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Spin-wave damping in ferromagnetic stripes with inhomogeneous magnetization
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A theory is presented for the interactions between the dipole-exchange spin waves in ferromagnetic nanowires
with a stripe geometry. A Hamiltonian-based approach is used in order to extend earlier results for the linear
(or noninteracting) spin waves to include the leading nonlinear processes due to three-magnon and four-magnon
effects in a stripe. As well as the magnetic dipole-dipole and exchange terms in the Hamiltonian, the role of
an applied magnetic field that can be either parallel or perpendicular to the stripe axis is considered. Within a
diagrammatic perturbation method the contributions to the frequency shift and damping of the quantized spin
waves are deduced. Numerical calculations are presented for Permalloy stripes, and it is shown that the damping
in the transverse field case, where the magnetization may become strongly inhomogeneous, can be larger than
that in the longitudinal field case. Comparisons are made with recent damping measurements for Permalloy
stripes in a longitudinal field.
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I. INTRODUCTION

Ferromagnetic nanowires, grown either individually or in
dense arrays, have been intensively studied in recent years
(for reviews, see e.g., Refs. 1–3). In particular, the spin-wave
dynamics in these confined geometries has been investigated
experimentally by various techniques that include Brillouin
light scattering,4–8 the spatially resolved Kerr method,9 fer-
romagnetic resonance,10,11 etc. On the theoretical side the
lateral confinement of spin waves in nanowires (e.g., in dealing
with the lateral edges in magnetic stripes) presents challenging
problems, but there has been considerable progress regarding
the linear spin-wave dynamics. Broadly, two approaches have
been followed, of which one is a macroscopic (or contin-
uum) approach based on solving simultaneously the Landau-
Lifshitz-Gilbert equation of motion of the magnetization
and Maxwell’s equations for the magnetic-field components
with appropriate boundary conditions (see e.g., Ref. 12).
As discussed by Guslienko and Slavin,13 it is necessary
to introduce effective boundary conditions with the pinning
parameters usually chosen phenomenologically in order to
deal with regions of strong spatial inhomogeneity in the
magnetization, such as at the lateral edges of a stripe. The other
approach is based on a microscopic technique14,15 in which
a spin Hamiltonian describing the exchange and magnetic
dipole-dipole interactions is employed, together with terms
for an applied magnetic field and any single-ion anisotropy. It
involves introducing a lattice of effective spins, with the lattice
parameter chosen to be small compared with the so-called
exchange length of the material (see Ref. 14), e.g., about 5.3 nm
in Permalloy. The surface pinning arises in this theory because
the total effective dipole fields have a position dependence and
the regions of spatial inhomogeneities can be explicitly taken
into account.

In this paper we are concerned with extending the above
theory of linear spin waves in magnetic nanowires to take
account of nonlinear processes in the spin dynamics. This is
done within the context of the microscopic approach applied
to ferromagnetic stripes, which we use to derive results for
the frequency shift and damping of the spatially quantized
spin waves as a generalization of Ref. 15 for the linear (or

noninteracting) spin waves. Our calculations are motivated in
part by recent ferromagnetic resonance (FMR) experiments
reported for spin waves in Permalloy stripes11 where damping
effects were observed. Numerical applications will therefore
be made to Permalloy stripes, taking the same stripe width and
thickness as in some of the experiments. Our theory covers
the two different cases of an external magnetic field applied
either in the longitudinal direction along the stripe axis, as in
the above experiments, or in the transverse direction. In the
latter case, the magnetization is tilted away from the preferred
longitudinal axis and is spatially inhomogeneous, which we
will show leads to a larger damping under suitable conditions.

In our earlier study of linear spin waves in magnetic
stripes15 a transformation of the Hamiltonian from spin
operators to boson operators was made, with only the lowest-
order terms being retained in an expansion. In the present
work we also retain the higher-order terms that describe the
three-magnon and four-magnon interaction terms for the wire
geometry. It is well known from extensive previous studies of
bulk materials and thin films (see e.g., Refs. 16–19) that these
two types of terms are required for a proper description of
nonlinear spin-wave processes, including spin-wave damping,
spin-wave instabilities under strong pumping fields, nonlinear
generation of spin waves, etc. Here we focus on applications
to the spin-wave frequency shift and damping in order to make
connections with the experimental data in Ref. 11. Specifically,
we take account of the three- and four-magnon processes
through a diagrammatic perturbation expansion by analogy
with previous calculations for ultrathin ferromagnetic films.20

This paper is organized as follows. In Sec. II we give an
outline of the theoretical model, including the spin Hamilto-
nian and the assumed geometry of a ferromagnetic stripe. The
extension of our earlier work for the linear spin-wave (SW)
properties15 to include nonlinear SW effects through the three-
magnon and four-magnon processes is then presented using a
diagrammatic perturbation formalism. Expressions are derived
for the corresponding frequency shift and damping for any
SW branch, taking either a longitudinal or a transverse applied
magnetic field. Numerical calculations are made in Sec. III
for the longitudinal field case, emphasizing the behavior for

214423-11098-0121/2011/83(21)/214423(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.214423


HOA T. NGUYEN, A. AKBARI-SHARBAF, AND M. G. COTTAM PHYSICAL REVIEW B 83, 214423 (2011)

the SW damping in Permalloy stripes, as recently studied
experimentally.11 This is followed in Sec. IV by numerical
calculations for the transverse field case showing that the SW
damping may be significantly larger. Further discussion and
the conclusions are given in Sec. V.

