when the
energy spacing between discrete electron levels 6 is approaching the scale of the bulk gap A, i.e.,d > 0.1-0.2 Ap.
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I. INTRODUCTION

Quantum confinement plays a fundamental role in super-
conductors with nanoscale dimensions. Interplay of quantum
confinement and pairing correlations results in important
qualitative changes in the superconductor characteristics.'~!”
Because of technological reasons, quasi-zero-dimensional su-
perconducting structures (i.e., ensembles of small grains) were
the first where this interplay was investigated experimentally.
Initial attempts by Giaever and Zeller at the end of the
1960s used tunneling studies on large ensembles of super-
conducting particles.'” Since that time, most of the studies
on superconducting correlations in grains were performed
with grain powders’®?' or on films made of crystalline
granules separated by amorphous intergranular space.’>?
In the pioneering work of Ralph et al.,>** the discrete
electron spectrum was measured for a single grain. Their
technique (single-electron tunneling spectroscopy) enabled
them to probe superconducting correlations in an individual
Al grain. Very recently, Scanning tunneling microscope(STM)
was used to detect the superconducting gap of an isolated
ultrasmall lead grain deposited onto a silicon substrate (see,
e.g., Refs. 26 and 27). These advances opened new prospects to
examine superconductivity in individual metallic nanograins
with unprecedented detail, e.g., to investigate how quantum
confinement can influence the superconducting correlations.

The main feature of a superconducting nanograin that
makes it different from a bulk superconductor is the formation
of discrete electron levels with average energy spacing § ~
27 2h? /(mkgV), with kp the bulk Fermi wave number and V
the system volume. It can be of the same order as the bulk
gap Ap, or even larger in the case of ultrasmall nanograins.
Therefore, size quantization of the electron spectrum can have
a substantial impact on the basic superconducting characteris-
tics of such quasi-zero-dimensional superconducting systems.
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The understanding of the fundamental properties of su-
perconducting correlations in low-dimensional structures, in
particular in isolated metallic grains, has experienced a
remarkable development in the last two decades. Theoretical
aspects, which have attracted the most attention, are as follows.
The problem of the breakdown of BCS superconductivity in ul-
trasmall metallic grains was addressed in several papers.*282°
Finite-size enhancement of pairing in mesoscopic grains was
considered (see Ref. 30 and references therein). Effects of the
shell structure in the single-electron spectrum on supercon-
ducting correlations were pointed out for nanograins®!'7 and
ultrasmall metallic clusters.'®!! The ground-state properties
of the BCS pairing Hamiltonian of ultrasmall grains were
considered beyond the mean-field approximation using the
Richardson exact solution’ and the single shell model.'®

Nonuniform spatial distribution of the superconducting
condensate was not investigated in these and other papers, and
a spatially uniform pairing was, as a rule, assumed. However,
the translational invariance is broken in nanograins due to
quantum confinement, which leads to a position-dependent or-
der parameter. So, the question arises as to when the breakdown
of the translational symmetry in metallic superconducting
nanograins will significantly influence the superconducting
correlations. We note that the position dependence of the
order parameter is directly related to the following two points,
specific of nanograins. First, single-electron levels can form
bunches and even a kind of shell structure (in symmetric
confining geometries). In this case, the chemical potential
@ can be pinned to groups of condensed levels (i.e., nearly
degenerate or degenerate levels). This is of importance because
the density of states in the vicinity of u strongly influences
the superconducting correlations. In other words, such a
pinning plays the role of a filter that selects the contribution
of a particular single-electron shell (or of a group of close
levels) to the superconducting order parameter that is, as
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a rule, spatially nonuniform. Second, a position-dependent
order parameter means that the pairing gaps become strongly
dependent on the relevant quantum numbers, similar to the
case of superfluid fermions in atomic traps and nuclei (see,
e.g., Ref. 31). This is connected with a confinement-induced
modification (as compared to —g/V, with g > 0 the coupling
constant and V the volume) of the matrix elements controlling
the scattering of the time-reversed states: such modifications
strongly depend on the relevant quantum numbers. To our
knowledge, at present, there is only one paper'’ (see also the
following up extended publication of the same authors, i.e.,
Ref. 32) where the energy dependence of the matrix elements
for superconducting metallic grains was considered for the
particular case of chaotic grains. Such a dependence is related
to a nonuniform spatial distribution of the pair condensate.
However, any systematic analysis of nonuniform pairing was
beyond the scope of those papers.

Thus, the aim of this paper is to investigate spatially
nonuniform pairing in metallic nanograins, which was not
studied in previous publications. For illustrative purposes,
we consider metallic spherical nanograins, where the spatial
dependence of the superconducting condensate is pronounced
(the order parameter can vary with position by an order of
magnitude). In less symmetric confining geometries (here
we employ the rectangular shape) and/or in the presence
of disorder, spatial variations of the order parameter are
reduced. However, our study confirms that nonuniform pairing
is always of importance when the interlevel spacing § is
of the order of the bulk gap Ag. Any remaining grouping
of single-electron levels, which is always present in real
samples, even strengthens the effect of interest. We work in
the mean-field approximation and, thus, stay in the regime
3 < Ap. Below, we consider Sn and Al with Ag = 0.616
and 0.25 meV, respectively (for the parameters used below).
By using the above values of A, we find that the mean-field
approach is valid for D > 6-8 nm, with D the sphere diameter.

Our paper is organized as follows. In Sec. II, we outline
the formalism as to how to obtain a self-consistent solution to
the problem. In Sec. III, we present our numerical results.
In particular, in Sec. IIl A, we investigate the effects of
quantum confinement on pairing correlations through the
modifications of the matrix elements of the pairing interaction
and the size-dependent pinning of w to single-electron shells.
Section III B is focused on a spatial distribution of the pair
condensate and its relation to modifications of the matrix
elements and the size-dependent pinning of u. In Sec. III C,
we discuss the interplay of Andreev reflection with quantum
confinement that results in the formation of Andreev-type
states and significant dependence of the pairing gaps on the
relevant quantum numbers. A short summary and discussions
are given in Sec. IV, where our consideration of spherical
grains is also supplemented by results for rectangular-shape
nanoparticles, where the shell structure is dissolved and the
single-electron spectrum becomes almost equidistant.

