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2ISC – CNR and Dipartimento di Fisica, Universitá La Sapienza, P.le A. Moro 2, 00185 Roma, Italy
(Received 24 December 2010; revised manuscript received 18 March 2011; published 6 June 2011)

We derive a general formula for the charge pumped in a superconducting nanocircuit. Our expression
generalizes previous results in several ways; it is applicable in both the adiabatic and in the nonadiabatic
regimes and it takes into account also the effect of an external environment. More specifically, by applying
Floquet theory to Cooper pair pumping, we show that under a cyclic evolution the total charge transferred
through the circuit is proportional to the derivative of the associated Floquet quasi-energy with respect to the
superconducting phase difference. In the presence of an external environment the expression for the transferred
charge acquires a transparent form in the Floquet representation. It is given by the weighted sum of the charge
transferred in each Floquet state, the weights being the diagonal components of the stationary density matrix
of the system expressed in the Floquet basis. To test the power of this formulation we apply it to the study of
pumping in a Cooper pair sluice. We reproduce the known results in the adiabatic regime and we show new data
in the nonadiabatic case.
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I. INTRODUCTION

In a mesoscopic conductor a dc charge current can be
obtained, in the absence of applied voltages, by cycling in
time two (or more) external parameters, e.g., gate voltages or
magnetic fluxes, which govern the transport properties of the
system.1 Adiabatic charge pumping refers to the regime when
the variation of the external parameters is slow compared with
the characteristic time scale of the system.

In the scattering approach to quantum transport the pumped
charge in an adiabatic cycle can be expressed in terms of
derivatives of the scattering amplitudes with respect to the
pumping parameters.2 In the opposite regime of a Coulomb
blockade, with several metallic islands connected to each
other by small tunnel junctions, a periodic modulation of the
externally applied gate voltages leads to a periodic lifting of
the Coulomb blockade, thus enabling the transfer of exactly
one electron per period through the device. Experimental
evidence for parametric charge pumping in normal metallic
systems in the regime of a Coulomb blockade has been
obtained in Refs. 3 and 4. Over the last decades charge
pumping has attracted the interest of many research groups
working on very different aspects of this phenomenon, ranging
from its metrological applications to its intimate relation with
the fundaments of quantum theory (see Ref. 5 and references
therein).

Originally motivated by the aim of achieving quantized
charge pumping in the gigahertz range, a great deal of attention
has been devoted in the last two decades to superconducting
systems. The first experiment in this context, performed by
Geerligs et al.,6 showed that the degree of quantization of the
pumped charge was not as good as in the normal case. As later
discussed by Pekola et al.,7 the main source of inaccuracies
is related to the overall coherence of the superconducting
system. This apparent disadvantage (appropriate designs of
the superconducting circuit may overcome this difficulty),
however, turned out to be a precious source for the investigation
of fundamental properties of quantum theory in macroscopic
systems.

If only superconducting leads are present, at a low-enough
temperature, pumping is due to the adiabatic transport of
Cooper pairs. Besides the dependence of the pumped charge
on the details of the cycle, in superconducting pumps there
is an additional dependence on the superconducting phase
difference since the overall process is coherent. Cooper pair
pumping has been thoroughly investigated7–16 in the last
decades. In a series of experiments the Helsinki group17,18

has shown the coherent properties of Cooper pair pumping,
and, very importantly, it has provided the first experimental
demonstration of the relation between Cooper pair pumping
and the Berry phase acquired by the system during its cyclic
evolution. A connection between Berry phase and pumped
charge in superconducting nanocircuits has been already
established theoretically in Refs. 9, 12, and 13 (see also
Refs. 19 and 20, where this relation was found for mesoscopic
normal conductors).

Berry phases in macroscopic systems such as supercon-
ducting circuits have been studied in Refs. 13 and 21–23
and very recently experimentally demonstrated by the Zurich
group.24 The large body of theoretical understanding and the
spectacular experimental control which leads to unveiling the
coherent properties of pumping and its relation to geometric
phases are important steps toward the implementation of
geometric quantum computation25,26 with superconducting
devices.

