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Frustration in the Kondo lattice model: Local versus extended singlet phases
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We present a theoretical study of the frustrated Kondo lattice model on a Shastry-Sutherland-type lattice. Using
a mean-field decoupling on both the Kondo and intersite exchange interactions, we study three different phases,
an antiferromagnetic (AF) phase without Kondo effect, a Kondo (K) phase without magnetic order, and finally a
valence bond solid (VBS) phase without magnetic order and Kondo effect. A phase diagram is obtained giving
the stability region of the three phases, as a function of the Kondo parameter JK and the frustration ratio J/J ′ of
the two exchange interactions on the Shastry-Sutherland lattice. This phase diagram can account for the change
under pressure from a nonmagnetic Kondo phase to an AF phase and to a completely different nonmagnetic VBS
phase occurring in some ytterbium compounds such as Yb2Pd2Sn.
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I. INTRODUCTION

Competition between Kondo effect and magnetism is
often described by the Kondo lattice Hamiltonian, and this
competition leads to the well-known Doniach diagram:1 if
the Kondo interaction JK is large compared to the intersite
Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange Jij , the
ground state is a nonmagnetic Kondo state, while for small
JK , RKKY interactions favor an antiferromagnetic state. This
diagram gives a good description of many heavy-fermion
compounds,2 in which the quantum critical point (QCP), which
separates the two ground states, can be reached either by
applying pressure or by doping.3 However, in some cases
the magnetic interactions are strongly frustrated, either due
to long-range competing interactions or due to the geometry
of the lattice, and magnetic ordering is strongly suppressed.
There are several examples of heavy-fermion compounds in
which frustration of magnetic interactions plays an important
role (for a review, see Ref. 4).

The search for a global phase diagram, extending the
Doniach phase diagram to include frustration effects, is an
active issue. In Refs. 5 and 6, a qualitative phase diagram
has been proposed, as a function of the Kondo interaction
and frustration. This phase diagram suggests that, depending
on the relative values of these parameters, the ground state
can be magnetic or not, and two different nonmagnetic states
were proposed. However, in both papers, only qualitative
discussions were presented. In the present paper, we show
explicitly a model where Kondo effect and frustration are
present, and we characterize the different phases by different
order parameters. The obtained phase diagram is in agreement
with the proposals made in Refs. 5 and 6. Moreover, our
calculation shows that mean-field decoupling is a good starting
point for describing this phase diagram.

Here we study the Kondo lattice problem in the Shastry-
Sutherland geometry,7 illustrated in Fig. 1. A realization
of this lattice with localized spins was first reported for
SrCu2(BO3)2,8 and it has been mainly explored theoretically
within the pure Heisenberg model.9–11 Recently, several
heavy-fermion cerium and ytterbium compounds exhibiting
this geometry have been experimentally studied12–16 and
for some of them the phase diagram under pressure or

alloying has been obtained. In fact, applied pressure can have
opposite effects in Kondo cerium and ytterbium compounds.
In particular, for Yb compounds, pressure often makes the
local Kondo parameter JK decrease17,18 and can give rise to
a transition from a Kondo phase to a magnetic one in the
usual Doniach picture. In the presence of frustration, pressure
can induce a transition to a nonmagnetic valence bond or
to a spin liquid phase, if magnetic order is destabilized by
frustration. Both the Kondo and valence bond phases are
nonmagnetic, but they have completely different properties.
We propose in this paper that this phase diagram can account
for the pressure dependence of ytterbium compounds such as
Yb2Pd2Sn14,15 and YbAgGe,13,19,20 as we will see in more
detail in the discussion, although this last compound has a
different crystallographic structure.

For localized quantum spins in the Shastry-Sutherland
lattice, strong frustration leads to a nonmagnetic ground state
which can be constructed as a superposition of dimer singlet
states, while for weak frustration an antiferromagnetic state
with q = (π,π ) is stable. In the case of a Kondo lattice, the
absence of magnetism in the Shastry-Sutherland lattice can
also be due to frustration, but the Kondo effect alone can lead
to a nonmagnetic ground state as well. It is thus interesting
to study the competition between both effects, the Kondo
interaction leading to the formation of local singlets, while the
frustrated intersite exchange leads to valence bond singlets.