II. FORMALISM

The reduction of the system to the nanometer scale leads
to the formation of a discrete electron spectrum. Moreover,
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in the presence of quantum confinement, the translational
invariance of the system is broken, and the superconducting
order parameter is position dependent, i.e., A = A(r). For the
mean-field treatment of such a situation, it is appropriate to
use the Bogoliubov—de Gennes (BdG) equations,*3* which
can be written as

Eilu;) = Hlu;) + Alv;), (1a)
Eilv)) = Nu;) — H|v;), (1b)

where E; stands for the Bogoliubov-quasiparticle (bogolon)
energy A = A(T) (with T the position operator) and the single-
electron Hamiltonian is referred to the chemical potential u,
ie.,

’I;Z

2m,

We remark that any magnetic effects are beyond the scope
of this paper. For simplicity, the confining interaction V(r)
is taken as zero inside the specimen and infinite outside:
V(r) = Vg ¥(R — p) with the barrier potential Vg — 00
(R = D/2 and p is the radial coordinate for the spherical
confining geometry).

As a mean-field approach, the BdG equations should be
solved in a self-consistent manner:

E;
A(r) = g ) (rlu;)(v;r) tanh (’37) : 3)

H@r)=—+V® - pu. )

where g > 0 is the coupling constant for the effective electron-
electron interaction approximated by the delta-function poten-
tial, i.e., (r,r'|®|r,r') = —g8(r — r’). The sum in Eq. (3) runs
over the states with the single-electron energy

& = [wi|Holu;) + (i) Ho|vi)] € [~hop,hopl,  (4)

with wp the Debye frequency. As is known, the solution of the
BdG equations has two branches: (i,+) and (i, —) (see Ref. 35)
for which we have E; > Oand E; _ < 0. The sum in Eq. (3)
should be taken over the physical states [the (i,+) branch], i.e.,
Ei - El"+.

For a given mean electron density ., the chemical potential
u is determined from

n, = élz[ﬁwui) + (= f (i), ®)

with V = ;—‘JT R? the volume of the spherical grain. For
conventional superconductors, the energy gap is typically
much smaller than the chemical potential. As a result, y stays
nearly the same when passing from the normal state to the
superconducting one.>* Therefore, one can solve Eq. (5) in the
absence of superconducting order [A(r) = 0].

In a spherical nanograin, because of symmetry reasons,
the order parameter depends only on the radial coordinate,
i.e., A = A(p). Therefore, the pseudospinor in the particle-
hole space can be characterized by the quantum numbers of
the angular momentum, i.e., (I,m). The angular part of the
pseudospinor ; is given by the spherical harmonics Yy, (0,¢)
in polar coordinates (p,60,¢), i.e.,

(X]%;) = Yin(0.9) (“"’(p )> , ©)
vji(p)
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where i = {j,l,m}, with j the radial quantum number associ-
ated with the quantum-confinement boundary conditions

uji(P)lp=k = vji(p)lp=r = 0. (7

To solve the BAG equations (la) and (1b) numerically,
uji(p) and v;;(p) are expanded in the eigenfunctions of the
single-electron Hamiltonian ﬁe [see Eq. (2)]. In addition,
iterations should be invoked to account for the self-consistency
relation given by Eq. (3). This program is significantly
simplified by keeping only the pairing of the time-reversed
states,’® which is a standard approximation for the problem of
superconducting correlations in nanograins. We note that such
an approximation is fully justified for small enough grains,
where the interlevel spacing & is approaching the scale of the
order of the bulk gap Ap. For larger grains, when § < Ag,
some corrections can be expected. However, our numerical
study of the BAdG equations shows that such corrections do
not exceed several percent for § ~ 0.1Ap. In the framework
of the BAG equations, the pairing of the time-reversed states
is realized through the so-called Anderson’s approximate
solution for which the particlelike and holelike wave functions
are assumed to be proportional to the single-electron wave
function. It means that

uji(p) =Uj xi(p), uji(p) = Vji xji(p), (®)

with the radial part of the single-electron wave function
given by

2 2
11(0) = i (an ). ©)
! R32 ji 1 (ejp) "R
with j;(x) the /-order spherical Bessel function of the first kind
and «; its j node. The coefficients I/;; and V;; (taken as real)

obey the standard constraint (see, e.g., Ref. 37)
Uy +Vvi =1 (10)

Then, by inserting Eq. (8) into (la) and (1b), we find the
following set of coupled equations (here Ej;,, = E;; and

Eim = &j1):

[Eji —&plUy = Aj Vi, (11a)
[Eji+ &1V =AU, (11b)

with

R
Aj = / dp p* Xj(0)A(p) (12)
0
and
n? 05?1

&= R M (13)

A nontrivial physical solution of Egs. (11a) and (11b) exists

only when
Ej=,/&+ A% (14)
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The Anderson prescription about the pairing of the time-
reversed states allows one to rephrase the self-consistency

relation [see Eq. (3)] as follows:
Mo i A; E;
L0 2T tanh (ﬂz"’), (15)

2,/80 + A%

Ajp = — Z(zz +1)
jl

where
g R
__ 5 2,2 2
My ji = yp /0 dp p” X (P) X j1(P)-

When deriving Eq. (15), one should keep in mind the property
of the spherical harmonics an=4 |1 (6,0)> = 21—;1. We
remark that M j; is nothing else but the pairing-interaction
matrix element (i’,i’|®|i,i) (with i = {j,l, — m}) averaged
over the states withm = —[,...,landm’' = —=I',...,l', 1.e.,

v I
1

Moy = — ./.—,qD.—..
i (2l,+1)(21+1)mz Z(z J|@iLT)