II. THEORY

Following our earlier work on the linear SW spectrum,15

a ferromagnetic striped nanowire will be modeled as having
a rectangular cross section (in the xz plane) with width W

and thickness L (where usually W � L), while the system is
effectively infinite in the y direction (see Fig. 1). A lattice of
spins is introduced, arranged on a simple cubic lattice, where
the effective lattice constant a is chosen to be smaller than the
exchange length of the material. The cross section of the wire
has a finite number N of spins, where typical N values might
be as large as several hundreds depending on W and L.

The system of interacting spins is described by the
Hamiltonian

H = −
∑
〈i,j〉

∑
α,β

U
αβ

ij Sα
i S

β

j − gμBH0 ·
∑

i

Si . (1)

Here the indices i and j label the spin sites and α and β

denote the Cartesian components x, y, or z. The first term
includes both the short-range exchange and the long-range
dipole-dipole interactions between spins Si and Sj (with
quantum number S), where the summations are over all distinct
pairs of spins and

U
αβ

ij = −Jij δα,β + (gμB)2
|rij |2δαβ − 3rα

ij r
β

ij

|rij |5 . (2)

We consider the above exchange interactions Jij to be
nonzero only between the nearest neighbors, whereas the
dipole-dipole part couples all spins (where rij = rj − ri). The
second term in the Hamiltonian Eq. (1) describes the Zeeman
interaction of the spins with an external magnetic field of
magnitude H0 applied either parallel or perpendicular to the
stripe length. A term to represent the single-ion anisotropy
could straightforwardly be added but will be ignored for
the applications to be considered in this paper. By using an
expansion in terms of boson operators and a diagrammatic
perturbation technique, we next investigate the nonlinear SW
processes in ferromagnetic wires (the damping in particular)
for the two directions of the external magnetic field.

FIG. 1. Geometry of an infinitely long magnetic stripe of width
W and thickness L, showing the choice of coordinate axes. The wave
number along the y axis is k, and magnetic field H0 is chosen to be
either along the y axis (as illustrated) or along the z axis.

A. Longitudinal applied field

In this case, where the magnetic field is applied parallel
to the stripe length as in the recent damping measurements11

using FMR, the equilibrium configuration of all spins is along
the y direction by symmetry. Then, as in Refs. 15 and 14,
we may use the Holstein-Primakoff representation to rewrite
the Hamiltonian in terms of boson creation and annihilation
operators a

†
i and ai . The result may be expanded as

H = H (0) + H (1) + H (2) + H (3) + H (4) + · · · , (3)

where the general term H (m) consists of normal-ordered
products of m boson operators. The zero-order term H (0) is
just a constant while H (1) vanishes due to the symmetry in
this longitudinal case. The second-order term H (2) describes
the noninteracting (or linear) SW modes at low temperatures
T � TC (where TC is the Curie temperature) and has the form

H (2) =
∑
k,n,m

[
A(2)

n,m(k)a†
k,nak,m + B(2)

n,m(k)a†
k,na

†
−k,m

+B(2)∗
n,m (k)ak,na−k,m

]
. (4)

Here k is a wave number along the stripe axis which arises
when a Fourier transform is taken with respect to the y axis as
the direction of translational symmetry. The integers n and m

label the spin sites in each cross section of the stripe, taking
the values {1,2, . . . ,N}, where N denotes the number of spin
sites. Denoting Jn,m(k) and D

αβ
n,m(k) as the Fourier transforms

with respect to k of the exchange and dipolar interactions, the
coefficients A(2)

n,m and B(2)
n,m are

A(2)
n,m(k) =

{
gμBH0 + S

N∑
p=1

[
Jn,p(0) − (gμB)2Dyy

n,p(0)
]}

δn,m

−SJn,m(k) − 1

2
S(gμB)2Dyy

n,m(k), (5)

B(2)
n,m(k) = 1

4
S(gμB )2

{
Dzz

n,m(k) − Dxx
n,m(k) + 2iDxz

n,m

}
. (6)

The next terms H (m) (with m � 3) of the expansion in
Eq. (3) describe the nonlinear SW dynamics in the nanowire.
In general, it is well known (see e.g., Refs. 16, 18, and 19)
that both the H (3) and H (4) terms, representing three-magnon
and four-magnon processes, respectively, need to be included
to account for the leading-order effects of the SW interactions.
In the present case they are given by

H (3) =
∑

k,q,n,m

[
A(3)

n,m(k)a†
k,na

†
q,mak+q,m

+A(3)∗
n,m(k)a†

q,naq−k,nak,m

]
,

(7)

H (4) =
∑

k,k
′
,q,n,m

{
A(4)

n,m(k)[a†
k,na

†
k

′
,m

aq,mak+k
′−q,m

+ a†
q,na

†
k

′
,n
ak,ma−k+k

′ +q,n]

+B(4)
n,m(k)a†

q,ma
†
k

′
,n
a−k+k

′
,nak+q,m

+C(4)
n,m(k)a†

−k,ma
†
k

′
,n
a†

q,na−k+k
′+q,n

+C(4)∗
n,m (k)a†

k
′
,n
aq,na−k+k

′ −q,nak,m

}
, (8)
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where the corresponding third- and fourth-order coefficients
are

