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Rényi entropy and parity oscillations of anisotropic spin-s Heisenberg chains in a magnetic field
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Using the density matrix renormalization group, we investigate the Rényi entropy of the anisotropic spin-s
Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2,
and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain
accurate estimates of the new parity exponents p(p)

α and p(o)
α that gives the power-law decay of the oscillations of

the α-Rényi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these
exponents with the Luttinger parameter K , as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)].
Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the
magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate
estimates of p(p)

α and p(o)
α become a challenge. Although our estimates of the new universal exponents p(p)

α and
p(o)

α for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.
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I. INTRODUCTION

The observation that entanglement may play an important
role at a quantum phase transition has motivated many studies
on the characterization of the critical phenomena by using
quantum information concepts.1–7 Quantum spin chains have
been proven as useful laboratories to investigate the intercon-
nection of entanglement and quantum criticality.1–7 Although
does not exist yet an universal measure that quantifies the
entanglement,8 the von Neumann entropy and the Rényi
entropies are the most commonly used measures since they are
sensitive to the long-distance quantum correlations of critical
systems.

In this paper, we study the Rényi entropy in the critical
region of the anisotropic spin-s Heisenberg models for s =
1/2, 3/2, and 5/2. Consider a one-dimensional system of size
L and composed by two subsystems A and B of sizes l and
L − l, respectively. The Rényi entropy is defined as

Sα(L,l) = 1

1 − α
ln T r

(
ρα

A

)
, (1)

where ρA is the reduced density matrix of the subsystem A.
The von Neumann entropy is given by the limiting case α = 1.

In the past few years a great effort has been made to
understand the asymptotic behavior of Sα(L,l). It is expected
that the ground state of critical one-dimensional systems gives
a Rényi entropy that behaves as

Sα(L,l) = SCFT
α (L,l) + Sosc

α (L,l). (2)

The first term, in this equation, is the conformal field theory
(CFT) prediction in the scaling regime (L � l � 1) and is
given by3,6,9–11

SCFT
α = c

6

(
1 + 1

α

)
ln

[
L

π
sin

(
πl

L

)]
+ c

(p)
1 (3)

for periodic boundary conditions (PBC) and

SCFT
α = c

12

(
1 + 1

α

)
ln

{
4(L + 1)

π
sin

[
π (2l + 1)

2(L + 1)

]}
+ c

(o)
1

(4)

for open boundary conditions (OBC), where c is the central
charge and c

(p)
1 and c

(o)
1 are nonuniversal constants. The

expression (4) for OBC has a small modification that is
absorbed in the constant c

(o)
1 , as compared with the standard

CFT expression.6,9–11 We chose this expression since, as shown
in Ref. 12, in the case of the XX model, it is accurate up to
order (1/l) (see also Ref. 13). It is interesting to mention that
a generalization of the above equations for the excited states
was proposed recently.14

The second term in Eq. (2) seems to originate in the strong
antiferromagnet correlations, as first argued by Laflorencie
et al. in the case of the spin-1/2 Heisenberg chain with
OBC.15 In open chains, since translation invariance is broken,
the energy density as a function of the site l also shows a
similar decaying alternating term Eosc. In Ref. 15, by using
bosonization techniques, this oscillating term was calculated
and compared with numerical evaluations of the entropy
suggesting that Sosc

1 (l) ∼ Eosc ∼ [ L
π

sin( πl
L

)]K , where K is the
Luttinger parameter. In fact, these strong oscillations for the
open chains were observed by several authors.12,13,15–25

More recently, Calabrese et al. in Ref. 23 (see also Ref. 24)
investigate the anisotropic spin-1/2 Heisenberg chain with
periodic boundary conditions and verified that even in this
case those oscillations are still present if the Rényi index
α >1. For the XX chain in a magnetic field with PBC/OBC,
Calabrese and collaborators obtained exactly Sosc

α and observed
a universal behavior of this oscillating term.12,23,24 Based on
these exact results and on numerical calculations of the spin-
1/2 XXZ chain with PBC at zero magnetic field, Calabrese and
collaborators conjectured that Sosc

α has the following universal
behavior12,23,24 (see also Ref. 15)