While a lot has been found concerning the relation between
geometric phases and pumping in closed quantum systems,
the role of an external environment constitutes, with the
notable exception of a few very recent papers,27–29 an almost
unexplored territory. The study of geometric phases in the
presence of decoherence and dissipation has started only
recently, though with a few exceptions, certainly prompted by
the interest in quantum computation (see for example Ref. 30).
Together with many features common in the theory of open
quantum systems, the analysis of decoherence in geometric
interferometry raises several distinct issues that are of interest
as fundamental questions in both quantum mechanics and in
quantum computation. The adiabatic evolution, for example,
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cannot occur arbitrarily slow, as decoherence would destroy
any interference. This implies that the decoherence processes
should be analyzed in close connection with nonadiabatic
corrections.31

Because Cooper pair pumping is a geometric quantum
effect, it is natural to ask oneself to which extent an external
environment modifies its characteristics. Not only is this
question relevant for a detailed comparison with experimental
data where an external bath is unavoidably present, but also
it may shed additional light on the role of dissipation on
geometric quantum phenomena. It is not a priori obvious, for
example, that a relation between pumping and Berry phases (of
any sort) will survive in an open system. As already mentioned,
till now this problem was tackled in Refs. 27–29, where a
generalized master equation to consistently account for the
combined action of the driving and dissipation was derived
in the adiabatic limit. Application to the Cooper pair sluice18

showed that in the zero temperature limit the ground-state
dynamics and consequently pumping are not affected by the
environment.

Stimulated by the results obtained in Refs. 27–29, in this
paper we further investigate the relation between pumping and
geometric phases. We derive an expression for the pumped
charge which generalizes previous results in several aspects. It
is valid also under nonadiabatic conditions and in the presence
of an external environment. The key to our approach is to
apply Floquet theory to Cooper pair pumping. Floquet theory
can be employed for the description of driven dissipative
systems, and has recently found several applications32 (a clear
introduction of this method can be found for instance in
Ref. 33; another interesting class of open driven systems is
reviewed in Ref. 34). We will show that for a closed system
under cyclic evolution the total charge transferred through
the circuit is proportional to the derivative of the associated
Floquet quasi-energy with respect to the superconducting
phase difference (a result which is valid also in the case
of a nonadiabatic evolution). In the presence of an external
environment the expression for the transferred charge is easily
generalized in the Floquet representation. It is given by the
weighted sum of the charge transferred in each Floquet state,
the weights being the diagonal components of the stationary
density matrix of the system expressed in the Floquet basis.
The central result of our work is Eq. (20); it embraces all
the limits considered so far in the literature and allows us
to investigate new regimes. Furthermore it suggests the use
of a series of well-known numerical schemes to compute the
pumped charge.

This paper is organized as follows. In Secs. II and III we
will introduce the basic ingredients needed in the derivation
of the pumping formula. In Sec. II we formulate the problem
of Cooper pair pumping in superconducting circuits, while in
Sec. III we provide the necessary tools of the Floquet theory
of driven quantum systems both in the closed and open cases.
The formula for the pumped charge will be derived in Sec. IV.
Here we will discuss in which aspects our results generalize
previous works. As an example we will apply our derivation
to the Cooper pair sluice which was experimentally realized
by the Helsinki group. In Sec. V various different limits will
be discussed. Section VI will contain the conclusions of the
present work.

FIG. 1. (Color online) A generic setup of a Cooper pair pump.
Two superconducting leads, kept at a phase bias ϕ = ϕR − ϕL, are
connected through a Josephson network. The system is operated in
a regime where quantum effects are important. To have a pumped
charge, some external parameters (e.g., gate voltages or magnetic
fluxes) are varied periodically.

II. COOPER PAIR PUMPING

Charge pumping in Josephson networks consists of a
coherent periodic manipulation of the collective state of the
Cooper pairs in the array. In this section we define the setting
and review, for later convenience, the relation between Cooper
pair pumping and Berry phases.

A Cooper pair pump consists of a Josephson network con-
nected through Josephson junctions to two superconducting
leads (see a sketch of the setup in Fig. 1). The system is
phase biased, i.e., the two superconducting electrodes are
kept at a finite phase difference ϕ = ϕR − ϕL, where ϕR/L

is the phase of the superconducting order parameter of the
right/left lead. The Cooper pair pump operates by changing
adiabatically in time some external parameters, such as gate
voltages, to tune the charging energies, or magnetic fluxes,
to vary the effective Josephson couplings. We will label this
set of external parameters by the vector �λ(t) = {Vgi(t),�i(t)}.
In the absence of an external environment, charge transport
is a purely coherent phenomenon. The Hamiltonian of the
pump depends on the superconducting phases of each island
of the network ϕi (i = 1, . . . ,N), its conjugate momenta
(i.e., the charge on each island ni), the phase difference
across the pump, and all the external parameters, H (t) =
H [ϕ1, . . . ,ϕN ; n1, . . . ,nN ; �λ(t),ϕ]. The state of the system is
denoted by |�(t)〉 = |�(t,�λ(t),ϕ)〉.