A(3)
n,m(k)=−1

4
S(gμB )2

√
S

2N
′

[
N∑

p=1

{
Dyz

n,p(0) + iDxy
n,p(0)

}
δn,m

+ 4
{
Dyz

n,m(k) + iDxy
n,m(k)

}]
, (9)

A(4)
n,m(k)= 1

4N
′

{
Jn,m(k) + 1

2
(gμB)2Dyy

n,m(k)

}
,

B(4)
n,m(k)=− 1

2N
′
{
Jn,m(k) − (gμB)2Dyy

n,m(k)
}
, (10)

C(4)
n,m(k)= 1

8N
′ (gμB)2{Dxx

n,m(k)−Dzz
n,m(k) − 2iDxz

n,m(k)
}
.

Here N
′

denotes the macroscopically large number of spins
along the y axis of the stripe.

To study the interactions between SWs we need the results
for the linear SWs, which were obtained already in our
previous works.14,15 Here we outline the procedure briefly, so
that a generalization can be made to higher-order processes.
The linear SW term H (2) in Eq. (4) can be diagonalized by
transforming from the a† and a operators to a new set of

boson operators b† and b, which satisfy the usual commutation
relations and are defined by

ak,n =
N∑

�=1

{Sn,�(k)bk,� + S∗
n+N,�(k)b†−k,�}. (11)

Here Sn,�(k) is an element of a 2N × 2N transformation matrix
Sk calculated as in Refs. 15 and 14 and the creation operator
a
†
k,n is expressed using the Hermitian conjugate of the above

expression. The diagonalized form of H (2) becomes (apart
from constant terms)

H (2) =
∑

k

N∑
�=1

ωk,�b
†
k,�bk,�, (12)

where the discrete SW frequencies are ωk,�.
The transformation in Eq. (11) can next be used to rewrite

H (3) and H (4) in terms of the new operators that create or
annihilate a SW of wave number k and branch label � (=
1,2, . . . ,N), giving

H (3) =
∑

�1,�2,�3

∑
k,q

[
V1b

†
k,�1

b
†
q,�2

bk+q,�3 + V2b
†
k,�1

b−q,�2bk+q,�3

+V3b
†
k,�1

b
†
q,�2

b
†
−k−q,�3

+ V4b−k,�1b−q,�2bk+q,�3

]
, (13)

H (4) =
∑

�1,�2,�3,�4

∑
k,k

′
,q

[
�1b

†
k,�1

b
†
k

′
,�2

bq,�3bk+k
′−q,�4

+ �2b
†
k,�1

b−k
′
,�2

bq,�3bk+k
′−q,�4

+ �3b
†
k,�1

b
†
k

′
,�2

b
†
−q,�3

bk+k
′−q,�4

+�4b
†
k,�1

b
†
k

′
,�2

b
†
−q,�3

b
†
−k−k

′ +q,�4
+ �5b−k,�1b−k

′
,�2

bq,�3bk+k
′−q,�4

]
. (14)

The above summations over �i are over all N SW branches
and the wave numbers are summed over the first Brillouin
zone in one dimension. We note that each term in Eqs. (13)
and (14) conserves the wave number, as expected from the
translational symmetry in the y direction, but the SW branch
labels can appear in all combinations. The amplitude factors
Vi(k,q|�1,�2,�3) and �i(k,k

′
,q|�1,�2,�3,�4) appearing in the

above equations are lengthy expressions but they can be
straightforwardly written down using Eqs. (7)–(11).

At this stage it is convenient to introduce a diagrammatic
perturbation technique to study how the H (3) and H (4) terms
modify the SW frequencies ωk,� and introduce damping
effects. This can be achieved following analogous calculations
by Costa Filho et al.20 for ultrathin ferromagnetic films. The
formalism is similar because the atomic layer index used in
Ref. 20 plays an analogous role to our label n as used in Eq. (4)
to specify the spin sites in any cross section of the nanowire,
while the two-dimensional in-plane wave vector for a film is
replaced by our wave number k. Briefly, we define an N × N

matrix causal Green’s function G(k,iωm) whose (�,�
′
) element

is just 〈〈bk,�; b†
k,�

′ 〉〉iωm
in a standard notation where {iωm} is

a set of imaginary boson frequencies.21 When evaluated with
respect to H (2) in Eq. (12) as the unperturbed Hamiltonian,
it is found that G(k,iωm) is a diagonal matrix with its

elements proportional to δ�,�
′ /(iωm − ωk,�). In a diagrammatic

representation the noninteracting Green’s function will be
drawn as a solid directed line that can be labeled with
{k,�,iωm}, while the transformed H (3) and H (4) terms in Eqs.
(13)–(14) define interaction vertices as represented in Fig. 2
with either three or four lines leaving (for a b† operator) or
entering (for a b operator).