In the next section, we introduce a model Hamiltonian
for the Shastry-Sutherland lattice describing a system of
local spins Si and a conduction band coupled through a
local Kondo interaction JK at every site. We adopt a mean-
field decoupling which leads to an effective noninteracting
fermionic Hamiltonian, consisting of hybridized bands. In
Sec. III, we describe the phase diagram of the model. In
the last section, we discuss the results in connection with the
experimental phase diagram of some Ce and Yb compounds.

II. MODEL HAMILTONIAN AND APPROXIMATION

The Hamiltonian of the Kondo lattice can be written as

H = HH + Ht + HK, (1)
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FIG. 1. (Color online) The Shastry-Sutherland lattice. In com-
pounds like Yb2Pd2Sn (Ref. 14), the distance between the sites
forming the orthogonal dimers (linked by the thick diagonal lines) is
reduced and they become nearest neighbors. The thin lines connect
the next-nearest neighbors, drawing a distorted square lattice. Along
the thick and thin lines the exchange interactions between localized
spins are respectively equal to J and J ′. The lattice can be regarded
as a square lattice with a basis consisting of four atoms with a lattice
parameter a.

where

HH = 1

2

∑
ij

Jij Si · Sj , (2)

Ht = −
∑
ijσ

tij c
†
iσ cjσ , (3)

HK = JK

∑
i

Si · si . (4)

The first term HH describes a Heisenberg lattice of localized
spins Si interacting via exchange interactions Jij . The second
term Ht describes a tight-binding conduction electron band,
and HK is the local Kondo coupling between localized spins
Si and conduction electron spins si (JK > 0).

On the Shastry-Sutherland lattice, the exchange parameters
Jij take two different values J and J ′, as indicated in
Fig. 1, when sites i and j are connected by a diagonal or
a nondiagonal bond, respectively. In the following both J and
J ′ are considered as positive. Frustration can be varied by
changing the ratio J/J ′.7,9–11 For strong frustration, J � J ′,
the ground state consists of singlet dimers formed along the
diagonal bonds, while for weak frustration, J � J ′, the ground
state is the two-sublattice antiferromagnetic (AF) state on the
square lattice. The critical value of J/J ′ which separates these
two ground states is of the order of 1.5.10

Here we add to this model conduction electrons interacting
with the localized spins through a Kondo exchange coupling
JK . The conduction band is described in tight-binding approx-
imation by hopping integrals tij which can assume the two
values t and t ′ along diagonal and nondiagonal bonds. In the
following, all parameters like J and t will refer to diagonal
bonds, while J ′ and t ′ will refer to the square lattice bonds.

In fact, in Kondo lattice systems, the exchange interactions
between localized spins are induced by the local Kondo

coupling JK : this is the usual RKKY exchange. The magnitude
of J and J ′ is then proportional to ρ(EF )J 2

K , where ρ(EF ) is
the density of states of the conduction band at the Fermi level
and their signs depend on the Fermi wave vector kF . Thus
they can be ferro- or antiferromagnetic. However, to explore
the complete phase diagram, we consider here JK , J , and J ′
as independent parameters, and we restrict our attention to the
frustrated case where both J and J ′ are positive.

We introduce the fermionic representation for the localized
spin S = 1/2. The components of the spin operators are written
in terms of creation and annihilation operators f

†
iσ and fiσ :

Sz
i = 1

2

(
n

f

i↑ − n
f

i↓
)
, (5)

Sσ
i = Sx

i + izσ S
y

i = f
†
iσ fiσ̄ , (6)

where n
f

iσ = f
†
iσ fiσ is the f -electron number operator, and

z↑ = +1, z↓ = −1. Similar expressions can be used for the
conduction electron spins si in terms of operators c

†
iσ and cjσ .