'=—1"m=—1

As seen from Eq. (12), a spatially uniform order parameter
means that the pairing gaps A ;; do not depend on the quantum
numbers j and /. This is compatible with Eq. (15) only when
My j; doesnotdepend on j" and . According to the definition
given by Eq. (16), we have My j; = Mj; jp and, so,if My j;
does not depend on j',I’, it does not depend on j,/ either. So,
we arrive at the standard simplified approach of investigating
the pairing correlations in metallic grains (see the discussion in
the Introduction). Below, we show that the spatial dependence
of the order parameter can not be ignored in superconducting
nanograins, which implies significant variations of the matrix
elements and pairing gaps with the relevant quantum numbers.
After a numerical solution of Eq. (15), the position-dependent
order parameter can be calculated from

A(p) =Y AU(p), (16)
jl

with the shell-dependent contribution AY"(p) given by
Xi(P) A ji

anh (ﬁgﬂ>. (17)
VEi T+ A

III. DISCUSSION OF RESULTS

APy = E @141
8w

A. Enhanced intrashell matrix elements and quantum-size
pinning of the chemical potential

Numerical calculations were performed with the set of pa-
rameters typical for tin**3%: hwp /kp = 195K, gN(0) = 0.25,
with N(0) the bulk density of states at the Fermi level [we use
the bulk electron density n, = 148 nm~3 (see, e.g., Ref. 39)].

Figure 1(a) shows the critical temperature (in units of the
bulk critical temperature T, p) versus the nanograin diameter
D as calculated from Eq. (15) when the matrix elements
of the electron-electron interaction and the size-dependent
variation of the chemical potential have been fully taken into
account. Results in Fig. 1 are presented for a step AR = 0.01
nm. For each radius, the critical temperature was defined
as the temperature above which the spatially averaged order
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FIG. 1. (Color online) The critical temperature (in units of
the bulk critical temperature 7, ) versus the grain diameter as
calculated for (a) My j; #—g/V and u # ug; (b) My j =
—g/V and w # up; and (c) My jy #—g/V and u = up. The
dashed curves in (a) show approximate lower and upper bound-
aries for the quantum-size oscillations of 7., both curves repre-
sent the same dependence T,/T. 5 = | + a(Dy/D)*?, with Dy =
50 nm and a = 1 (the lower boundary) and a = 3.5 (the upper one).
The same curves are also given in (b) and (c), for comparison.

parameter (A(p)) becomes smaller than 0.01 of its value at
T = 0. Our numerical results exhibit two features typical
of the size-dependent pairing characteristics in high-quality
superconducting nanograins. First, we observe an overall
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increase of T, with decreasing D (it is very pronounced due
to the highly symmetric confining geometry).>* Second, T,
oscillates wildly with D. This oscillatory behavior can be
understood in the following way. The pair correlations are
nonzero only for the states within a finite range (the Debye
window) around the chemical potential ;. Moreover, the main
contribution to the sum in Eq. (15) comes from the states in
the very vicinity of the Fermi level because, in this case, the

/21 + A?l >~ 1(§j; >~ 0). When varying the
nanograin size, the number of states in the Debye window
changes. The smaller the diameter, the smaller the number
of relevant states contributing to the pairing characteristics
and, as a result, the more significant is such a change. This
change is not monotonous but rather oscillating due to a
permanent competition between incoming and outcoming
states. As a consequence, all basic pairing characteristics, e.g.,
T, and pairing gaps A j;, exhibit quantum-size oscillations.
It is not only typical of nanograins with superconducting
correlations (see, e.g., the recent paper27), but it is also
present in superconducting nanowires'>~'® and nanofilms.***!
Such oscillations are pronounced for small diameters or
thicknesses, but decay with increasing the characteristic size
so that 7, approaches the bulk critical temperature 7, p (for
our parameter 7. p = 4.01 K). It is interesting to note that
the overall increase of 7, with decreasing D in Fig. 1(a)
is similar to a size-dependent enhancement of the pairing
gap in nuclei, where it is proportional to 1/4/A (see, e.g.,
Ref. 42), with A the number of nucleons. In particular, the
two dashed curves in Fig. 1(a) show approximate upper and
lower boundaries for 7, highlighting the magnitude of the
quantum-size oscillations: both curves represent the same
dependence, ie., T./T.p =1+ a(Dy/D)*?, with Dy =
50 nm and a = 1 and 3.5 for the lower and upper boundaries,
respectively [(DO/D)3/2 [’ N;l/z, with N, = n,V the number
of electrons]. We remark that real samples exhibit inevitable
shape and size fluctuations that affect the high degeneracy of
single-electron levels. Hence, measurements on an ensemble
of nanograins will significantly smooth the quantum-size
oscillations in the critical temperature and reduce its overall en-
hancement with decreasing nanograin size (see, also, Sec. IV).
For instance, in experimentally fabricated tin nanograins of
a semispherical shape, the observed enhancement of the
excitation gap over its bulk value is about’’ 60% for the
particle heights ~10-20 nm. This is significantly smaller than
the enhancement of 7, shown in Fig. 1(a). However, detailed
investigations of the enhancement of 7, in superconducting
nanograins is beyond the scope of our paper. It is focused on
effects of nonuniform pairing, which is of importance even in
the presence of shape and size fluctuations and disorder (see
the discussion in Sec. IV).

In order to investigate the role of the matrix elements
My ;i [see Eq. (16)] of the electron-electron interaction,
we also show what happens when the true matrix elements
are simply replaced by those of the bulklike form: M ;; =
—g/V, which is what is usually done when investigating
superconducting correlations in nanograins. The results are
displayed in Fig. 1(b) and, as seen, the difference with respect
to Fig. 1(a) is significant. To simplify the comparison, we
show also in Fig. 1(b) two dashed curves that represent

expression A j;/
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TABLE 1. Matrix elements My j; = Mj; j in units of —g/V
calculated at D = 7.1 nm for quantum numbers such that §;,/,&; <
ha)[).