By changing the control parameters in time a charge Q(tr)

will be transferred from the left to the right electrode. The
total charge transferred through the pump during the period T

is given by

Q(tr) = −2e
1

h̄

∫ T

0
〈�(t)|∂H

∂ϕ
|�(t)〉dt. (1)

Assuming that there are no degeneracies in the spectrum and in
the adiabatic limit, it was shown9,13 that Q(tr) can be expressed

214508-2



FLOQUET THEORY OF COOPER PAIR PUMPING PHYSICAL REVIEW B 83, 214508 (2011)

in terms of the total phase accumulated by the system after the
cycle:

Q(tr)

2e
= ∂γD

∂ϕ
+ ∂γB

∂ϕ
. (2)

In the previous expression γD/B are the dynamical/geometric
contribution to the accumulated phase. The dynamical con-
tribution corresponds to the charge transferred through the
circuit due to the supercurrent flow. The geometric contribution
is the pumped charge. In the latter case the charge is an
even function of the superconducting phase difference while
the contribution due to the supercurrent flow is odd in ϕ.
The different symmetry under reflection of the phase bias is
fundamental for the experimental detection of the pumped
charge. A generalization to the non-Abelian case, i.e., in the
presence of degeneracies in the spectrum, has been given in
Ref. 15.

To investigate nonadiabatic corrections and to generalize
this result to the dissipative case, it is useful to reexpress
the pumped charge using the Floquet formalism. In the next
sections, after introducing the basic definitions of Floquet
theory, we will find an expression for the pumped charge
which in the adiabatic limit and in the absence of an external
environment reduces to Eq. (2).

III. FLOQUET THEORY

As will become clear in the continuation of this paper,
Floquet formalism is naturally suited to study Cooper pair
pumping. It is important to stress already now that this is not
a mere reformulation of what has been done so far. We will
show that, on the contrary, the Floquet approach, treating on
the same footing adiabatic and nonadiabatic regimes, provides
a transparent and general expression for the pumped charge
in the case in which the superconducting network is coupled
to an external environment. A Floquet scattering theory has
been developed by Moskalets and Büttiker to study pumping
in mesoscopic conductors.35 Here we employ the Floquet
approach to study Cooper pair pumping.

In the next sections we introduce the necessary ingredients
of Floquet theory and its use in quantum dissipative systems.
The presentation closely follows Refs. 33 and 36.

A. Basics of Floquet theory

Given a system whose dynamics is governed by a periodic
Hamiltonian Ĥ (t) = Ĥ (t + T ), the Floquet theorem states that
solutions to the Schrödinger equation exist which have the
(Floquet) form

|�α(t)〉 = e−iεα t/h̄|�α(t)〉, (3)

where the state |�α(t)〉 is called the Floquet mode; it is periodic
in time (|�α(t + T )〉 = |�α(t)〉) and the corresponding quasi-
energy εα is real and unique up to multiples of h̄
, with

 = 2π/T . There are as many distinct such solutions as
the dimension of the Hilbert space H. These solutions are
linearly independent and form a basis of the Hilbert space. An
eigenvalue equation for the quasi-energy εα can be obtained
by defining the operator H (t) ≡ Ĥ (t) − ih̄∂t :

H (t)|�α(t)〉 = εα|�α(t). (4)

The Floquet modes |�α,n(t)〉 = |�α(t)〉 exp(−in
t), where
the integer n leads to a solution identical to the one given in
Eq. (3), but with shifted quasi-energy εα → εα,n = εα − nh̄
;
hence the eigenvalues {εα} can be mapped in the first Brillouin
zone obeying −h̄
/2 � ε � h̄
/2.