Sosc
α = g

(p)
α

Lp
(p)
α

cos(2lkF )

∣∣∣∣sin

(
π

l

L

)∣∣∣∣
−p

(p)
α

(5)

for PBC and

Sosc
α = g(o)

α

Lp
(o)
α

sin
[
(2l + 1)k(o)

F

] ∣∣∣∣sin

[
π (2l + 1)

2(L + 1)

]∣∣∣∣
−p(o)

α

(6)
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for OBC. The constants g
(p)
α and g(o)

α are nonuniversal and the
critical exponents governing the decaying of the amplitudes
of the oscillations are p

(p)
α = 2p(o)

α = 2K
α

. In the PBC case
[Eq. (5)] the period of the oscillations depends on the Fermi
momentum kF , while in the OBC case [Eq. (6)] it depends on
k

(o)
F = L

L+1kF + π
2(L+1) .

The origin of the exponents p
(p)
α and p(o)

α , as observed by
Cardy and Calabrese in Ref. 26, are the conical spacial-time
singularities produced in the conformal mapping used to
describe the reduced density matrix ρA in the CFT. There
are two important ingredients in the oscillatory behavior of
Eqs. (5) and (6): the nonuniversal constants g

(p)
α and g(o)

α

and the Luttinger parameter K [that gives the exponents
p

(p)
α and p(o)

α ]. Unfortunately, there is no prediction for g
(p)
α

and g(o)
α and as we are going to verify, in the case of the spin-s

anisotropic Heisenberg model, they decrease dramatically as
we increase the spin size s.

Our aim in the present paper is to verify the above
conjectures more extensively for the spin-1/2 XXZ, as well for
the critical regions of the spin s > 1/2 anisotropic Heisenberg
model in the presence of an external z-magnetic field. The
inclusion of the magnetic field is interesting because the
magnetization and the Luttinger parameter K depend on its
value. We have then more possibilities to verify the conjectures
(5) and (6). The parameter K in the case of the spin-1/2 XXZ
chain can be calculated exactly from the Bethe ansatz solution
of the model. For s > 1/2 the model is not exactly integrable
but this parameter can be calculated numerically by exploring
the consequences of the conformal invariance of the quantum
chain in the bulk limit. In the following we present some
important relations that will be used to evaluate the Luttinger
liquid parameter K .

The ground-state energy of a system of size L, as L → ∞,
behaves as27,28

E0

L
= e∞ + f∞

L
− vsπc

δ6L2
+ o(L−2), (7)

where δ = 1(δ = 4) for the system with periodic (open)
boundary condition, vs is the sound velocity, e∞ is the bulk
ground-state energy per site, and f∞ is the surface free energy
that vanishes for the systems with PBC.

The mass gap amplitudes of the finite-size corrections of
the higher energy states, for a system with periodic (open)
boundary conditions, are related to the anomalous dimensions
x

β

bulk (surface exponents x
β
s ). In the periodic case there are, for

each primary operator Oβ (β = 1,2, . . .) in the CFT, a tower
of states E

β

j,j ′ (L) in the spectrum of the Hamiltonian with
asymptotic behavior29

E
β

j,j ′(L) − E0(L) = 2πvs

L

(
x

β

bulk + j + j ′) + o(L−1), (8)

where j,j ′ = 0,1,2, . . .. For the chains with OBC the tower of
states have energies30

E
β

j (L) − E0(L) = πvs

L
(xβ

s + j ) + o(L−1), (9)

with j = 0,1,2, . . ..
For models described by a Luttinger liquid CFT, which are

the present cases, the Luttinger liquid parameter K is given

by K = 1
4xp

, where xp is the lowest anomalous dimension
obtained by using in Eq. (8) the lowest excited state in the
sector whose magnetization is increased by one unit with
respect to that of the ground state.

II. THE MODEL

We consider the anisotropic spin-s Heisenberg chain, also
known as the spin-s XXZ chain, in the presence of a magnetic
field h with Hamiltonian given by

H =
∑

j

(
sx
j sx

j+1 + s
y

j s
y

j+1 + �sz
j s

z
j+1

) − h
∑

j

sz
j , (10)

where �sj = (sx
j ,s

y

j ,sz
j ) are the spin-s SU(2) operators and � =

cos γ is the anisotropy.
We investigate the above model, using the density matrix

renormalization group (DMRG)31 method with OBC and
PBC, keeping up to m̃ = 4000 states per block in the final
sweep. We have done ∼6–11 sweeps, and the discarded weight
was typically 10−7–10−12 at that final sweep. In our DMRG
procedure the center blocks are composed of (2s + 1 ) states.