My j ' r J l

10.62 31 11 31 11
1.9 31 11 23 29
1.33 31 11 19 39
0.64 31 11 8 71
0.41 31 11 1 101
4.71 23 29 23 29
1.7 23 29 19 39
0.7 23 29 8 71
0.43 23 29 1 101
3.72 19 39 19 39
0.77 19 39 8 71
0.46 19 39 1 101
2.69 8 71 8 71
0.69 8 71 1 101
3.61 1 101 1 101

the radius-dependent upper and lower values of 7, from
Fig. 1(a).

To clarify the physical reason why use of the true matrix
elements leads to significant deviations from the results found
for My j = —g/V, we show in Table I the numerical values
of My j (calculated in units of —g/V) for D = 14.2 nm
(only the states within the Debye window are given). As
seen, the diagonal (intrashell) matrix elements Mj; ;; are
strongly enhanced as compared to —g/ V. However, the matrix
elements controlling the scattering of the time-reversed states
between different shells (intershell) are often decreased in
absolute value with respect to —g/ V. So, the question arises
as to why the superconducting correlations are enhanced for
the true matrix elements. The point is that the intershell
interactions are of less importance due to a size-dependent
pinning of the chemical potential to the groups of degenerate
or nearly degenerate levels (shells can be often close to each
other in energy) (see the next paragraph). When p is pinned
to a particular shell, then the single-electron energy measured
from w is zero for the states from this shell. These states
make a major contribution to the superconducting correlations
unless diameters are not large enough, D < 20-30 nm, in
other words, when the number of contributing shells is less
than 10-15. In this case, the superconducting correlations are
nearly determined by the pairing gap A ;; associated with the
shell pinned to p. From Eq. (15), it is seen that A j; for the
states with &;; = 0 is mainly governed by the intrashell matrix
element M, j;. For instance, when ignoring the contribution
of all other states, one simply obtains (at T = 0)

Aj~ =+ 3) My ji-
When the diameter increases beyond 20-30 nm, then the
intershell matrix elements approach —g/ V while the intrashell
matrix elements are still significantly different from the
bulklike behavior. However, the role of the states with &;; = 0
is becoming less and less important for larger diameters due
to the presence of larger and larger number of shells making a
contribution to the pairing correlations. As a consequence,
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the difference between the data in Figs. 1(a) and 1(b)
decreases when approaching D = 3540 nm, together with
the amplitude of the quantum-size oscillations of 7.

In the fully self-consistent scheme, the chemical potential is
determined in such a way that the mean electron density 7, is
constant [see Eq. (5)]. However, size-dependent variations of
w are of importance not only because they simply prevent
the mean electron density from deviations. In fact, such
deviations are almost insignificant: Our calculations for u =
up show that n, decreases by a few percent when D is
reduced to 10-20 nm. A more interesting thing is that the
size-dependent variations of p have a pronounced effect on
the superconducting correlations. In particular, this can be
seen from Fig. 3(c), where T, is calculated for the true matrix
elements and u = ppg. What is the reason for this suppression
of 7.7 In the presence of the formation of strongly degenerate
electron levels or bunches of electron levels with almost
negligible spacing between them, the chemical potential lies
mostly at the highest partly filled degenerate level (see, e.g.,
Refs. 10 and 11). Pairing correlations are significant only
within the Debye window around the chemical potential u
and are strongest’® exactly at ;. Hence, when y is pinned to a
shell level, this favors the pairing correlations at this level and,
in turn, through the self-consistency relation, favors the pairing
correlations at neighboring shells. In other words, if the level
to which the chemical potential is pinned is highly degenerate
than the phase space for the strongest pair scattering is enlarged
and, consequently, the system gains in interaction energy
and, as a result, superconducting correlations are strongly
enhanced. It is different when p is not pinned to a shell, which
is mostly the case for a constant chemical potential, e.g., for
u = pp. Here the relevant shells entering the Debye window
are as a rule specified by &;; # 0 and, so, their contributions
are diminished.

In order to have a better feeling on the effect of the matrix
elements and on the pinning of the chemical potential, we
also plot T,, the critical temperature averaged over steps
of 1 nm, together with the standard deviation of the critical
temperature or versus the diameter D in Figs. 2(a) and
2(b), respectively. Here, it is clearly seen that the quantum-
number-dependent modifications of the matrix elements and
the quantum-size pinning of the chemical potential enhance, on
average, the superconducting correlations, enlarging 7,.. Note
that both above mechanisms make important contribution to
T.: at diameters 830 nm, the averaged critical temperature
is significantly reduced when one of them is neglected. In
particular, as seen from Fig. 2(a), 7. is decreased by about a
factor of 2.0 at D = 8-10 nm when either the confinement
modification of the matrix elements or the pinning of u
is switched off. However, the three curves for o7 given in
Fig. 2(b) are quite close to each other. It means that the
amplitude of quantum-size oscillations of 7, is not very
sensitive to the confinement-induced modifications of the
interaction matrix elements and to the size-dependent pinning
of u.

The above discussion is further illustrated by our numerical
results for p in Fig. 3. As seen from panel (a), when
keeping the electron density of the system constant, u slightly
shifts systematically up with decreasing D and exhibits
size-dependent oscillations, as seen from Fig. 3(a). These
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FIG. 2. (Color online) (a) The superconducting critical tempera-
ture (in units of 7, z) averaged over steps of 1 nm versus the diameter
D. (b) The standard deviation o7 (in units of 7, g) of the critical
temperature as a function of D.

oscillations are a signature of the size-dependent pinning of w
to groups of degenerate or nearly degenerate single-electron
levels. This is clearly seen from Fig. 3(b), where variations
of u (filled squares) are plotted versus D together with the
single-electron energies measure from the band bottom, i.e.,

2
%% (solid curves). For the sake of simple illustration,
panel (b) shows the data for extremely small diameters, where
the energy spacing between the shell levels is pronounced.
As seen from Fig. 3(b), x is in most cases pinned to a shell
level, which, as mentioned above, represents incomplete shells.
Sometimes p can also be found between two neighboring shell
levels, which corresponds to the case of a fully occupied lower
shell.