Substitution of these expressions into Eqs. (2) and (4)
generates products of four fermionic operators, which are
decoupled in a mean-field approximation.2,21 Here we study
three different types of ground state: (i) a magnetically ordered
(AF) state; this is the expected ground state for J � J ′ (no
frustration) and small TK , where TK is the Kondo energy scale;
(ii) a correlated Kondo (K) phase; this phase should be the
ground state for large enough TK ; and (iii) a valence bond
solid (VBS) state, where spins on the dimers are strongly
coupled along the diagonals; this should be the ground state
when J � J ′ and J � TK . For this purpose we introduce the
following averages:

λiσ = 〈f †
iσ ciσ 〉, (7)

γ̃ σ
ij = 〈f †

jσ fiσ 〉, (8)

and

γ σ
ij = 〈c†jσ ciσ 〉. (9)

The mean-field parameter λiσ describes the local c-f correla-
tions due to the Kondo effect, while γ̃ σ

ij describe the intersite
spin correlations in absence of long-range order.2,21

After dropping constant terms, we obtain an effective
fermionic Hamiltonian describing hybridized, uncorrelated
bands:

H′ = Ht + Ht̃ + HṼ + Hf + Hh, (10)

where

Ht̃ = −
∑
ijσ

t̃ σij f
†
iσ fjσ , (11)

HṼ = −
∑
iσ

Ṽiσ (f †
iσ ciσ + c

†
iσ fiσ ), (12)

Hf = Ef

∑
iσ

f
†
iσ fiσ , (13)

Hh =
∑
iσ

zσ

(
h

f

i + h̃i

)
n

f

iσ +
∑
iσ

zσ hc
i n

c
iσ . (14)
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The effective parameters depend on the self-consistent
mean-field parameters:

t̃ σij = 1
2Jij

(
γ̃ σ̄

ij + 1
2 γ̃ σ

ij

)
, (15)

Ṽiσ = 1
2JK

(
λiσ̄ + 1

2λiσ

)
, (16)

h
f

i = 1
2JK

〈
sz
i

〉
, (17)

hc
i = 1

2JK

〈
Sz

i

〉
, (18)

and

h̃i = 1

2

∑
j

Jij

〈
Sz

j

〉
. (19)

The local molecular fields hc
i and h

f

i imply a magnetic coupling
between local and itinerant moments.

The energy Ef is a Lagrange multiplier introduced in
Eq. (13) in order to impose the constraint on the f -electron
number

∑
σ

〈
n

f

iσ

〉 = nf = 1. (20)

As usual in mean-field approximation, the constraint is fixed
for the average f -electron number. In the same way, the
chemical potential μ is fixed from the constraint

∑
σ

〈
nc

iσ

〉 = nc, (21)

where nc is the conduction electron concentration.
We apply the Green’s function method to the effective

hamiltonian H′ in order to evaluate the averages of interest.
For the Shastry-Sutherland lattice, it is convenient to introduce
an index α to label the four atoms of the basis located at a given
site i of the underlying square lattice. The standard fermionic
Green’s functions involving operators ciασ and fiασ are then
obtained easily and allow calculation of the band structure of
the system. In general, there are 16 bands per unit cell (eight
for each spin direction), since the unit cell consists of four
sites, with c and f electrons on each site, and the parameters
are spin dependent. Details of the calculation are given in the
Appendix.