Then, following Ref. 20 for the film geometry, the modified
poles of the matrix G are found by introducing proper
self-energy diagrams made up from the above interaction

FIG. 2. Interaction vertices for (a) three-magnon processes and
(b) four-magnon processes, showing the associated Vi and �i factors.
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FIG. 3. Self-energy diagrams involving (a),(b) three-magnon pro-
cesses and (c),(d) four-magnon processes. All possible combinations
for the directions of arrows for the unlabeled Green’s function lines
must be considered.

vertices and lines. The relevant leading-order diagrams are
those having the forms represented in Fig. 3. They have one
external line {k,�,iωm} entering and another line {k,�,iωm}
leaving, while the other lines and vertices are fully connected.
The real and imaginary parts of these diagrams lead directly to
formal expressions for the frequency shift �ωk,� and damping
	k,�, respectively, of the SW with wave number k and branch
label � [see Eq. (31) of Ref. 20]. Our results are described below
with an interpretation of the diagrammatic representations.

We first consider the three-magnon processes. There are
no diagrammatic self-energy terms that involve just one
interaction vertex, since these vertices come in conjugate
pairs (e.g., a V1 with a V2 or a V3 with a V4). This leads
to diagrams with the topologies shown in Figs. 3(a) and 3(b).
The first of these diagrams has a real value and so contributes
only to the SW frequency shift, but the second diagram
has a complex value and contributes to both the frequency
shift and damping. Introducing the shorthand that nk,� =
[exp(h̄ωk,�/kBT ) − 1]−1 denotes the Bose-Einstein thermal
factor at temperature T for the linear SW with frequency ωk,�,
the expressions for the SW frequency shift and damping due
to three-magnon processes are eventually found to be

�ω
(3)
k,�

=−
∑
�1,�2

∑
q

{

1

nq,�1

ω0,�2

+
2
nq,�1 + n−k−q,�2 + 1

ω−k−q,�2 + ωq,�1 +ωk,�

+
3
nq,�1 − nk+q,�2

ωk+q,�2 −ωq,�1 − ωk,�

+
4
nq,�1 + nk−q,l2 +1

ωk−q,�2 +ωq,�1 − ωk,�

}
,

(15)

	
(3)
k,� = −π

∑
�1,�2

∑
q

{

3

[
nq,�1 − nk+q,�2

]
×δ

(
ωk+q,�2 − ωq,�1 −ωk,�

)+ 
4
[
nq,�1 +nk−q,�2 ) + 1

]
×δ

(
ωk−q,�2 + ωq,�1 − ωk,�

)}
, (16)

where the weighting factors 
i (with i = 1, . . . ,4), which are
quadratic in the interaction vertices, are defined in Appendix A.

Also it is implicit that the principal value is taken in the
summations in Eq. (15) where there are denominators that
could vanish. The two δ-function terms in Eq. (16), which
conserve energy and longitudinal wave number, correspond to
three-magnon confluence and splitting processes, respectively.
We note that the SW processes involve either the same branch
or different branches.

Now we turn to the four-magnon processes. In this case
there is a nonvanishing diagram that has one interaction vertex,
as depicted in Fig. 3(c). It is real and upon evaluation gives the
following contribution to the SW frequency shift:

�ω
(4)
k,� =

∑
�1

∑
q

�1nq,�1 , (17)

where the weighting factor �1 is defined in Appendix A as a
linear combination of �1 vertices. To obtain the leading-order
result for the SW damping due to four-magnon processes it is
necessary to consider diagrams with two vertices having the
topologies represented in Fig. 3(d). The result takes the general
form

	
(4)
k,�

= −π
∑

�1,�2,�3

∑
q,q ′

{
�2n

th
2 (T )δ

(
ωq,�1 − ωq

′
,�2

− ωk+q−q
′
,�3

+ωk,�

) + �3n
th
3 (T )δ

( − ωq,�1 − ωq
′
,�2

− ωk−q−q
′
,�3

+ωk,�

)+�4n
th
4 (T )δ

(
ωq,�1 −ωq

′
,�2

−ω−k+q−q
′
,�3

−ωk,�

)}
.

(18)

Here nth
2 (T ) and nth

3 (T ) represent combinations of thermal
factors defined by

nth
2 (T )=nq,�1

[
nq

′
,�2

+ nk+q−q
′
,�3

+ 1
] − nq

′
,�2

nk+q−q
′
,�3

,

nth
3 (T )= [

nq,�1 +1
][

nq
′
,�2

+nk−q−q
′
,�3

+1
]+nq

′
,�2

nk−q−q
′
,�3

,

(19)

while nth
4 (T ) is obtained from nth

2 (T ) by everywhere replacing k

by −k. The weighting factors �2,3,4 are discussed in Appendix
A. There are now three types of δ-function terms, of which the
first (proportional to �2) corresponds to four-magnon scat-
tering and the next two are generalized four-magnon splitting
and confluence processes. Again there can be intrabranch and
interbranch contributions.

The combined SW frequency shift is �ωk,� = �ω
(3)
k,� +

�ω
(4)
k,� and the combined damping is 	k,� = 	

(3)
k,� + 	

(4)
k,�. The

relative importance of the three- and four-magnon processes
in these expressions will depend on factors such as the relative
strengths of the dipole-dipole and exchange interactions, the
wave number k, the external field H0, and the temperature T .
It may also depend on the branch label � of the SW.

B. Transverse applied field

It is a more challenging problem to calculate the nonlinear
magnetization dynamics in the case of an external field of
arbitrary magnitude H0 applied perpendicular to the stripe,
i.e., taken along the z axis in Fig. 1. The spins are now canted
away from the symmetry (y) axis, resulting in strong spatial
inhomogeneities of the magnetization. Eventually, for large
enough H0 the equilibrium magnetization lies approximately
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along the z direction, but with some inhomogeneities still
remaining at the lateral edges. Discussion of the linear SW
spectrum for this situation was included in our previous
work.14,15 We now extend this treatment to the nonlinear case,
for which we eventually conclude that the SW damping can
be much larger (depending on the magnitude of the transverse
H0) than found in the preceding subsection for a longitudinal
applied field.