B. Spatially nonuniform pair condensate

In the preceding paragraph, we considered the effect of
quantum confinement on pairing correlations in supercon-
ducting spherical nanograins through the matrix elements and
quantum-size pinning of . As discussed at the end of Sec. I,
a framework that incorporates both issues appears to be only
consistent when the position-dependent superconducting order
parameter is taken into account. Thus, our results discussed
in the previous section suggest that the spatial variations of
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FIG. 3. (Color online) (a) Size variations of the chemical
potential. (b) A zoom with details of the quantum-size pinning of
the chemical potential: v (filled squares) is given together with the
single-electron levels (dotted curves) versus D. Small diameters are
taken for simplicity.

A(p) will be pronounced even in nanograins with diameters
up to D =20-30 nm. However, it is usually argued that
spatial variations of A(p) cost significant extra energy and,
so, they are strongly suppressed when D < &, with £ the bulk
coherence length (see, for instance, Ref. 29). In addition, D
should be larger than Ap: in practice, kp D ~ 10 is assumed
to be sufficient to ignore any spatial dependence of the order
parameter.'!! For typical metallic parameters, kp D ~ 200—
400 for D = 10-20 nm and this is the reason why the spatial
dependence of the order parameter was ignored in most papers
on superconducting correlations in nanograins. Below, we will
critically examine spatial variations of A(p) and will show that
the above criterion for nonuniform pairing has to be revisited.

In Fig. 4, the radial dependence of the superconducting
order parameter is shown as calculated from Eq. (16) for
D =12 nm (a), 13.52 nm (b), 14.2 nm (c), 16 nm (d),
16.4 nm (e), and 17.54 nm (f). The shells making a contribution
to the superconducting correlations are also displayed in
each panel, and the quantum numbers of the shell level
pinned to wu are underlined. As seen, we in general have a
nonuniform distribution of the pair condensate for diameters
D = 10-20 nm, which is in agreement with our expectations.
For example, let us consider the results plotted in panel 4(c).
Here, p is pinned to the shell level (/,j) = (101,1) and,
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FIG. 4. (Color online) Spatial distribution of the pair condensate in spherical nanograins: A(p) (calculated at T = 0) versus p for diameters
(a) D = 12 nm, (b) 13.52 nm, (c) 14.2 nm, (d) 16 nm, (e) 16.4 nm, (f) and 17.54 nm.

so, single-electron states with j =1 and / = 101 make a
major contribution to A(p), which results in a significant
enhancement of the order parameter next to the edge, i.e., for
p/R = 0.9-1.0. The profile of this enhancement is determined
by the radial wave function X12,101(P) with two pronounced
local maxima (A/Apg = 14.3and 7.2 at p/R = 0.9 and 0.97,
respectively) and one node (recall that j is the number of
the nodes of the radial wave function). All the other shells
displayed in Fig. 4(c) are specified by &;; # 0 and, as a result,
their contribution is much less significant. The local maximum
A(p)/Ap =2.3atp/R = 0.11is due to states (j,I) = (31,11).
The shells with (j,/) = (23,29) and (19,29) are responsible for
local enhancements of the order parameter up to 1.5-2.0Ap
at p/R = 0.27 and 0.36, respectively. At last, the shell (8,71)
produces the local maximum at p/R = 0.64. In general, the
larger the angular momentum, the larger the values of p/R at
which the corresponding single-electron states have an effect
on the profile of A(p).

It is worth noting that, typically, the order parameter is
strongly suppressed in the center (p = 0) except in rare
cases when states with zero angular momentum contribute
to the pairing correlations. One such example is given in
Fig. 4(d), where a narrow peak can be seen at p = 0 due
to the contribution of the states with (j,/) = (41,0).

From Fig. 4, it follows that the radial distribution of the pair
condensate remains strongly nonuniform even for D ~ 20 nm.
We would like to note that, when selecting concrete values

of D for Fig. 4, we did not take diameters for which T,
is close to the upper dashed curve in Fig. 1(a). In the case
of a strong enhancement of 7, the radial distribution of the
pair condensate is, as a rule, strongly nonuniform. The points
selected for Fig. 4 are mainly in the vicinity of the lower
dashed curve in panel (a) of Fig. 1: for D = 13.52, 14.2, 16,
and 16.4 nm, we have T,/ T,. p = 6.41, 6.48, 4.082, and 3.78,
respectively. However, even in this case, the order parameter
can vary with position by an order of magnitude. Spatial
variations of A(p) are significantly relaxed only when D
approaches 3040 nm, as seen from Fig. 5.