Let us first present some known results in the absence of
the magnetic field, i.e, h = 0. It is well known that this model
at the isotropic point � = 1 or γ = 0 is gapless (gapful) for
half-odd-integer (integer) spins.32,33 The anisotropic chains are
critical and conformal invariant for −1 < � � 1 with central
charge c = 1 for half-odd-integer spins.34–37 On the other hand,
in the case of integer spins a critical phase appears for −1 �
� � �c(s), where �c(s) < 1 is a critical anisotropy.36

The spin-1/2 XXZ chain is exactly soluble38,39 and for
this reason some exact results are known on its critical region
−1 � � = cos γ � 1. In particular, the anomalous dimension
(surface exponent) associated to the lowest eigenenergy, in
the sector with total spin z-component Sz

T = ∑
j sz

j = 1, is

given by xp = π−γ

2π
(xs = 2xp) and the sound velocity is

vs = π sin γ

2γ
.38–42 The exact solution of the spin-1/2 chain

has also been explored in the context of the entanglement
calculations.43–47 Although exactly integrable, in this context,
only some few issues were explored in the spin-1/2 XXZ
chain. This is due to the difficulty in extracting analytically
results from its exact solution.

For h �= 0 the model is in a critical and conformal invariant
phase for hc < |h| < 1 + �. The critical field hc = 0 for
|�| � 1, and for � >1, hc = hc(�) depends continuously on
�. In this phase the model is described by a Luttinger liquid
phase whose parameter K = 1

4xp
depends on the values of the

magnetization per site m = m(h) = SZ
T

L
of the ground state, and

the anisotropy �. The exact solution of the model allows us
to obtain the exponents xp = xp(m). This is done by solving a
set of nonlinear integral equations that, for the sake of brevity,
we refer to Ref. 48. It is expected that for the half-odd spins s,
with s >1/2, similar phases emerge when a magnetic field is
applied.

III. RESULTS

As mentioned earlier, we need to calculate the anomalous
dimension xp in order to verify if the oscillating term of
the Rényi entropies [Eqs. (5) and (6)] decays with the new
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exponents p
(p)
α = 2p(o)

α = 2K
α

. For the spin-1/2 case and
h = 0, we know that xp(m = 0) = π−γ

2π
. For h �= 0 we can

still determine xp(m) exactly by solving numerically a set of
nonlinear integral equations given in Ref. 48. On the other
hand, for s > 1/2 there are no exact results for xp.

In order to verify the dependence of the exponents p
(p)
α and

p(o)
α with the Luttinger parameter K (or xp), we need to use

independent estimates for them. The independent estimates
can be obtained from the mass gap of the eigenspectrum and
from the α-Rényi entropies. We are going to calculate these
quantities using the DMRG technique. The estimate of xp will
be obtained by following basically the same procedure used
by one of us in Ref. 22. We consider the Hamiltonian defined
in Eq. (10) with PBC to determine the anomalous dimension
xp. The value of xp(m) is obtained from the limit L → ∞ of
the finite-size sequences

xp(m,L) = L
[
E

(
L,Sz

T + 1
) − E

(
L,Sz

T

)]
2πvs

, (11)

where, as before, Sz
T = ∑

j sz
j .

We estimated the sound velocity vs using Eq. (7) with c = 1.
We also assume that xp(m,L) behaves asymptotically as

xp(m,L) = xp(m) + a1/L
ω + a2/L

2, (12)

where ω = 2
xp

− 4. These corrections are expected from the
finite-size perturbation of the critical models (see Ref. 38).
We use a simple fit procedure to obtain xp(m) by considering
typically system of sizes L = 16–96.