Before proceeding to the SW properties we deduce the
equilibrium configuration of the spins by following the
approach described in Ref. 14 for cylindrical nanowires. We
denote the equilibrium value of any spin vector Sin by S̄n,
which will be independent of i due to translational symmetry.
Here n (with n = 1, . . . ,N , as before) labels the spin sites in
any cross section of the wire and i labels the coordinate along
the length of the wire. Briefly, a starting configuration of spins
{Si,n} is assumed, and then the total effective field at each spin
site is calculated using Heff

i,n = −(1/gμB)(δE/δSi,n), where
E is the energy functional deduced from the Hamiltonian in
Eq. (1). Next we align each spin parallel to the total effective
field at that site to obtain a new spin configuration. The above
process is repeated until there is convergence, i.e., all the
products |Sn × Heff

n | are negligible, implying that the torques
acting on the spins vanish. This procedure is repeated with
different initial configurations and a set of local minima is
obtained. The global equilibrium configuration at T � TC is
adopted as being the one with the smallest energy E.

We now specify the equilibrium configuration {S̄n} in terms
of two sets of angles {αn,θn} in polar coordinates, which
depend on position in the cross section when the magneti-
zation is inhomogeneous. Thus we have S̄n = (S̄z

n,S̄
x
n ,S̄

y
n ) =

S(sin αn cos θn, sin αn sin θn, cos αn). When introducing the
spin dynamics it is convenient to define a local coordinate
system (z′,x ′,y ′) for each spin Sn such that the y ′ axis is
directed along the equilibrium orientation of that spin, as in
Ref. 14. The relationships between the spin components in the
global (z,x,y) and local (z′,x ′,y ′) coordinates are

Sz
i,n = cos αn cos θnS

z′
i,n − sin θnS

x ′
i,n + sin αn cos θnS

y ′
i,n,

Sx
i,n = cos αn sin θnS

z′
i,n + cos θnS

x ′
i,n + sin αn sin θnS

y ′
i,n, (20)

S
y

i,n = − sin αnS
z′
i,n + cos αnS

y ′
i,n.

As in the previous subsection, the Holstein-Primakoff
transformation can again be utilized, except that now it is
applied in the local coordinate system to rewrite S

y ′
in and

S±
in = Sz′

in ± iSx ′
in in terms of boson creation and annihilation

operators. The transformation is substituted into the spin
Hamiltonian which is expanded in term of the boson operators
as was done in Eq. (3) for the longitudinal case at low
temperatures T � TC .

The first-order term H (1) again vanishes, when the constant
term H (0) is minimized and the local axes are chosen as
described above. The higher-order terms H (2), H (3), and
H (4) have the same interpretations as previously and can be
represented in the same general forms as in Eqs. (4), (7),
and (8). The only difference is that the coefficients A(2)

n,m(k),
B(2)

n,m(k), A(3)
n,m(k), A(4)

n,m(k), B(4)
n,m(k), and C(4)

n,m(k) must all be
redefined because of their dependence on the canting angles

αn and θn for the transverse field case. The modified forms of
these coefficients are quoted in Appendix B.

It then follows that, with the above redefinitions, the
main results that were derived for the SW properties in
the previous subsection still apply. In particular, the same
formalism holds for the 2N × 2N transformation matrix Sk in
Eq. (11) leading to Eq. (12) for the diagonalized H (2) giving the
noninteracting SW frequencies ωk,�. Moreover, the previous
formal expressions derived for the SW frequency shift and
damping in Eqs. (15)–(18) also apply in the transverse field
case.

III. NUMERICAL RESULTS FOR THE LONGITUDINAL
CASE

Numerical calculations based on the above theory are
presented first for the simpler case of a longitudinal ap-
plied field. The material parameters used in our approach
are the exchange stiffness D = SJa2/gμB , the saturation
magnetization Ms = gμBS/a3, and the gyromagnetic ratio
γ /2π = gμB . We will make comparisons with FMR data for
the SW damping in Permalloy stripes.11 Measurements by
those authors gave Ms = 0.058 T and gμB = 29.5 GHz/T
for their samples, and we take D = 24 T nm2 for Permalloy
as in Ref. 22. Our SW frequency shift and damping results
will be obtained for the smallest of the experimental stripe
samples, which corresponded to width W = 125 nm and
thickness L = 6 nm. The experiments11 were done at room
temperature which is well below TC ∼ 850 K for the Curie
temperature of Permalloy, so the approximations of our boson
expansion technique should still be appropriate. In order to
establish a temperature scale in the theory, we estimate TC

from mean-field theory for a site at the center of the stripe
(including the static dipole-dipole field, as well as the static
exchange field) and we set this equal to the experimental value.
This enables us to present our theoretical estimates for a range
of T/TC values from 0 up to about 0.35. The summations over
the internal wave numbers in Eqs. (15)–(18) were carried out
numerically by dividing the one-dimensional Brillouin zone
(from −π/a to π/a, where a is the effective lattice parameter
discussed earlier) into typically 2000 intervals, which we tested
gave good convergence. Also we chose a = 3 nm, which is
smaller than the exchange length aEx 	 5.3 nm of Permalloy,
and a longitudinal applied field of 0.06 T, which is within the
range used in the experiments.11

First, for comparison, we show in Fig. 4 the calculated
low-temperature dispersion relations for the linear SW in
the Permalloy stripe. The quantized SW branches show the
expected behavior (with an upward slope due to exchange
effects over most of the range of k) for a stripe of relatively
small cross section. By contrast, for stripes with larger cross
sections, it would be evident that the lowest few branches
show an initial dip in frequency at very small k due to the
dipole-dipole effects (e.g., see Fig. 2 in Ref. 15).