For our parameters, kr = 16.4 nm and, so, we obtain
krpD =~ 300 for D ~ 20 nm. Hence, the criterion krD > 1
is not very useful in order to estimate the effect of spatial
variations of the pair condensate. Based on our numerical
study, we suggest another criterion related to a more sensitive
energy scale, which is governed by the bulk pairing gap
Ap. The spatial distribution of the order parameter is always
strongly inhomogeneous when § ~ Ap (here it is even better
to replace A by the size-dependent pairing gap). The spatial
variations decay with a decrease in the ratio of the mean
interlevel spacing to the bulk order parameter, i.e., §/Ap,
and our numerical results suggest that such variations are
significantly reduced only when §/Ap < 0.05-0.1 (recall that
effects of a magnetic field are beyond the scope of our
paper). For Sn spherical superconducting grains, this regime is
achieved when D > 40-50 nm [note that 8§ ~ 27 2h%/(mkpV)
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FIG. 5. (Color online) The order parameter A(p) for diameters (a) D = 33.6 nm, (b) D = 35 nm, and (c) D = 36 nm.

underestimates the intershell spacing for spherical confining
potential]. Despite that our results are for a highly symmetric
confining geometry, we can expect that the order parameter
will be always spatially nonuniform for §/Ap > 0.1-0.2, even
when shape imperfections and disorder nearly dissolve the
shell structure. The reason is that the number of contributing
states [i.e., the states in the energy interval ~(u — Ap,u +
Ap)] is not very large for §/Ap > 0.1. In this case, the
states pinned to p always make a major contribution to
the order parameter and, so, the profile of the squared
absolute value of the corresponding wave function will mainly
determine the spatial distribution of the condensate. Thus, the
domain 6/Ap > 0.1-0.2 is in general characterized by strong
effects due to spatially nonuniform pairing. We note that this
conclusion is in agreement with the results of Refs. 17 and 32,
where it was found that the energy dependence of the relevant
matrix elements becomes more pronounced with increasing
the ratio §/Ap. For §/Ap > 0.1-0.2, the pairing in small
metallic superconducting grains becomes similar to that in
a superfluid Fermi gas in a harmonic-oscillator trap, where the
spatial distribution of the superfluid condensate is in general
spatially inhomogeneous except in a small region in the center
of the trap (for more details, see, Ref. 43 about shell effects,
Ref. 44 about the pairing of the time-reversed states and the
relevant corrections, and Ref. 45 about the size-dependent
oscillations of the superfluid properties).

We remark that our results do not contradict the usual
argument that spatial variations of the order parameter cost
extra energy. Let us compare a bulk superconductor with
a superconducting nanograin. In bulk, the relevant matrix
elements controlling the scattering of the time-reversed states
are —g/V and the order parameter is spatially uniform (in
the absence of a magnetic field). As opposed to bulk, the pair
condensate significantly varies with position in nanograins,
which results, of course, in an increase of the kinetic energy.
Howeyver, the intrashell matrix elements are now enhanced
in absolute value as compared to —g/V due to quantum
confinement. This compensates the energy cost due to spatial
variations of the order parameter.

The discussion in the preceding paragraph is also related
to arguments that are invoked in the conventional Ginzburg-
Landau theory. According to these arguments, the order

parameter is uniform in samples with size smaller than the
bulk coherence length. When applying this to nanograins, one
can conclude that the pair condensate should not vary with
its position. However, this is not true. It is well known that
one should be careful when applying conventional Ginzburg-
Landau theory to superconductors with characteristic size
smaller than the zero-temperature (BCS) coherence length &.
Strictly speaking, Gor’kov’s derivation of the conventional
Ginzburg-Landau formalism from the BCS approach is not
applicable on a scale smaller than & (see, e.g., Ref. 38). For
Sn, we have &) ~ 230 nm (see, e.g., Ref. 34). Thus, in the case
of interest D < &), and one can hardly invoke conventional
Ginzburg-Landau formalism to check whether or not A(p)
varies with p.

C. Confinement-induced Andreev-type states

Here, we would like to discuss one more important issue
related to spatially nonuniform pairing in nanograins. This
is the formation of Andreev-type states induced by quan-
tum confinement'** (see also a similar paper® discussing
Andreev-type states in ultracold trapped superfluid Fermi
gases). Since the 1960s (see Refs. 46—48), it is known that
quasiparticles can “feel” a spatial variation of the supercon-
ducting order parameter as a kind of potential barrier. This
physical mechanism (referred to as the Andreev mechanism
below) is the basis for Andreev quantization investigated previ-
ously for the core of a single vortex for the mixed state of a type-
II superconductor*’ and for an isolated normal region of the
intermediate state of a type-I superconductor*® (or for a similar
case of SNS contacts*®). Based on our discussion in Sec. III B,
one can expect that Andreev-type states can play a remarkable
role in superconducting nanograins due to significant spatial
variations of the superconducting order parameter. This is
very similar to recently investigated Andreev-type states in
superconducting nanowires and nanofilms,'**° where the pair
condensate is position dependent in the direction perpendicular
to the nanowire and nanofilm due to the quantization of the
perpendicular electron motion. In Ref. 49, it was shown that

A; = /d3r A®) [Ju; (0] + v (0[], (18)

214509-8



METALLIC NANOGRAINS: SPATIALLY NONUNIFORM ...

D=13.52 nm

[ (1,))=(27,16)

(9,63)

00 02 04 06 08 1.0
@) O/R

D=14.2 nm

| (1,))=(31,11)

10}
&(23,29)

(19,39) (8.71)

(1,101)

0.1¢
00 02 04 06 08 1.0

®) PR

FIG. 6. (Color online) Shell-dependent contributions to the
order parameter AY"(p) for relevant shells: (a) D = 13.52 nm,
(1) = (27,16), (23,25), (14,48), and (9,63); (b) D = 14.2 nm,
() = (31,11), (23,29), (19,39), (8,71), and (1,101).

which means that the pairing energy gap A; is the averaged
value of the order parameter “watched” by the quasiparticles
with quantum numbers i. Note that u; (r)|> + |v; (r)|*> can be
interpreted as the spatial distribution of quasiparticles accord-
ing to the well-known constraint [ d*r(|u;(r)|* + |vi(r)]?) = 1
[see, e.g., Ref. 37 and Eq. (10)]. When inserting Egs. (6) into
Eq. (18), one can easily obtain Eq. (12) with A; = A ;. If
quasiparticles avoid the domains of enhanced pair condensate,
the corresponding integral in the right-hand side of Eq. (18)
becomes smaller and, hence, such quasiparticles have smaller
pairing gaps Aj;. They can be referred to as Andreev-type
states.