A. s = 1/2

As a benchmark test, we consider first the spin-1/2 XXZ
chain. In Table I, we present the estimated values of xp for some
values of magnetization m and anisotropy � obtained from
Eqs. (11) and (12). We see on this table a clear agreement be-
tween our numerical results, obtained via DMRG, and the ex-
act values shown between the parentheses. We thus see that this
procedure gives accurate estimates of xp (similar results was
found in Ref. 22 for m = 0). As mentioned before, for � > 1
the model is still critical in the region where the magnetic
field produces a nonzero magnetization (0 < m < 1/2).49–52

TABLE I. The anomalous dimension xp for the spin-1/2 XXZ
chain with PBC and some values of the magnetization m and
anisotropy �. The values in between the parentheses are the exact
ones (see text).

� m = 0 m = 1/6 m = 1/4 m = 3/10

0 0.2500 0.2499 0.2498 0.2498
(0.25) (0.25) (0.25) (0.25)

0.5 0.3333 0.3111 0.2956 0.2863
(0.3333) (0.3118) (0.2959) (0.2863)√

2/2 0.3752 0.3319 0.3106 0.2963
(0.375) (0.3334) (0.3101) (0.2967)

0.9980 0.464 0.358 0.327 0.309
(0.49) (0.3599) (0.3264) (0.3086)

2.0 —- 0.422 0.363 —-
—- (0.4233) (0.3626) —-

Unfortunately, for some values of � in this region, we observed
that the DMRG is not stable. In particular, for systems with
OBC and m � 3/10 we observed that the DMRG is not stable
for any �. For this reason, we were able to estimate xp only
for � � 2 and m < 3/10.

Now, let us estimate the exponents p
(p)
α and p(o)

α . Recently
Calabrese et al. in Ref. 23 (see also Ref. 24) calculated exactly
these exponents for the spin-1/2 XX chain (� = 0) with PBC.
They also verified indirectly, through the DMRG algorithm,
that p

(p)
α = 1

2xpα
for � �= 0 and h = 0. Fagotti and Calabrese

in Ref. 12 also obtained po
α exactly for the spin-1/2 XX chain

in a magnetic field with OBC. We also include in our analysis
the chains with OBC to show, indeed, that the conjecture holds
for � �= 0. Here, instead of just verifying that the oscillating
term Sosc

α is consistent with a universal decay mediated by
the exponents p

(p)
α and p(o)

α , as done in Ref. 23, we are going
to estimate directly these exponents. We obtain our estimates
from the direct fit of the numerical data to the functions (5)
and (6).

In Figs. 1 and 2, we present the Rényi entropy Sα(L,l)
as a function of l for the anisotropic spin-1/2 Heisenberg
chains with PBC/OBC and for some values of m. The symbols
(circle, squares, etc.) are the numerical data and the solid lines
[with the exception of Fig. 2(a)] connect the fitted points using
Eq. (2) with c = 1. We show Sα(L,l) only for l � L/2 since
Sα(L,L − l) = Sα(L,l). As shown in Fig. 1(a), the amplitudes
of the oscillations increase with the value of α. Similar results
were also observed in Ref. 23. It is important to stress that if
α >1 we can only get a reasonable fit of the numerical data
by considering the oscillating term Sosc

α , in addition to the
standard term SCFT

α predicted by CFT.
Note, from Eqs. (5) and (6), that the periodicity of the

oscillating term Sosc
α depends on the value of the Fermi

momentum kF . On the other hand, kF depends of the value
of the magnetization, namely kF = (1/2 − m)π . Therefore, if
we change the magnetization, a change in the periodicity of
the oscillations of Sα should be observed. According to Eqs.
(5) and (6), the period of oscillations is �l∗ = π/kF for PBC
and �l∗ = π/ko

F for OBC. Our results presented in Figs. 1
and 2, are in perfect agreement with these predictions [see
also Fig. 3(d)].

In Fig. 2, we show the Rényi entropy for � > 1 and some
values of m. For |�| > 1 and m = 0 the Rényi entropies tend
to a constant,3,6 since the system is gapped. On the other
hand, for nonzero magnetization (0 < m < 1/2) the system is
critical,49–52 therefore it is expected that Sα behaves as Eq. (2).
Indeed, we have observed these two behaviors, as illustrated
in Figs. 2(a)– 2(c).