The solution described in the Appendix is valid for all
phases, including the antiferromagnetic phase and the nonmag-
netic phase as the limit of vanishing staggered magnetizations
〈Sz〉 and 〈sz〉. We presume translational invariance over the
square basis, with a site-independent λiσ on each sublattice,
and the averages γ̃ σ

ij and γ σ
ij assuming the same values γ̃σ ,γσ

along all diagonal bonds, and γ̃ ′
σ ,γ ′

σ along all square lattice
bonds. The effective hopping parameters t̃ σij introduced in
Eq. (15) are equal to t̃ or t̃ ′ corresponding to Jij = J or J ′, and
γ̃ σ

ij = γ̃ σ or γ̃ ′σ . The effective hybridization Ṽiσ in Eq. (16)
is also site independent on each sublattice. Assuming AF order,
Eq. (19) yields h̃ = 1

2 (J − 4J ′)〈Sz〉. In this case, we also note
that a priori γ̃ ′σ = γ̃ ′σ̄ , but γ̃ σ 	= γ̃ σ̄ and λiσ 	= λiσ̄ .

In terms of the effective parameters, the internal energy
per site for the complete Hamiltonian H in Eq. (1) can be

expressed as

E = −1

2

∑
σ

t̃σ γ̃ σ − 4t̃ ′γ̃ ′ − t
∑

σ

γσ − 8t ′γ ′

−
∑

σ

Ṽσ λσ + h̃〈Sz〉 + JK〈Sz〉〈sz〉. (22)

This expression can be used to find the minimum energy state
for a given set of parameters (J , J ′, t , t ′, JK , and the number
of conduction electrons nc). In the next section we will study
some peculiar solutions, corresponding to the three phases
described in the Introduction.

III. RESULTS

The physical properties of the model are determined by
the competition among the multiple phases described by the
self-consistent parameters λσ , γ̃σ , γ̃ ′, 〈Sz〉, and 〈sz〉. We restrict
our attention here to phases with unit cell similar to the
crystallographic unit cell, and we have studied the following
phases:

(i) the AF phase in the absence of the Kondo effect, which
corresponds to the solution with λσ ,γ̃σ ,γ̃ ′ = 0 and 〈Sz〉,〈sz〉 	=
0;

(ii) the K phase without magnetic order, which corresponds
to the solution λσ ,γ̃ ,γ̃ ′ 	= 0 and 〈Sz〉,〈sz〉 = 0 ;

(iii) the VBS frustrated phase without magnetic order
and Kondo effect, which corresponds to the solution with
λσ ,〈Sz〉,〈sz〉,γ̃ ′ = 0, and γ̃σ 	= 0. This solution can be con-
sidered a particular case of the K solution, without any Kondo
effect, but we have studied it separately, since it is expected
to be stable in the pure Shastry-Sutherland model with large
frustration.

In Ref. 6 the possibility of dxy superconducting instability
in both the VBS and K phases was also proposed. Super-
conductivity could also be studied in the present model, by
introducing pairing order parameters with various symmetries.
More complex phases could also be studied, as for example a
mixed antiferromagnetic-Kondo phase where the Kondo effect
is present in the antiferromagnetic phase.

A. Zero-temperature phase diagram

By comparing the respective energies at T = 0, we obtain
the phase diagram illustrated in Fig. 2. The results correspond
to a particular choice of parameters J ′ = 0.5t ′, t = 0.1t ′, and
a band filling nc = 0.9. The parameter JK/t ′ measures the
strength of the Kondo effect, and J/J ′ measures the degree of
frustration. The value of t/t ′ does not play an important role:
it modifies the band structure but as long as the Fermi level
falls within a band, the results are not qualitatively changed.
To avoid peculiar physics in the half-filled case (for example,
the half-filled Kondo lattice can be insulating), we take in
the following the band filling nc equal to 0.9. Of course, the
precise position of the transition lines between the three phases
depends on the conduction band parameters: t/t ′ and nc.