For the Hermitian operator H (t) it is convenient to introduce
the composite Hilbert space37 H ⊗ T made by the tensor
product of the Hilbert space H of the vectors representing the
state of the system and the space T of the periodic functions in
t with period T = 2π/
. In the space of the periodic functions
of t we have a basis of Fourier vectors {exp(−in
t)} which
are orthonormal with respect to the scalar product given by

(m,n) ≡ 1

T

∫ T

0
(e−im
t )∗e−in
tdt = δm, n. (5)

We define |l〉 ≡ e−il
t as vectors in T . We can extend the
scalar product on H to a scalar product on H ⊗ T defining

〈〈�1|�2〉〉 ≡ 1

T

∫ T

0
〈�1(t)|�2(t)〉dt. (6)

B. Floquet states and geometric phases

The Floquet quasi-energies are intimately connected to
geometric phases (in this paper we are interested only in the
case in which their spectrum is nondegenerate). Indeed they
are, up to a multiplying factor, the phases of the eigenvalues
of the evolution operator ÛS(t + T ,t). The phase is defined
up to 2nπ ; hence an eigenvalue of ÛS(t + T ,t) corresponds
to infinite Floquet exponents obtained through translations of
2nπh̄/T .

Noticing that Floquet states follow a cyclic evolution in the
projective Hilbert space (we call Ĉ the closed path followed
in the projective Hilbert space), it is possible to express the
Aharonov–Anandan geometric phase acquired during a cyclic
evolution, starting in the Floquet state α, by

γAA(Ĉ) = −εαT

h̄
+ 1

h̄

∫ T

0
〈�α(t)|Ĥ (t)|�α(t)〉dt. (7)

An equivalent expression, perhaps more useful in the compu-
tation, is

γAA(Ĉ) = 2π
∑

k

k〈cα,k|cα,k〉, (8)

where we used the Fourier expansion of the Floquet modes:

|�α(t)〉 =
∞∑

l=−∞
|cα,l〉e−il
t . (9)

In the adiabatic limit the quasi-energy corresponding to the
nth eigenstates can be expressed in terms of the dynamic γD

and geometric γG phases:

εn = − h̄

T
[γD,n(T ) + γG,n(C)]. (10)

C. Floquet–Born–Markov master equation

The Floquet basis is particularly useful for writing the
master equation governing the dynamics of the reduced density
matrix of a driven system when in contact with an external
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environment. We consider below the case in which the Born–
Markov approximation is applicable. Details and subtleties of
the derivation of a master equation in this case are described
in Ref. 33; here we merely state the end result for the master
equation which will be used later to derive a formula for the
pumped charge.

Given a quantum system interacting with an external
reservoir, the Hamiltonian describing the system+reservoir is
given by ĤS+R = Ĥ (t) + ĤR + V̂ , where Ĥ (t) acts only on
the system’s degrees of freedom, and is periodic with period
T , ĤR acts only on the environment’s degrees of freedom, and
the interaction has the form V̂ = X̂ ⊗ Ŷ , where the operator
X̂ acts on the environment and Ŷ on the system.

The master equation for the reduced density matrix of the
system can be presented in the form33

ρ̇ αβ(t) =
∑

γ δ;k,k′

[
�−

δβαγ,k′k + �+
δβαγ,k′k −

∑
ν

(δβδ�
+
αννγ,kk′

+ δαγ �−
δννβ,kk′)

]
ργδ(t)ei(�αβ,k−�γδ,−k′ )t , (11)

where

�+
αβγ δ,kk′ = 1

h̄2 Yαβ,kYγ δ,k′γ +
γ δ,k′ ,

�−
αβγ δ,kk′ = 1

h̄2 Yαβ,kYγ δ,k′γ −
αβ,k,

Yαβ,k = 1

T

∫ T

0
〈�α(t)|Ŷ |�β(t)〉ei
ktdt,

γ ±
αβ,k =

∫ ∞

0
〈X̂(±t ′′) X̂〉 exp(−i�αβ,kt

′′)dt ′′,

�αβ,k = 1

h̄
(εα − εβ) − k
.

As is evident from Eq. (11), Floquet theory allows one to treat
the time-periodic case with a formalism which is formally
identical to the one used in the time-independent case. The
relevant effects due to the periodic driving are captured by use
of the Floquet basis.

Further simplifications can be made if the secular approxi-
mation holds33 (as we will assume in the rest of this paper). As
in the time-independent case, the equations for the populations
decouple from those for the (off-diagonal) coherences. In the
steady state the coherences vanish. The populations are given
by a “detailed balance” condition,

Wν→αρst
νν = Wα→νρ

st
αα, (12)

with

Wδ→α = 1

h̄2

∑
k

|Yδα,k|2g(�δα,k), (13)

g(ω) ≡
∫ +∞

−∞
〈X̂(t) X̂〉eiωtdt. (14)

This property of the stationary solution when expressed in
the Floquet representation, is crucial to obtain the pumped
charge also in the dissipative case. In Ref. 27 the secular
approximation in the adiabatic basis was shown to lead to

unphysical results, in particular to charge nonconservation;
the secular approximation in the Floquet basis does not break
charge conservation, as we show in the appendix.