Next, in Fig. 5 some calculations are presented for the
three-magnon damping in the same Permalloy stripe plotted
against wave number k for the SW branch with � = 2 (the
second lowest in Fig. 4). The contributions from the confluence
and the splitting processes are shown separately, as well as the
total damping. Here the confluence processes dominate and
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FIG. 4. Linear SW frequencies vs wave number k for a Permalloy
stripe with cross section 6 nm × 125 nm and longitudinal field
μ0H0 = 0.06 T. The physical parameters are given in the text. Only
the lowest SW modes are shown.

they can occur for all k, whereas there is a “threshold” value
for splitting processes (at k ∼ 0.11 nm−1 in this example)
below which it is not possible energetically for a SW with the
specified {k,�} to decay into two other SW on the same or
any other branches. This can be understood by reference to
Fig. 4. The threshold values become smaller for higher SW
branches (larger �), and eventually disappear, because there
are decay channels involving the lower branches. All possible
interbranch, as well as intrabranch, effects have been taken
into account here in calculating the damping. These results

FIG. 5. Three-magnon damping of the SW branch with � =
2 vs wave number k for a Permalloy stripe with cross section
6 nm × 125 nm, T/TC = 0.3, and longitudinal field μ0H0 =
0.06 T. The different lines show the total damping, as well as the
confluence and splitting processes, as labeled.

FIG. 6. Total three-magnon damping of the three lowest SW
branches (� = 1, 2, 3) vs wave number k for the same Permalloy
stripe as in Fig. 4 in a longitudinal field. The three lines correspond
to the SW branches as labeled.

were obtained using Eq. (16) for 	
(3)
k,�, which we estimate to be

much larger than the four-magnon damping in this case.
In Fig. 6 we compare the k dependence of the total

(confluence plus splitting) three-magnon damping for the
lowest three SW branches. The results are broadly similar
for the different branches, but they display an overall trend
for the damping to increase with increasing branch label �.
This behavior is particularly evident for k ∼ 0.15 nm−1,
where it is mainly due to an increase in contributions from the
three-magnon splitting terms. Another comparison, this time
with respect to the temperature dependence of the damping,
is given in Fig. 7. Here the calculations are for the lowest SW
branch (� = 1) and show the total three-magnon damping at a

FIG. 7. Three-magnon damping at different temperatures for the
lowest SW branch (� = 1) vs wave number k for the same Permalloy
stripe as in Fig. 4 in a longitudinal field. The lines correspond to
different T/TC values as labeled.
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FIG. 8. Four-magnon frequency shift of the three lowest SW
branches (� = 1, 2, 3) vs wave number k for the same Permalloy
stripe as in Fig. 4 in a longitudinal field. The three lines correspond
to the SW branches as labeled.

series of T/TC values up to 0.35. At each k value it is seen that
there is a monotonic increase in the damping with temperature,
which is mainly due to an increase in the Bose-Einstein thermal
factors appearing in Eq. (16).

Finally in this section we show in Fig. 8 some calculations
for the SW frequency shift arising due to the SW interactions.
By contrast to the damping results, it is found in this case
that the dominant contribution for Permalloy at almost all
values of k and T/TC come from the four-magnon processes
as given by Eq. (17). This is mainly because the four-magnon
frequency shift has a leading-order contribution that is linear
in the interaction vertex, as was discussed in the context of
Fig. 3(c), whereas the contribution calculated from Eq. (15)
is quadratic in the three-magnon interaction vertices and is
smaller in magnitude. The results in Fig. 8 show that the
four-magnon frequency shift is negative and increases in
magnitude with k, which are characteristics of the behavior for
Heisenberg ferromagnets.16 However, at very small k (below
∼0.04 nm−1) in Fig. 8 there is a region where the frequency
shift decreases in magnitude, and this is attributable to the
dipole-dipole interactions. Figure 8 also shows that |�ωk,�|
tends to increase with branch label �.

The results presented here for the dominant three-magnon
damping are discussed further in relation to the Boone et al.11

experimental studies in Sec. V.

IV. NUMERICAL RESULTS FOR THE TRANSVERSE CASE

Next we consider numerical results for the case when
the magnetic field is applied perpendicular to the stripe
axis (along the z axis). Although the recent SW damping
measurements11 applied only for a longitudinal field, the
transverse case is more interesting because both the static
and the dynamic magnetization throughout the sample may
be strongly inhomogeneous, and we will show here that the
damping effects in particular can become much larger.