For large JK/t ′, the K phase dominates due to the large
Kondo effect, and for large J/J ′, strong frustration leads to the
VBS solution. As expected, the AF phase is stable in the region
where both JK/t ′ and J/J ′ are small, i.e., when the Kondo
effect and frustration are weak. We observe that a minimum
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FIG. 2. (Color online) Phase diagram of the Shastry-Sutherland
Kondo lattice model for J ′ = 0.5t ′, t = 0.1t ′, and nc = 0.9. For the
definition of the three phases (VBS, AF, and K) see the text. In the
mean-field approximation, all transitions are discontinuous.

value of JK is required for the solution λ 	= 0, as in the
nonfrustrated Doniach diagram. At JK = 0, where the model
reduces to the pure Heisenberg Hamiltonian decoupled from
the conduction electrons, the transition between the AF phase
and the VBS phase occurs at J/J ′ ≈ 1.60 (or J ′/J ≈ 0.625).
This value is quite close to the results reported from other
approaches developed for the S = 1/2 Shastry-Sutherland
model.10,11

Figure 3 shows the ground-state energies of the three
solutions listed above for J/J ′ = 2.5. When JK/t ′ decreases,
the ground state changes from the Kondo state to the AF state
and then to the VBS state. There is a finite region of JK where
the AF phase is stable, between two different nonmagnetic
phases. The existence of these two different nonmagnetic
phases, stable in different regions of parameter space, is the
main result of our model. These nonmagnetic phases, the
low-JK phase and the high-JK phase, are completely different:
the low JK one is a VBS, in which the localized spins are
coupled into singlet dimers, while, in the high-JK Kondo
phase, magnetism disappears because of the local screening
of the localized spins due to the Kondo interaction. For small
J/J ′, frustration is weak and, with increasing JK , the system
goes from the AF to the K phase as in a nonfrustrated Kondo
lattice. For larger J/J ′, AF is destabilized and the ground
state is a VBS as long as the Kondo effect remains small. For
large enough JK , of course, the ground state is again a Kondo
phase.

Figure 3 also shows that the transitions between the
different phases are first order in this approach: the mean-field
parameters do not vanish at the transition, and the transitions
are discontinuous.

To understand more precisely the transition between VBS
and K states, we have studied the strongly frustrated case
J/J ′ = 4 for which AF is never stable. As illustrated in Fig. 4,
the transition between VBS and K states is discontinuous. For
JK/t ′ < 3.47, the VBS state is the ground state, and γ̃ is the
only nonvanishing mean-field parameter. For JK/t ′ > 4.28,

FIG. 3. (Color online) Internal energies of the three solutions K
(dashed), AF (solid), and VBS (dot-dashed) as a function of JK/t ′

for J ′ = 0.5t ′, t = 0.1t ′, nc = 0.9, and J = 2.5J ′.

the Kondo state is the ground state, with large λ and small γ̃

and γ̃ ′. In the intermediate region, three solutions are found:
the VBS one, and two Kondo solutions, with large and small λ

respectively. Comparison of the energies of the three solutions
(inset of Fig. 4) shows that the K solution with small λ is
never stable, and there is a discontinuous first-order transition
between the K and VBS states at JK/t ′ ≈ 3.66.

It should be pointed out that the present approximation gives
reliable results for the VBS phase: in this phase, the parameter
γ̃ is equal to −0.5 at T = 0, while γ̃ ′ vanishes. This leads to
a magnetic energy per site equal to −3J/8, which is exactly

FIG. 4. (Color online) Mean-field parameters as a function of
JK/t ′ for J ′ = 0.5t ′, t = 0.1t ′, nc = 0.9, and J = 4J ′. Continuous
lines correspond to the stable solution, and dotted lines correspond
to unstable or metastable solutions. The arrow in the horizontal axis
indicates the location of the first-order phase transition. The energies
of the three solutions are illustrated in the inset.
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the value expected in the VBS state, when all diagonal bonds
are forming singlets.

It was proposed in Ref. 6 that the transition between the
Kondo and VBS phases might be a quantum critical transition
while, in the present approach, it is a first-order transition. To
go further in the study of this transition would require going
beyond the mean-field approximation.

B. Evolution at finite temperature

We have also studied the evolution of the three phases
with increasing temperature. Of course, since the model is
a two-dimensional one, no phase transition is expected at
finite temperature, while the mean field always gives phase
transitions: if fluctuations around the mean field are con-
sidered, critical temperatures become crossover temperatures
below which the different types of correlation (AF, Kondo, or
intradimer correlations) are growing.