IV. FLOQUET APPROACH TO COOPER PAIR PUMPING

Equipped with the Floquet formalism outlined above, we
now derive an expression for the pumped charge both in the ab-
sence and in the presence of an external environment. We first
consider the case of a unitary evolution where, in the adiabatic
case, we should recover the known relation, Eq. (2), between
pumping and geometric phases.

A. Pumped charge in a closed system

At first we ignore any coupling with the external environ-
ment. The dynamics is unitary and governed by a time-periodic
Hamiltonian. It is meaningful to compute the pumped charge
in a given cycle only for those states that, up to a phase, do
come back to their initial value. These are the Floquet states
(one should keep in mind that no assumption of an adiabatic
dynamics is done at this point). By employing the Schrödinger
equation in Eq. (1) it is possible to write it in the form

Q(tr) = −2e

h̄

∫ T

0

[〈�|∂ϕ(H |�〉) − 〈�|H∂ϕ|�〉] dt

= −2ie

∫ T

0
∂t

[〈�(t)|∂ϕ|�(t)〉] dt. (15)

Since the average is performed over a Floquet state, defined in
Eq. (3), it is straightforward to obtain

Q(tr) = −2e
T

h̄
∂ϕεα(ϕ). (16)

Equation (16) is the first result of this paper. It gives a
general formula for the transferred charge in a superconducting
circuit which is valid under both adiabatic and non-adiabatic
conditions. Obviously it reduces to Eq. (2) in the adiabatic
case.

The pumped contribution to the transferred charge can be
obtained by subtracting from Eq. (16) the supercurrent term
(associated with the dynamical phase):

Qp = 4πe
∑

k

k ∂ϕ〈cα,k(ϕ)|cα,k(ϕ)〉. (17)

B. Pumped charge of a superconducting circuit coupled
to an external environment

The Floquet approach allows for a very simple and
appealing generalization of Eq. (17) to the dissipative case.
For simplicity we consider the case in which the secular
approximation holds. The transferred charge for a system
defined by a density matrix is given by

Q(tr) = 2e

h̄

∫ T

0
Tr((∂ϕĤ (t,ϕ))ρ̂st(t,ϕ))dt (18)

where ρ̂st is the reduced density matrix of the system in
the steady state (we are interested in obtaining a suitable
expression for the pumped charge in the stationary limit after
all transient effects have disappeared). Noting that (see the
previous section) in the Floquet basis all the coherences vanish
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in the long time limit, the expression for the transferred charge
takes the form

Q(tr) = −2e
T

h̄

∑
ν

ρst
νν∂ϕεν(ϕ). (19)

Hence, the charge passing through the circuit is the weighted
average of the charge which would have passed if the system
had been in a pure Floquet state, see Eq. (16). The weights are
the populations of these Floquet states in the quasi-stationary
case. The previous expression can be split into a geometric and
a dynamic part, and the pumped charge is given by

Qp = 4πe
∑
k,ν

kρst
νν(ϕ)∂ϕ〈cν,k(ϕ)|cν,k(ϕ)〉. (20)

This is the central result of our work. Equation (20) reduces
to all known cases in the corresponding limits. In addition it
allows us to explore regimes that have not been considered so
far. The form in the dissipative case is self-explaining; it is the
average of the corresponding expression in the noiseless case
weighted by the populations of the Floquet states.

In the rest of this paper we will apply the general result of
Eq. (20) to the Cooper pair sluice18 which, as we will see in
the next section, can be described by a two-level Hamiltonian.
It is therefore useful to give explicit formulas in the case of a
two-dimensional Hilbert space. In this case we have only two
independent Floquet states that we call |�α〉 and |�β〉. The
populations in the stationary state are given by

ρst
αα = Wβ→α

Wβ→α + Wα→β

,

ρst
ββ = Wα→β

Wβ→α + Wα→β

.

(21)

Replacing this in Eq. (20) and exploiting the relation εα = −εβ

we obtain

Qp = 4πe
Wβ→α(ϕ) − Wα→β(ϕ)

Wα→β(ϕ) + Wβ→α(ϕ)

∑
k

k∂ϕ〈cα,k(ϕ)|cα,k(ϕ)〉.