The numerical values of p
(p)
α and p(o)

α obtained from
the fitting together with the corresponding predicted exact
values are presented in the Tables II and III. As we can
see in these tables, the values found are very close to
the expected ones [with the exception of � = cos(π/50) =
0.9980 and m = 0] which strongly suggest that the amplitudes
of the oscillating terms decay as predicted and observed
previously.12,15,23,24 The fact that the estimated values of
p

(p)
α for � = 0.9980 and m = 0 are not so accurate is

not a surprise since, at the isotropic point, logarithmic
corrections are present. Consequently, the finite-size estimates
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FIG. 1. (Color online) The Rényi entropy Sα(L,l) as a function
of l for the spin-1/2 XXZ chain with � = √

2/2. (a) L = 96, PBC,
m = 0 and three values of α (see legend). (b) L = 180, OBC, m = 0,
and two values of α (see legend). We added 0.3 in the values of the
entropy for α = 2 in order to see both data in the same figure. (c) L =
96 with m = 1/6, and L = 80 with m = 3/10. In both bases α = 3
and PBC (d) L = 192 with m = 1/6, and L = 196 with m = 3/10.
In both bases α = 3 and OBC.

have a very slow convergence for anisotropies close to
� = 1.

B. s > 1/2

Now, let us consider the case of spins s >1/2. As we will
see below, it is not simple to confirm that the oscillating term
decays with the exponents p

(p)
α = 2p(o)

α = 2K
α

. The difficulty

of extracting p
(p)
α and p(o)

α is mainly due to the small amplitude
of the oscillations of Sosc

α , as we are going to see below. In
order to get some idea of their order of the magnitude, let us

0 10 20 30l

0.5

1

S
α(L

,l)

α=1
α=2
α=3

s=1/2 Δ=2

(a)

L=64 PBC

m=0

0 10 20 30 40 50l

1

1.5

S
3(L

,l)

m=1/6   L=72
m=1/4   L=96

s=1/2 Δ=2(b)

 PBC

+0.2

0 20 40 60 80l
0

0.5

1

1.5

2

S
3(L

,l)
m=1/6  L=192
m=1/4  L=196

s=1/2 Δ=1.2(c)

 OBC

+0.6

FIG. 2. (Color online) The Rényi entropy Sα(L,l) as a function
of l for the spin-1/2 XXZ chain for � > 1. (a) L = 96, � = 2, PBC,
and three values of α (see legend). (b) S3(L,l) for chains with PBC,
� = 2, and two values of magnetization m (see legend). (c) S3(L,l)
for chains with OBC, � = 1.2 and two values of m (see legend).

consider the oscillations in the region around the middle of the
chains. According to Eqs. (5) and (6) the amplitudes are A

(p)
s ∼

g
(p)
α (�,s)/Lp

(p)
α (�,s) and A(o)

s ∼ g(o)
α (�,s)/Lp(0)

α (�,s). However,
our numerical results indicate that g

(p)
α and g(o)

α are practically
independent of the anisotropy value. The amplitudes A

(p)
s and

A(o)
s are then expected to be smaller as p

(p)
α and p(o)

α decrease
or, equivalently, as xp increases. For example, for � = √

2/2
(γ = π/4), the exponents are xp = 0.333, 0.099, and 0.057 for
s = 1/2, 3/2, and 5/2, respectively.22 Therefore, we expect, at
this anisotropy, a decreasing of the amplitude of the oscillations
as s increases. This can be observed when we compare Fig. 1(a)
with the curves of Fig. 3(a) at � = √

2/2. Actually, our results
indicate that for s = 3/2 and s = 5/2 the amplitudes of the
oscillations are approximately one and two order of magnitude
smaller, as compared with those of the s = 1/2 at � = √

2/2,
respectively. With such small amplitudes it is quite difficult to
extract, at the anisotropy � = √

2/2, accurate values of p
(p)
α

and p(o)
α for the spin chains with s > 1/2.