Figure 5 shows the self-consistent averages 〈Sz〉, 〈sz〉,
γ̃ , and λ as a function of temperature for J ′ = 0.5t ′, t =
0.1t ′, nc = 0.9, and J = 2.5J ′ for different values of JK/t ′
corresponding to the three phases AF, K, and VBS. The
magnetization curves drop to zero at the Néel temperature
TN [Fig. 5(a)]. The Kondo temperature TK is taken as the
temperature at which the parameter λ goes to zero [Fig. 5(c)].
In the Kondo phase, the parameters γ̃ and γ̃ ′ are nonzero,
but they remain small: they describe the magnetic correlations
in the Kondo phase as in Ref. 2. We can also introduce a
characteristic temperature TV BS at which the parameter γ̃

vanishes in the VBS phase [Fig. 5(b)].

IV. DISCUSSION

It is well known that the increase of pressure gives an
increase of JK/t ′ in cerium compounds and a decrease in
ytterbium compounds.2,17,18 This effect has been observed
in many cerium and ytterbium compounds, leading to a
transition between Kondo and magnetic ground states which
is well understood within the Doniach diagram. By including
frustration, we have obtained here a different phase diagram
presented in Fig. 2 with an additional nonmagnetic phase,
where the absence of magnetism is due to frustration of
intersite exchange and not to the Kondo effect.

In the present case, the theoretical behavior presented in
Fig. 2 can account for the pressure dependence of some
ytterbium compounds and we will first discuss the very clear
examples provided by Yb2Pd2Sn (Refs. 14,15) and YbAgGe.13

The crystallographic structure of Yb2Pd2Sn has the same
topology as the Shastry-Sutherland lattice and it is clearly a
nonmagnetic Kondo compound with a large electronic specific
heat coefficient γ = 560 mJ/mol K2 at low temperatures and
normal pressure. It becomes antiferromagnetic above 1 GPa.
The Néel temperature increases rapidly up to a maximum of 1.2
K at 2.5 GPa and then it decreases to 4 GPa, where it undergoes
a transition to a nonmagnetic state. We propose that Yb2Pd2Sn
goes from a Kondo state to an AF order and finally to a
nonmagnetic frustrated state, in good agreement with Fig. 2 for
decreasing JK/t ′ with an intermediate value of J/J ′ (J/J ′ ≈
2.5). A similar behavior has also been observed by applying
chemical pressure in the doped compound Yb2Pd2In1−xSnx ,

FIG. 5. (Color online) Mean-field parameters as a function of
temperature for J ′ = 0.5t ′, t = 0.1t ′, nc = 0.9, and J = 2.5J ′: (a)
magnetizations 〈Sz〉 and 〈sz〉 in the AF phase for different values of
JK/t ′; (b) average γ̃ in the VBS phase for JK/t ′ = 2.20; (c) averages
λ̃, γ̃ , and γ̃ ′ in the K phase for JK/t ′ = 3.95.

where there are successively, with increasing x, a nonmagnetic
phase, then an antiferromagnetically ordered phase for x

roughly between 0.4 and 0.9, and finally another nonmagnetic
phase.14 The first nonmagnetic phase is a Kondo one and
the second could be reminiscent of the VBS phase. In fact,
this high-pressure phase has not been much studied, but,
if it is a VBS phase, it should be quite different from the
low-temperature Kondo phase: the specific heat coefficient γ

should be significantly smaller, since in the VBS phase the
effective c-f hybridization vanishes. The magnetic properties
of the two phases should also be different: the Kondo phase
has no spin gap, while the VBS phase has a spin gap.