(22)

V. PUMPING IN THE COOPER PAIR SLUICE

The Cooper pair sluice18 is a superconducting transistor
where the pumping effect is achieved by a modulation of the
Josephson couplings and the gate voltages. A sketch of the
sluice is shown in Fig. 2. The central island is connected
to the two superconducting leads by two tunable Josephson

FIG. 2. Circuit scheme of the Cooper pair sluice.
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FIG. 3. (Color online) The variation in a cycle of ng , JL, and JR .
These latter are expressed in units of EC . In this graph ng varies
between ng min = 0.2 and ng max = 0.8, JL and JR vary between
Jmin = 0.003EC and Jmax = 0.1EC .

junctions. Its charging energy can be tuned by means of a gate
voltage. The Hamiltonian of the sluice is

Ĥ = EC

(
n̂ − ng

)2 −
∑

i=L/R

Ji cos(θ̂ − ϕi), (23)

where EC = (2e)2/(2C�) is the charging energy of the central
island, Ji are the Josephson couplings to the left (i = L)
and right (i = R) electrodes, and ng = CgVg/(2e) is the gate
charge which can be modulated by changing the gate voltage
Vg , as shown in Fig. 2 (C� is the total capacitance of the
island, including the gate capacitance, the capacitance to the
leads, and other possible contributions). To tune the Josephson
couplings the junctions are replaced by superconducting
quantum interference devices (SQUIDs) which behave as
single Josephson junctions with an effective coupling which
can be varied by changing the flux piercing the loop J (�) =
J (0) cos(π�/�0) (where � is the flux through the loop and �0

is the flux quantum). The charge n̂ on the central island and the
phase θ̂ are canonically conjugated variables. The Hamiltonian
is varied along a cyclic path; we change periodically �L, �R ,
and Vg , determining a periodic variation of ng , JL, and JR . In
all the cases considered here, these parameters are assumed to
depend on time in the same way as in Pekola et al.27 The time
dependence of the parameters is shown in Fig. 3. Notice that
when JL is maximum JR is minimum and vice versa, meaning
that when a SQUID is open the other is closed and vice versa. In
an ideal situation, where the minimum value of the Josephson
couplings could be reduced to zero, the charge passing through
the system in one cycle would be exactly quantized in units of
2e (the supercurrent contribution vanishes in this setup). In a
realistic case where the SQUID loops do not close perfectly
the pumped charge is given by18

Qp ∼ −2e
(

1 − 2
Jmin

Jmax
cos ϕ

)
. (24)

If during the cycle ng stays close enough to the degeneracy
value 1/2, we can describe the system by using the two-level
Hamiltonian

H = 1
2 (Bxσ̂x + Byσ̂y + Bzσ̂z), (25)
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FIG. 4. (Color online) Pumped charge vs. ϕ in the adiabatic case
computed with the Floquet theory (red crosses) confronted with the
same quantity computed with the analytical expression (24) (black
solid line), 0 � ϕ � 2π . It is Jmin/Jmax = 0.03, Jmax = 0.1EC ,
TEC/h̄ = 8400. Charge is in units of e. The slight scattering of the
points is a numerical artifact due to intrinsic difficulties in looking at
the system dynamics for very long times.

where Bx = EC(1 − 2ng), By = JR sin ϕ, and Bz = (JL +
JR cos ϕ).

In the following sections we will use the two-level approx-
imation to present our results for the pumped charge in the
Cooper pair sluice.

1. Unitary evolution

We first consider the case in which the environment is
absent. We compute numerically the Floquet exponents for
the Hamiltonian defined by Eq. (25), and by means of Eq. (22)
we obtain the pumped charge. The first case we consider is
the adiabatic limit to compare our approach with the known
results. The behavior of the pumped charge as a function of
the phase bias is shown in Fig. 4.

The results of the Floquet approach are tested against the
analytic result,18 Eq. (24). We chose TEC/h̄ = 8400, a value
which guarantees amply to be in the adiabatic limit. The
reason for this large value is due only to the simplicity to
compute numerically the Floquet exponents. Obviously we do
not expect any changes in the results as long as we are in the
adiabatic regime. The numerical calculations agree well with
the analytical expression of Eq. (24).