Before considering a stripe with finite thickness and width
it is instructive to consider briefly what happens for an ultrathin
wire, i.e., a wire consisting of a single line of dipole-exchange
coupled spins, when placed in a transverse field. This is just
the special case of N = 1 in our theory, so all the spins along
the line are canted in the yz plane at the same angle θ from the
y axis. It is easy to show that the equilibrium configuration for
the spins (see Sec. II A) corresponds simply to

sin θ = H0/Hc (H0 � Hc), (21)

while θ = 90◦ if H0 > Hc, where Hc is a characteris-
tic field related to a static dipole-dipole sum by Hc =
−(3/2)SgμBDyy(0) > 0 in the notation of Sec. I. At k = 0
the frequency of the single SW branch (for the noninteracting
case) can be shown to decrease as H0 is increased from zero
until it vanishes when H0 = Hc, i.e., the k = 0 SW exhibits a
soft-mode behavior. For H0 > Hc the SW frequency increases
with H0. Also there is a simplification for the three-magnon
interaction terms Vi , which are all proportional to sin(2θ ),
therefore implying that the three-magnon damping has an

FIG. 9. Linear SW frequencies at k = 0 vs transverse magnetic
field H0 for a Permalloy stripe with cross section (a) 6 nm × 24 nm
and (b) 6 nm × 125 nm. Only the few lowest SW modes are shown.
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FIG. 10. Polar angle α vs transverse magnetic field H0 for
Permalloy stripes with cross sections 6 nm × 24 nm (dashed curves)
and 6 nm × 125 nm (solid curves). Labels M and E refer to the middle
and lateral edges of the stripes, respectively.

overall proportionality to sin2(2θ ) for a single line. This has its
largest value when θ ∼ 45◦ or H0 ∼ 0.7Hc. While this simple
dependence does not hold for a wire stripe of finite width and
thickness, it does strongly suggest that the transverse field case
will be of interest for the field dependence, and it may lead to
a larger three-magnon damping than was found for the case of
a stripe in a longitudinal field. The three-magnon damping is
not zero for a stripe in a longitudinal field (by contrast with
the single line of spins with θ = 0) because of the position
dependence of the dipole-dipole sums and the interbranch SW
effects.

FIG. 11. Three-magnon damping of the lowest SW branch
(� = 1) vs wave number k for a Permalloy stripe with cross section
6 nm × 24 nm, T/TC = 0.3, and different values of transverse
magnetic field H0 as indicated.

In the following numerical applications we shall consider
two different stripe sizes to illustrate the different types of
behavior. We again use Permalloy for the examples, with
material parameters chosen as in the previous section, but
we take two values for the width-to-thickness aspect ratio
W/L. The smaller stripe is chosen to have W = 24 nm and
L = 6 nm, while the larger stripe has the same dimensions
as previously, i.e., W = 125 nm and L = 6 nm. In Fig. 9
the calculated linear SW frequencies at k = 0 are plotted
versus the applied field for the two structures. The reduced
width of the stripe in Fig. 9(a) causes the frequencies of the
quantized SW modes to be further apart, and we see that
the lowest branches have a minimum when the transverse
field ∼0.18 T. This is analogous to the characteristic field
Hc mentioned for the single line of spins. It is the field value
above which all of the spins in any cross section have their
equilibrium orientations roughly in the transverse (z) direction.
The frequency of the lowest mode does not actually dip to
zero because there is not a precise reorientation. There is a
contrasting behavior for the wider stripe in Fig. 9(b), where the
SW modes are closer together, as expected. It is also seen that
the lowest two modes become degenerate as H0 is increased
and they have a pronounced minimum at a field value of ∼
0.09 T, whereas the higher branches (� � 3) show dips
at ∼0.06 T. Actually the lowest curve also has a shallow
minimum at ∼0.055 T. As explained in our previous paper on
the linear SW in stripes,15 “edge modes” can form as regions of
strong spatial inhomogeneities in the magnetization at the two
lateral edges when W/L is sufficiently large. In effect, there are
two characteristic fields for this case, one at ∼0.06 T associated
with the reorientation of the spins in the interior of the stripe
and another at ∼0.09 T associated with the reorientation of
the spins in the edge regions. This type of behavior for the
SW modes can be seen in Brillouin light scattering data (e.g.,
see Fig. 3 of Ref. 23). The above conclusions regarding the
inhomogeneous magnetization and the characteristic fields are
reinforced by Fig. 10, where the mean polar angle α is plotted
versus the transverse applied field for sites in the middle and

FIG. 12. Same as in Fig. 11 but for the larger stripe with cross
section 6 nm × 125 nm.
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FIG. 13. The frequency shift of the lowest (� = 1) SW branch
vs wave number k for a Permalloy stripe with cross section 6 nm ×
24 nm, T/TC = 0.3, and transverse field μ0H0 = 0.14 T. The different
lines show the total, three-magnon, and four-magnon frequency shifts,
as labeled.

the lateral edges of each stripe. We recall that the local magneti-
zation component along the stripe axis is proportional to cos α.

It is again the case that the three-magnon damping in these
samples is dominant over the four-magnon damping, and we
show numerical examples in Figs. 11 and 12 for the two
stripes where 	

(3)
k,� is plotted against wave number k for several

different transverse field values. It can be seen from Fig. 11
for the narrower stripe that the damping is relatively small
when the transverse field is either zero or 0.23 T (which is
above the characteristic value of ∼0.18 T for this stripe). These
cases correspond, respectively, to the equilibrium orientation
of the spins being aligned longitudinally or mainly transverse.
By contrast, for the intermediate field values of 0.04 T and
particularly 0.09 T, the spins are strongly canted and the
damping is generally larger. Similar data are presented in
Fig. 12 for the wider stripe with similar conclusions for
the damping at different transverse fields relative to the
characteristic field values of that stripe.