Our numerical study of quantum-number-dependent pair-
ing gaps A j; for metallic nanograins reveals a significant role
of the Andreev mechanism. Let us consider D = 13.52 nm, the
corresponding spatial distribution of the pair condensate given
in Fig. 4(b). To show how different species of quasiparticles
are distributed in the radial direction in this case, we plotted in
Fig. 6(a) the radial-dependent shell contributions (at 7" = 0)
AUD(p) [see Egs. (16) and (17)]. We remark that such a
representation is more informative than simply a plot of
luj1(0)|*> + [vji(p)|*. First, the radial dependence of AUD
Xfl(p) is the same as that of |uj;(,0)|2 + Ivﬂ(,o)|2 o' Xfl(p)
[see Eq. (8)]. Second, a plot of AU'(p) gives also information
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as to how the corresponding states contribute to A(p). From
Fig. 4(c), we can see that a significant enhancement of the
order parameter occurs at p/R = 0.45-0.7. From Fig. 6(a),
it is clear that this enhancement is due to the states with
(j,1) = (14,48) and (9,63). Other shells, i.e., (27,16) and
(23,25) contribute less, and the corresponding quasiparticles,
representing Andreev-type states, are mainly located beyond
the domain p = 0.45-1.0. As a result, they have smaller
pairing gaps, i.e., Ay716 = 2.65 Ap and Aj3 5 = 2.81 Ap,
as compared to Ajs43 =4.098 Ap and Agez =5.77 Ap.
As seen, the quasiparticles with (j,/) = (27,16) are most
successful in avoiding the local enhancement of A(p) at
p/R = 0.45-0.7 and, so, Ay7 ¢ is the smallest pairing gap.
Such a manifestation of Andreev mechanism is not a particular
feature of D =13.52 nm. In general, Aj strongly varies
with j and [ for diameters < 30-40 nm, i.e., where spatial
variations of the order parameter are still pronounced. Quite
often, such variations can be an order of magnitude as, e.g., for
D = 14.2 nm [see A(p) given in Fig. 3(c)]. At this diameter,
a great enhancement of A(p) takes place at p/R = 0.9. This
is due to the contribution of the shell with (j,/) = (1,101) [see
Fig. 6(b)]. Other shells make much less important inputs and
the corresponding quasiparticles are mainly distributed beyond
the domain p/R = 0.9-1.0. So, as compared to Aj o) =
9.32 Ap, they have significantly smaller pairing gaps, i.e.,
A31711 = 1.6AB, A23’29 =1.62 AB, A19,39 =1.72 AB, and
Ag 71 = 2.35 Ap. Thus, the interplay of Andreev mechanism
and quantum confinement is responsible for variations of A j;
with the relevant quantum numbers.

One could expect that such a serious difference in pair-
ing gaps of different quasiparticle species can result in a
pronounced drop of the ratio of Ag (the minimal energy
gap) to the critical temperature kg7, similar to the case
for superconducting quantum nanowires.'* The main idea
here is that Ag is governed by Andreev-type states and,
hence, is decreased. Unlike Ag, T, is controlled by the
quasiparticles making a major contribution to A(p) and, so, T,
is coupled to their higher pairing gaps. As a result, Ag/kgT,
can be significantly smaller than in bulk. For instance, one
can expect that Ap = A3 = 1.6 Ag at D =14.2 nm,
while 7, is governed by Aj 01 = 9.32 Ap. However, this
is not correct for nanograins. The point is that Ag is a
spectroscopical gap, which is probed by STM. It is defined
as Agp =minj; Ej;. For nanowires, the subband-dependent
pairing gap is always the minimal quasiparticle energy due to a
quasifree spectrum in the direction parallel to the nanowire. For
nanograins, this is different. In particular, for D = 14.2 nm, we
have the following single-electron energies (absorbing w) of
the relevant shells: &3111 = —18.6 A, £329 = —26.03 Ap,
519’39 =20.9 AB, ";:8,71 =226 AB, and .’;:1'1()1 =0. HCHCC,
one can calculate that Ag = Ej o) = Ay 101 in spite of the
fact that Aj jo; is the largest pairing gap. Thus, although
the Andreev mechanism results in multiple-gap structure
in superconducting nanograins, its role is shadowed by the
nonzero interlevel spacing.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have shown that the spatial distribution
of the pair condensate is essentially nonuniform in metallic
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nanograins. In particular, the spatially nonuniform pairing can
proliferate in nanograins even when kr D ~ 300 and, so, the
usual criterion to neglect variations of the superconducting
condensate with position, i.e., kpD > 1, is not very useful
and can result in wrong conclusions. This is the reason why
effects due to spatially nonuniform pairing in superconducting
grains were previously overlooked. Our study suggests that
a new criterion should be based on a more delicate energy
scale (as compared to the Fermi energy), which, in the
superconducting state, is given by the bulk order parameter
Ap. It turns out that the pairing becomes spatially nonuniform
when the interlevel spacing § exceeds 0.1-0.2 A z. Variations
of the order parameter with position exhibit a pronounced
enhancement with an increase of 6/Ap. When § ~ Ap, such
variations can be almost an order of magnitude in highly
symmetric grains. At first sight, this seems impossible because
it costs extra energy for such spatial variations. However, a
nonuniform distribution of the pair condensate is accompanied
by enhanced pairing-interaction matrix elements, which com-
pensate the energy cost for an inhomogeneous distribution of
the condensate. Another point is the size-dependent pinning
of the chemical potential to groups of degenerate or nearly
degenerate energy levels. Such a pinning plays the role of
a filter that increases the contribution of the single-electron
levels in the vicinity of the chemical potential and suppresses
contributions of other states. This results in an additional
mechanism favoring spatially nonuniform pairing in metallic
nanograins.