As we already discussed, the Floquet approach to pumping
allows us to go beyond the adiabatic regime. An example
is shown in Fig. 5 for TEC/h̄ = 2.1. In this particular case
the pumped charge is much smaller than that obtained in
the adiabatic regime. This example was indeed chosen just
to demonstrate the power of the Floquet approach. There
are cases, for a suitable choice of the parameters’ loop, in
which it is possible to obtain charge quantization also under
nonadiabatic conditions.

It is interesting to note that in the nonadiabatic case
the pumped charge is phase dependent also in the case in
which Jmin = 0. This case is very similar to the Cooper pair
shuttle.38,39

0 1 2 3 4 5 6 7
-3

-2

-1

0

1

2

3

Q
p
/
e

ϕ

×10−5

Jmin/EC = 0
Jmin/EC = 0.003
Jmin/EC = 0.006
Jmin/EC = 0.009

FIG. 5. (Color online) Pumped charge vs. ϕ with TEC/h̄ = 2.1
for different values of Jmin, 0 � ϕ � 2π . Charge is in units of 10−5e.

2. Influence of the external environment

The second application of our pumping formula deals
with the case in which the sluice is coupled to an external
environment. The main source of decoherence is due to charge
fluctuations. In terms of the coupling Hamiltonian introduced
in Sec. III C, the operator of the system is Ŷ ∝ σz and the opera-
tor of the environment is X̂ = EC

ˆδng , where δn̂g = CgδV̂g/2e

expresses the fluctuations of the gate voltage (Cg is the gate
capacitance). As usual, we assume that the charge fluctuations
are due to the thermal noise of a resistance R put in series
with Cg . There are also some fluctuations in the fluxes �L and
�R , but these are coupled to the Josephson energies JL and
JR which are JL,JR  EC ; hence these fluctuations are much
smaller than the charge fluctuations which are coupled to EC

and we can neglect them. If the fluctuations of the gate voltage
induced by R can be described by the Caldeira–Leggett model,
the function g(ω) = ∫ ∞

−∞〈X̂(t ′′) X̂〉eiωt ′′dt ′′ which appears in
Eq. (13) reads40

g(ω) = h̄ωR
(
e

Cg

C�

)2(
coth

(βh̄ω

2

)
+ 1

)
. (26)

In all the subsequent calculations R = 300 k
.
There are several methods to compute the Floquet quasi-

spectrum.33 For the far nonadiabatic regime, we diagonalized
numerically the Floquet operator H̄ (t) in the composite Hilbert
space37 as briefly discussed in Sec. III A; in the adiabatic limit
we found it more convenient to compute the quasi-energies as
the phases of the eigenvalues of the time-evolution operator
over one period, times h̄/T .41 From the knowledge of the
Floquet eigenvalues and eigenvectors it is possible to compute
the steady-state populations in each Floquet mode. These latter
are shown in Fig. 6. The parameters are chosen to be such that
the pumping is adiabatic.

By means of Eq. (22) the pumped charge in a dissipative
case is readily obtained. An example is shown in Fig. 7.

As should be expected, on increasing the temperature the
pumped charge decreases. The pumped charge associated with
the two Floquet states is opposite for a given cycle. Therefore
the progressive mixture of the two states suppresses the size
of the pumping.
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FIG. 6. (Color online) Population ρst
αα of the Floquet state with

the lower quasi-energy vs. temperature � (in its dimensionless form)
for different values of ϕ. We are in the adiabatic limit (TEC/h̄ = 8400
and �Emin � EC/10). Temperature is expressed in units of EC/kB .
Inset: The same graph magnified to show the dependence on ϕ.

3. Floquet states in the adiabatic limit

In the limiting case of an adiabatic cycle our approach
to pumping should reduce to the one discussed in Ref. 27.
In the remainder of this section we will address this point
by analyzing the Floquet states in the adiabatic approxi-
mation. Floquet states are the eigenstates of the operator
Ĥ (t) − ih̄∂t . We assume a nondegenerate spectrum with
instantaneous eigenvectors and eigenvalues given respectively
by {|k(t)〉} and {Ek(t)}. Adiabatic condition requires that α ≡
1/(T min ωkl)  1, where ωkl(t) ≡ (

Ek(t) − El(t)
)
/h̄. On the

basis of the instantaneous eigenstates the operator to be diago-

0 0.5 1 1.5 2
0

0.5

1

1.5

2

|Q
p
|/
e

kBΘ/EC

ϕ = 0
ϕ = 0.8
ϕ = 1.6
ϕ = 2.3
ϕ = 3.1

FIG. 7. (Color online) Modulus of the pumped charge vs. tem-
perature for different values of ϕ. We are in the adiabatic limit
(TEC/h̄ = 8400 and �Emin � EC/10). Temperature is expressed in
units of EC/kB and charge in units of e.