In order to estimate the exponents p
(p)
α and p(o)

α with some
accuracy for quantum spin chains with s >1/2, we need
to find at least a region in the critical phase of the model
where xp ∼ 0.3, as in the spin-1/2 case. As is well known,
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TABLE II. The exponents p
(p)
2 and p

(o)
3 obtained through a fit of

Eq. (2) for the spin-1/2 XXZ chains with PBC, L = 96, and some
values of � and m. We considered c = 1 in the fitting to Eq. (2).
We also discarded the first points of Rényi entropy Sα in the fitting
procedure (up to 5). The values in the parentheses are the exact ones.

p
(p)
2 p

(p)
3

m = 0 0.677 0.448
(0.666) (0.4444)

� = √
2/2 m = 1/6 0.757 0.496

(0.7498) (0.4999)
m = 1/4 0.811 0.553

(0.8062) (0.5375)

m = 0 0.631 0.411
(0.49) (0.3267)

� = 0.9980 m = 1/6 0.706 0.462
(0.6946) (0.4631)

m = 1/4 0.771 0.528
(0.7659) (0.5106)

m = 1/6 0.587 0.390
� = 2 (0.5905) (0.3937)

m = 1/4 0.675 0.442
(0.6895) (0.4596)

at the isotropic point � = 1 all spin-s Heisenberg chains
have xp = 1/2. However, at this isotropic point, the operator
governing the finite-size corrections is marginal producing
logarithmic corrections that make a slow convergence in
the finite-size estimates. We then select an anisotropy close
to the isotropic point. We choose � = cos(π/50) = 0.9980,
although we should expect that even at this point the finite-size
corrections are very large producing only rough estimates of
xp, p

(p)
α , and p(o)

α .
In Table IV, we present the anomalous dimensions xp for the

spin-3/2 and spin-5/2 chains for � = 0.9980 and some values
of magnetization m. Note that xp < 0.15, for the spin-5/2
quantum chains. This means that the evaluation of p

(p)
α and

p(o)
α will be quite difficult even taking anisotropies close to the

isotropic point. For this reason we concentrate in the s = 3/2
case at � = 0.9980 and m = 0, where the estimate value is

TABLE III. Same as Table II but for chains with OBC. We fit
the data with system sizes L = 180–196. We have discarded the first
points (up to 12 points) in the fitting procedure.

p
(o)
2 p

(o)
3

m = 0 0.300 0.221
(0.3333) (0.2222)

� = √
2/2 m = 1/6 0.385 0.301

(0.3749) (0.2500)
m = 1/4 0.378 0.240

(0.4031) (0.2687)

m = 1/6 0.315 0.251
� = 1.2 (0.3326) (0.2217)

m = 1/4 0.339 0.209
(0.3722) (0.248)
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1/l

0

0.4
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p α(p
)

L=48 s=1/2 α=3
L=96 s=1/2 α=3
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1
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(L
,l)

 m=1/6 L=72 
 m=1/4 L=64

(d)  s=3/2 PBC Δ=0.9980

Δl=3

Δl=4

*

*

FIG. 3. (Color online) (a) The Rényi entropy S3(L,l) vs l for
the spin-3/2 and spin-5/2 chains of size L = 96, and two values
of � (see legend). (b) S3(L,l) vs l for the spin-3/2 chain of size
L = 96 and � = 0.9980. The solid circles are the DMRG data
and the other symbols are fits (see legend). (c) Estimates of p(p)

α

as function of 1/ldisc for the spin-1/2 and spin-3/2 chains with
PBC. The symbols are the numerical data and the dashed lines
connect the fitted data (see text). (d) D10(L,l) vs l for the spin-3/2
chains at � = 0.9980 and two values of the magnetization (see the
legend).

xp = 0.39. This value is close to the value xp = 0.375 (see
Table I) for the spin-1/2 with � = √

2/2. We then, naively,
expect that the amplitudes A

(p)
s and A(o)

s are of the same order
in these two cases. However, to our surprise the amplitudes of
the oscillations for s = 3/2 are quite smaller than those of the
s = 1/2, as we can see in Figs. 3(a) and 3(b). Similar results
were also observed for the s = 3/2 chains with OBC and
m �= 0 (for α = 1 and m = 0, see also Ref. 22). These results
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TABLE IV. The anomalous dimension xp for the anisotropic spin-
3/2 and spin-5/2 Heisenberg chains with PBC, with anisotropy � =
0.9980 and some values of the magnetization m.