The compound YbAgGe has a different crystallographic
structure, similar to the kagome geometry,13,19,20 which is
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also strongly frustrated. It undergoes two successive magnetic
transitions at 0.8 and 0.65 K. When pressure is applied, these
two temperatures merge at 0.5 GPa into one TN = 0.8 K,
which remains nearly constant up to 1.5 GPa; then it increases
rapidly to about 1.7 K at 3.2 GPa, reaches a maximum of
5.4 K at a pressure of 6.8 GPa, and drops less rapidly to 2.2 K
at 13.8 GPa. The extrapolated zero value of TN corresponds
roughly to a pressure of 16 GPa. Such an experimental behavior
can also be well accounted for by our model, although this
compound is a kagome lattice: at normal pressure, YbAgGe is
a heavy-fermion antiferromagnet very close to the AF-Kondo
transition; when pressure increases, JK/t ′ decreases and the
Néel temperature increases rapidly as expected in the classical
Doniach diagram; then, there is the transition from AF to
the nonmagnetic frustrated state, which causes a decrease
of TN , and finally the disappearance of the magnetic order.
Of course, the phase diagram of Fig. 2 was obtained for a
Shastry-Sutherland lattice, but the same competition between
local Kondo and intersite frustrated exchange interactions is
present in the kagome geometry: the pure kagome lattice, with
isotropic nearest-neighbor interactions J is fully frustrated and
has a spin liquid (SL) ground state at T = 0 (for a review on
the kagome lattice, see Ref. 23), but if additional interaction,
such as next-nearest-neighbor coupling J ′, is introduced,
magnetic ordering occurs above some critical value of J ′/J .
In this case, the phase diagram would include a SL phase at
small J ′/J and small JK (instead of the VBS phase), a Kondo
phase at large JK , and a magnetically ordered phase (AF) at
large J ′/J and small JK . We propose that with increasing
pressure this compound goes from K to AF and then to SL
phases.

There are presently many other cerium and ytterbium
compounds in which frustration effects are present, such as,
for instance, Yb2Pt2Pb,12 CePdAl,22 Ce2Pd2Sn,24 Ce2Pt2Pb,
or Ce2Ge2Mg,16 but in fact their magnetic behavior cannot
be interpreted simply in our model. For example, CePdAl
has a mixed magnetic structure with coexistence of magnetic
and nonmagnetic sites, which is stabilized by frustration.4 In
Ce2Pd2Sn, the results suggest that the diagonal exchange J

is ferromagnetic.24,25 Yb2Pt2Pb is magnetically ordered, and
it was proposed in Ref. 12 that this compound is close to the
critical point. The large specific heat coefficient observed in
this system (311 mJ/Yb mol K2) might be an indication of a
Kondo effect. Very recently, two additional interesting cerium
compounds of this family have been studied: Ce2Pt2Pb and
Ce2Ge2Mg.16

In summary, we have obtained the ground-state
phase diagram for heavy-fermion compounds with the
Shastry-Sutherland lattice geometry. We have shown that,
in addition to the Kondo and antiferromagnetic phases, a
VBS phase can be stable if frustration is large enough.
The results are consistent with recent observations on the
compound Yb2Pd2Sn, but further experiments are necessary
to confirm our interpretation. The same kind of phase diagram
should be obtained in other geometries, like the kagome
one, as found in compounds with crystal structure similar
to YbAgGe. More generally, when frustration is considered
in the Kondo lattice model, a more complex phase diagram
is obtained which contains an additional type of phase and
possible transitions between two different nonmagnetic

ground states. This type of transition implies a change in
electronic structure and Fermi surface topology, since in the
VBS phase, electrons states are decoupled from the localized
spins. Such transition is sometimes classified as a Lifshitz
transition in the literature.26,27 In the present description it is
first order. Further studies would be necessary to get a better
description of this transition. Moreover, further experimental
data on cerium and ytterbium compounds are needed, in order
to obtain a well-defined VBS phase under pressure or in alloys
and to study the nature of the transitions between the different
phases.
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APPENDIX: GREEN’S FUNTIONS METHOD