nalized reads Ek(t)δkl − h̄wkl(t), where wkl(t) = i〈k(t)|l̇(t)〉.
To first order in α the corresponding eigenvectors are

|�k(t)〉 = |k(t)〉 −
∑
l �=k

wlk(t)

ωkl(t)
|l(t)〉 + O(α2), (27)

with eigenvalues

εk = 1

T

∫ T

0

(
Ek(t) − h̄wkk(t))dt + O(α2). (28)

It can be shown that these eigenvalues are invariant under
gauge transformations. These states are eigenstates of the
operator

H̃ (t) = D̂(t)†Ĥ (t)D̂(t) − ih̄D̂(t)† ˙̂D(t), (29)

where D̂ is the transformation from a given (time-independent)
basis of the system Hamiltonian. It was argued in Ref. 27 that
the system relaxes in the eigenbasis of H̃ , Eq. (29). This is
what is contained in the result of Eq. (20) for the pumped
charge.

VI. CONCLUSIONS

In this paper we apply, for the first time to our knowledge,
the Floquet theory of periodically driven quantum systems to
Cooper pair pumping. We found that the pumped charge can be
expressed in a very natural way in terms of the Floquet states
(there is a clear connection between Floquet exponents and
states and the geometric phase acquired by the system). This
approach does not require the adiabatic limit to hold, and can be
used to work out the pumped charge out of the adiabatic regime
(see Fig. 5). We further extended this to the dissipative case,
where we provided a general formula to compute pumping.
To demonstrate the power of our approach we applied it to the
case of Cooper pair sluice. In the known limits we recovered
previous results. We further discussed new regimes which are
now addressable due to the expressions for the pumped charge
given in Eq. (20).
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APPENDIX: CHARGE CONSERVATION

The charge imbalance operator can be defined as

δQ̂ = −2e

h̄

∫ T

0

(
∂

∂ϕR

+ ∂

∂ϕL

)
Ĥ (t)dt. (A1)

Since physical quantities depend on only the phase difference
ϕ = ϕR − ϕL, there must exist a unitary (gauge) transforma-
tion U such that Ĥ ′ = UĤU † depends on only ϕR − ϕL, so
that (∂ϕR

+ ∂ϕL
)Ĥ ′ = 0. In our case Ĥ and Ĥ ′ are periodic

functions of time with the same period.
If |ψ(t)〉 is a cyclic solution of the Schrödinger equation in

the Floquet form, then the charge imbalance associated with
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this state in one period reads

δQ = −2e

h̄

∫ T

0
〈ψ |

(
∂

∂ϕR

+ ∂

∂ϕL

)
Ĥ (t)|ψ〉dt

= −2e

h̄

∫ T

0
〈ψ |U †U [(∂ϕR

+ ∂ϕL
)Ĥ ]U †U |ψ〉dt

= −2e

h̄

∫ T

0
〈ψ ′|(∂ϕR

+ ∂ϕL
)Ĥ ′|ψ ′〉dt

+ 2e

h̄

∫ T

0
〈ψ |i[N̂,Ĥ ]|ψ〉dt, (A2)

where |ψ ′〉 = U |ψ〉 and N̂ = −iU †(∂ϕR
+ ∂ϕL

)U ; we used
the fact that U †∂U = −(∂U †)U (the derivative is taken with
respect to any variable), since U †U = 1.

The contribution on the third line of Eq. (A2) vanishes
by definition of Ĥ ′. The contribution on the fourth line
is proportional to the variation of the average value of N̂

over one period; since the state varies periodically, this term
also vanishes. Therefore, exact charge conservation holds for
nondissipative driven systems in a cyclic state because of gauge
invariance and the periodicity of the state.

For those open driven systems for which the secular
approximation holds, the stationary state is a mixture of
Floquet states, which are cyclic solutions of the Schrödinger
equation; therefore

δQ = −2e

h̄

∑
α

ρst
αα

∫ T

0
〈ψα|(∂ϕR

+ ∂ϕL
)H |ψα〉dt = 0,

(A3)

since each term of the sum separately vanishes; we can
conclude that application of the secular approximation to the
Floquet description of Cooper pair pumping does not produce
violation of charge conservation.
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