m = 0 m = 1/6 m = 1/4 m = 3/10

s = 3/2 0.39 0.1235 0.1177 0.1157
s = 5/2 0.12 0.074 0.071 0.070

indicate that the nonuniversal constants g
(p)
α and g(o)

α appearing
in Eqs. (5) and (6) are very small for s >1/2, as compared with
the s = 1/2 case. This means that the evaluation of p

(p)
α and

p(o)
α directly from the decaying of the Rényi entropy oscillation,

for the s >1/2 quantum chains, is quite a hard task.
Despite the above difficulties, we try to estimate p

(p)
α and

p(o)
α for the spin-3/2 chain at the anisotropy � = 0.9980 and

magnetization m = 0. As already mentioned, we should expect
rough estimates since we are close the the isotropic point. Like
the s = 1/2 case the oscillations, although smaller, happens
only for α > 1. The central charge obtained by fitting Eq. (2)
is, in the α = 1 case, c = 1.01 at � = √

2/2, and c = 1.2
at � = 0.9980. If we fix c = 1 the fitting is quite poor at
� = 0.9980. A nice fit, at this anisotropy, is obtained only by
allowing c as a free parameter. Certainly the estimate of c, as
we increase L, decreases toward the exact value c = 1. Let us
now concentrate on the case of α = 3 where the amplitudes
are clearly present. We are going to fit the data with Eq. (2) in
three distinct ways.

First, we try to fit the DMRG data to Eq. (2) by considering
c = 1 fixed. In this case, the least-squares fitting give us g

(p)
3 =

0 for the best fit with χ2 = 0.042653 [red triangles in Fig. 3(b)].
This means that through this procedure we get no oscillations54

[see Fig. 3(b)] and we are not able to extract values of p
(p)
3 .

In the second procedure we allow c and p
(p)
3 as

free fit parameters. In this case we get p3 = 1.21 and
c = 1.27 with χ2 = 0.0041 for L = 96 [black circles in
Fig. 3(b)]. Similar results were obtained for L = 48 where we
get p

(p)
3 = 1.19.

In the third procedure we fix the expected value of p
(p)
3 =

1
6xp

= 1/(6 × 0.39) = 0.427. In this case the get χ2 = 0.0087
which is higher than previous procedure. In Fig. 3(b), the blue
dashed line connects the fit to our data by considering the
predicted exponent p

(p)
3 = 0.427 fixed. Although the finite-

size corrections are large, since we are close to the isotropic
point, the results suggest that the oscillating term of the Rényi
entropy decays as Eq. (5). We note that for the spin-3/2 chains,
different from the spin-1/2 case, the estimates of p

(p)
α depend

strongly on how many sites l of the subsystem A we discard.
In Fig. 3(c), we present the estimates of the exponents p

(p)
3

and p
(p)
4 as function of 1/ldisc, where ldisc is the number of

sites we discard in the fit procedure (we discard the sites l =
1, . . . ,ldisc). As we can note in this figure, for the spin-1/2 case
the estimates of p

(p)
α weakly depend on the values ldisc and L.

The weak dependence with the lattice size L also happens
for s = 3/2. However, contrarily to the spin-1/2 case, those
estimates are very sensitive to the number of sites ldisc of the
subsystem A we discard, as shown in Fig. 3(c). In order to take

into account this effect, we assume that p
(p)
α (ldisc) behaves as

p(p)
α (ldisc

α ) = p(p)
α + aα

ldisc
+ bα

(ldisc)2
. (13)

If we fit our data for the spin-3/2 case [presented in Fig. 3(c)]
with this equation, we obtain p

(p)
3 = 0.49 and p

(p)
4 = 0.34.

These values are quite close to the predicted ones [p(p)
3 =

0.427 and p
(p)
4 = 0.32]. In the above fit procedure the central

charge c is also a free fit parameter. We also observed, in this
case, that the estimates of c are sensitive to the values of ldisc,
and as we increase ldisc they get closer to the expected value
c = 1. In Fig. 3(c), we present the fits for the spin-3/2 chains
only for ldisc < 20, since for large values of l the amplitudes of
the oscillations are of the same order of the numerical errors.
Finding estimates of the exponent p(o)

α for the spin-3/2 chains
with OBC are even more difficult. In this case the estimates
of pα are very sensitive to ldisc and also to L. For this reason
we are not able to find a simple procedure to estimate this
exponent for the spin-3/2 chains with OBC.