In this paper, we investigated a highly symmetric confining
geometry. Due to this feature, the problem becomes effectively
one dimensional (the order parameter depends only on the
radial coordinate) and, so, sufficiently large diameters up
to D~ 40 nm can be investigated. This size is almost
impossible to reach theoretically for grains with the order
parameter depending on three relevant coordinates due to
time-consuming numerical calculations. Such an effectively
one-dimensional problem has large degeneration factors for
the corresponding shell structure, resulting in a significant
enhancement of the pairing correlations. In reality, there can
be several issues that may lead to a splitting of the shell levels.
It will decrease the degeneracy factors and, so, reduce the
pairing correlations since the main contribution to the sum in
the gap equation comes from the transitions within the same
shell pinned to the chemical potential. Among such issues is the
Jahn-Teller deformation, i.e., the transformation of a spherical
nanograin with incompletely filled shells to an ellipsoidal
shape. In addition, the surface imperfections and impurities can
significantly change the distribution of single-electron levels.
However, our qualitative results are quite generic and do not
depend on a particular shape of the nanograin and the presence
of possible imperfections. For instance, when § ~ Apg, the
pair condensate will always be spatially nonuniform because
only a few single-electron levels enter the energy interval
~[u — Ap,;u + Ag]. Due to the dominant contribution of
such levels to A(r), one can expect that the pair condensate
acquires a profile governed by the squared absolute value
of the wave function for the single-electron state closest in
energy to w. This is significantly strengthened by an increase
(in absolute value) of the diagonal matrix elements (i,i|®|i,i)
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and, in addition, by the pinning of the chemical potential to
the single-particle levels.

We remark that the diagonal matrix elements, i.e.,
(i,i|®|i,i) [see the definition for ® below Eq. (3)] are always
enhanced as compared to —g/V in the presence of quantum
confinement, whatever disorder and shape imperfections.
This can be seen from the following simple arguments. By
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FIG. 7. (Color online) (a) Single-electron energies & (given
in units of the Debye energy hwp) ordered in ascending manner
versus the ordering number N for the rectangular-shaped aluminum
nanograin with L, =7.06 nm, L, = L, /1.1, L, = 1.1 L, (squares)
and for a cubic nanograin with L, = 7.06 nm (triangles). (b) The
size-dependent excitation gap Ag/Ap versus L, (in steps of L, =
0.01 nm) for an aluminum nanograin of the rectangular shape with
the dimensions L,,L, = L,/1.1,L, = 1.1 L,: squares represent the
results calculated with the modified matrix elements and with proper
variations of ; stars are the data obtained for the bulklike matrix
elements —g/V and p = . (c) The spatial distribution of the
pair condensate in the rectangular grain with L, = 7.06 nm and
Ly=L,/1.1,L, =1.1L,, A(x) = AX,Y,2)ly=x/1.1.2=1.1x-
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introducing ¢;(r), the wave function associated with state i,
one can write

TOILT) = —g /d3r o).

Due to the normalization condition, we have |¢;(r)|*> = % +
d;(r), where f d3r d;(r) = 0. Then, the above matrix element
can be rearranged as

(i,i|®@i,i) = —%[1 + Vfd3rdi2(r)].

The second term in square brackets is always positive in the
presence of quantum confinement, i.e., when d;(r) # 0. It is
zero only when ¢;(r)’s are chosen in the form of plane waves,
which results in (i,i|®|i,i) = —g/V.

The above discussion can be supplemented by our numer-
ical results calculated from the BCS-type equation similar to
Eq. (15), but now for aluminum nanograins of rectangular
shape with dimensions L,, L, =L,/1.1,L, =1.1L,. For
aluminum, we have’*¥3° nwp/ky = 375K, gN(0) = 0.18,
and up = 11.67 eV, which corresponds to the electron density
n, = 181 nm~3. In Fig. 7(a), single-electron levels arranged
in ascending order are shown within the Debye window for
the rectangular nanograin with L, = 7.06 nm (squares). The
same is also given here for a cubic aluminum nanograin
with L, = L, = L, = 7.06 nm (triangles). As seen, single-
electron levels for rectangular shape are distributed in a nearly
equidistant manner (with § ~ 0.2-0.3 meV ~ Ajp) contrary to
the states in case of cubic geometry. It is well known that an
almost equidistant distribution* of single-electron levels near
W is also expected in the presence of significant imperfections
such as surface roughness and/or impurities. So, our results in
Fig. 7 give a feeling about the role of the spatially nonuniform
pairing in disordered metallic grains. The excitation energy
gap Ag for the rectangular nanograin is shown in units of Ap
in Fig. 7 as a function of L, in the interval L, = 7-8 nm. Here,
squares represent our results calculated with the modification
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of the matrix elements and with p varying with L,; stars
are the results found for the bulklike matrix elements —g/V
and u = pup. As seen, Ag (x T,) is now two times larger as
compared to Ap (on average), which is much less significant
than for highly symmetric grains (compare with Fig. 1) due
to a splitting of the shell levels. However, the effect of
interest is still pronounced: Ag calculated for the modified
matrix elements and with account of size variations of w is
generally larger by a factor of 1.5-2.0. The spatial profile of
the order parameter is nonuniform with local enhancements
over its average value by about 100% [see, e.g., Fig. 7(c)].
For rectangular grains with L, = 7-8 nm, we have § ~ Ag.
However, as we checked, the spatially nonuniform pairing
and the related effects of the modification of the relevant
matrix elements and the size-dependent pinning of w are
significant even for smaller §’s, i.e., when § > 0.1-0.2 Ap
(Ly < 14-15nm). For instance, for L, = 11 nm, the order pa-
rameter exhibits variations of about 30%—40% of its averaged
value. These results are in agreement with our expectations
based on the investigation of the highly symmetric spherical
grains.

We also note that STM can hardly provide us with any
information about spatial variations of the pair condensate in
the center of a superconducting grain. However, STM can
measure the order parameter next to the grain surface. If a
grain is not symmetric and the order parameter significantly
varies with position, such a measurement might produce results
depending on the point of the surface.
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