The Green’s functions are defined in the usual way as

G
ff,σ

iα,jβ (ω) = 〈〈 fiασ ; f †
jβσ 〉〉, (A1)

and similar expressions for G
cc,σ
iα,jβ (ω) and G

f c,σ

iα,jβ (ω).
The equations of motion corresponding to the effective

Hamiltonian H′ in Eq. (10) read

(
ω − zσhc

i

)
G

cc,σ
iα,jβ = δij δαβ − Ṽ σ

iαG
f c,σ

iα,jβ −
∑
kδ

tiα,kδG
cc,σ
kδ,jβ,

(A2)(
ω − Ef − zσh

f

i − zσ h̃i

)
G

f c,σ

iα,jβ = −Ṽ σ
iαG

cc,σ
iα,jβ

−
∑
kδ

t̃ σiα,kδG
f c,σ

kδ,jβ, (A3)

(
ω − Ef − zσh

f

i − zσ h̃i

)
G

ff,σ

iα,jβ = δij δαβ − Ṽ σ
iαG

cf,σ

iα,jβ

−
∑
kδ

t̃ σiα,kδG
ff,σ

kδ,jβ, (A4)

(ω − zσhc
i )Gcf,σ

iα,jβ = −Ṽ σ
iαG

ff,σ

iα,jβ −
∑
kδ

tiα,kδG
cf,σ

kδ,jβ . (A5)

The system of equations is solved by spatial Fourier transfor-
mation

G
ff,σ

iα,jβ (ω) = 1

N

∑
q

G
ff,σ

αβ (q,ω)eiq·(Rα
i −Rβ

j ), (A6)

where Rα
i is the position of the αth atom at the ith site of the

lattice.
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Equations (A2)–(A5) can then be expressed in matrix form as

Mσ (q,ω)Gcc
σ (q,ω) = I − ṼσG

f c
σ (q,ω), (A7)

M̃σ (q,ω)Gf c
σ (q,ω) = −ṼσG

cc
σ (q,ω), (A8)

M̃σ (q,ω)Gff
σ (q,ω) = I − ṼσG

cf
σ (q,ω), (A9)

Mσ (q,ω)Gcf
σ (q,ω) = −ṼσG

ff
σ (q,ω), (A10)

where

Mσ (q,ω) =

⎛
⎜⎜⎜⎝

ω − zσhc 2t ′ cos (x/2) tei(x−y)/2 2t ′ cos (y/2)

2t ′ cos (x/2) ω + zσhc 2t ′ cos (y/2) tei(x+y)/2

te−i(x−y)/2 2t ′ cos (y/2) ω − zσhc 2t ′ cos (x/2)

2t ′ cos (y/2) te−i(x+y)/2 2t ′ cos (x/2) ω + zσhc

⎞
⎟⎟⎟⎠ , (A11)

M̃σ (q,ω) =

⎛
⎜⎜⎜⎝

ω − Ef − zσ (hf + h̃) 2t̃ ′ cos (x/2) t̃σ ei(x−y)/2 2t̃ ′ cos (y/2)

2t̃ ′ cos (x/2) ω − Ef + zσ (hf + h̃) 2t̃ ′ cos (y/2) t̃σ̄ ei(x+y)/2

t̃σ e−i(x−y)/2 2t̃ ′ cos (y/2) ω − Ef − zσ (hf + h̃) 2t̃ ′ cos (x/2)

2t̃ ′ cos (y/2) t̃σ̄ e−i(x+y)/2 2t̃ ′ cos (x/2) ω − Ef + zσ (hf + h̃)

⎞
⎟⎟⎟⎠ , (A12)

with x = qxa and y = qya,

Ṽσ =

⎛
⎜⎜⎜⎝

Ṽσ 0 0 0

0 Ṽσ̄ 0 0

0 0 Ṽσ 0

0 0 0 Ṽσ̄

⎞
⎟⎟⎟⎠ (A13)

is the hybridization matrix, and I is the 4×4 identity matrix.
The closed algebraic solution is obtained by an inverse Fourier transformation. Finally, the averages are calculated from the

corresponding elements of the matrix Green’s functions.
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