We could naively expect that for m > 0, where logarithmic
corrections are not expected, p

(p)
α would be better estimated.

However, for m >0 the anomalous dimension xp is small (see
Table IV) and, consequently, the amplitudes of the oscillations
are also small, complicating our analysis, as discussed earlier.
However, we can observe an important feature of Eq. (5) in the
Rényi entropy of the spin-3/2 chains. To better see this feature,
it is convenient to define the difference Dα(L,l) = Sα − SCFT

α .
In Fig. 3(d), we present D10(L,l) as a function of l for the spin-
3/2 chain for � = 0.9980 and two values of the magnetization.
We choose to present a large value of α since the amplitudes
are bigger as we increase α. According to Eq. (5) the period
of the oscillations is �l∗ = π/kF = 2/(2 − 2m). In fact, we
have observed this periodicity, as shown in Fig. 3(d) for two
values of the magnetization.

IV. DISCUSSION

In this paper, we investigate the Rényi entropies of the
spin-s anisotropic Heisenberg chains in a magnetic field. These
quantum chains are critical and conformal invariant in a wide
region of values of the magnetic field h and anisotropy �.
The long-distance physics of this critical region is described
by a Luttinger liquid CFT, with central charge c = 1. For
this reason, these models are very attractive for testing
predictions for one-dimensional critical systems. In particular,
it is expected that the α-Rényi entropies have a term that
oscillates with the subsystem size, whose amplitudes show a
power-law decay with universal exponents p

(p)
α and p(o)

α . These
exponents are expected to depend on the Luttinger parameter
K , i.e., p

(p)
α = 2K/α and p(o)

α = K/α for PBC and OBC,
respectively. This universal behavior was obtained exactly for
the spin-1/2 XXZ chains with a magnetic field with PBC
and OBC for � = 0 (XX chains).12,24 Moreover, for h = 0,
DMRG calculations of the spin-1/2 XXZ chain also indicate
that the oscillating term indeed decays as predicted.23 As part
of this work, we made an extensive study of the spin-1/2
model but considered a much wider region of couplings than
those considered earlier. Using the DMRG technique, we
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also investigate extensively the quantum spin-s chains (up to
s = 5/2) with PBC/OBC for several values of anisotropy �

and magnetic field. Using the CFT machinery we were able to
get accurate estimates of the Luttinger parameter K . For the
spin-1/2 chains with PBC and OBC, we extract the exponents
p

(p)
α and p(o)

α through a fit of Eq. (2) and confirm the predicted
universal behavior of the Rényi entropy for several values
of magnetization m and anisotropy �. For spin s = 3/2 our
estimates of the the exponent pα are not so accurate due to
the fact that the nonuniversal constants g

(p)
α and g(o)

α are very
small (typically one order of magnitude smaller than the ones
of spin-1/2 chain), even though our results indicate that p

(p)
α

and p(o)
α are related with the Luttinger parameter, as predicted.

We also observe that the periodicity of the oscillating term
changes with the magnetization, as conjectured. For s > 3/2
we were not able to extract the exponents p

(p)
α and p(o)

α ,
mainly due to the fact that the g

(p)
α and g(o)

α are so small,
making the data difficult to analyze. In this case, the Luttinger
parameter K is larger (compared with the ones of the spin-1/2)

and also contributes to make the oscillating term Sosc almost
imperceptible. We could even think that this term is null,
as happens in the Ising model,24,55 and that such small
oscillations comes from numerical errors. However, we are
convinced that those small oscillations are not related with
the truncation errors in the DMRG. We have observed that
those oscillations do not decrease as we increase the number
states kept (up to m̃ = 4000) in the DMRG procedure. These
results strongly indicate that the nonuniversal amplitudes g

(p)
α

and g(o)
α decrease very fast as the spin s increases. This makes

a huge challenge the determination of the exponents p
(p)
α and

p(o)
α with reasonable accuracy for s >1/2.
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