Finally, in Fig. 13 we show some calculations for the SW
frequency shift �ωk,� versus k in a transverse field, taking the
smaller stripe size and the lowest (� = 1) branch. The behavior
is broadly similar to that for the longitudinal field case (see Fig.
8) where the four-magnon contribution was dominant, except
that in the transverse field case it can be seen that there are
significant corrections at smaller k (less than ∼0.1 nm−1) due
to three-magnon processes. The chosen transverse field value
of 0.14 T is about 0.8 of the characteristic field value for reori-
entation of the spins along the z axis; so the spins are canted,
making the three-magnon effects more significant in this
case.

V. DISCUSSION AND CONCLUSIONS

In this paper we have used a Hamiltonian-based approach to
derive the explicit expressions for the terms H (3) and H (4) that

describe the three- and four-magnon processes, respectively,
in a ferromagnetic stripe geometry, taking the external field
to be applied either in the longitudinal (y) direction or the
transverse (z) direction. The allowed processes conserve the
longitudinal wave number k, since this is associated with the
direction of translational symmetry, but there is a mixing of
all the different SW branch labels � that are involved. These
nonlinear terms were then employed to obtain expressions
for the frequency shift and damping of any SW character-
ized by {k,�} as a function of temperature T and applied
field H0.

Numerical calculations were made for stripes of Permalloy,
taking the width and thickness the same as for the FMR
experimental studies in Ref. 11. In the case of a longitudinal
applied field, as in the experiments, it was found that the three-
magnon confluence and splitting contributions to the damping
dominated over the four-magnon contributions. However, at
k ≈ 0 (as in the FMR experiments) the splitting processes are
suppressed for the lower branches because there are threshold
wave numbers that must be exceeded, so the three-magnon
conflence terms dominate for the lowest three SW branches, as
concluded in Ref. 11. On the other hand, for the SW frequency
shift we concluded that the four-magnon scattering term
(which contributed in first order) was dominant. Quantitative
comparison with Boone et al.11 is made difficult by the fact that
their damping results include other contributions presumed
to be two-magnon effects. These occur when a SW with a
given k decays into another SW with the same frequency, but
on a different branch (and with a different wave number).
It occurs if disorder in the sample destroys the translational
symmetry along the stripe, and it was suggested in Ref. 11
that roughness at the lateral edges of the stripes might be
responsible. Such contributions do not arise in our calculation
because translational symmetry is assumed and roughness
effects are not modeled. Other aspects of the behavior for
the three-magnon confluence damping are found to be broadly
consistent with Ref. 11. For example, the calculated damping
tends to increase with increasing branch label � (because
there are more decay channels available) and we found that it
also tends to increase if H0 is reduced in magnitude (mainly
because the linear SW frequencies are reduced, thus increasing
the Bose-Einstein thermal factors at a given temperature).
We noticed a dependence on the stripe width W , whereby
the damping tends to be larger for larger W (in part, due to the
formation of edge modes).

It was shown that our calculations could straightforwardly
be extended to the case of a transverse field. Here the numerical
calculations indicated that the damping could be significantly
larger than in the longitudinal field case, so it would interesting
to have experimental data for this situation. The enhanced
damping is predicted to occur when the magnitude of H0

is less than the characteristic field for reorientation of the
magnetization to the transverse direction, and we presented
estimates for the same type of stripe sample as used for the
longitudinal measurements.11

Finally we remark that the results obtained here for the
interaction vertices can be applied to study other nonlinear
SW properties, such as SW instabilities in the presence of
pumping fields (see e.g., Ref. 24) or SW behavior in magnonic
crystals (see e.g., Refs. 8 and 25).
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APPENDIX A: THREE- AND FOUR-MAGNON WEIGHTING
FACTORS

The three-magnon weighting factors 
i with i = 1, . . . ,4
that were introduced in Eqs. (15) and (16) are defined by


1 = {V1(0,q|�2,�1,�1) + V1(q,0|�1,�2,�1)}{V2(k, − k|�,�,�2) + V2(k,0|�,�2,�)}
+{V1(k,0|�,�2,�) + V1(0,k|�2,�,�)}{V2(q,0|�1,�2,�1) + V2(q, − q|�1,�1,�2)},


2 = 1
2 {V3(k,q|�,�1,�2) + V3(k, − k − q|�,�2,�1) + V3(q,k|�1,�,�2)

+V3(q, − k − q|�1,�2,�) + V3(−k − q,k|�2,�,�1) + V3(−k − q,q|�2,�1,�)}
×{V4(−k, − q|�,�1,�2) + V4(−k,k + q|�,�2,�1) + V4(−q, − k|�1,�,�2)

+V4(−q,k + q|�1,�2,�) + V4(k + q, − k|�2,�,�1) + V4(k + q, − q|�2,�1,�)},

3 = {V1(k,q|�,�1,�2) + V1(q,k|�1,�,�2)}{V2(k + q, − k|�2,�,�1) + V2(k + q, − q|�2,�1,�)},

4 = 1

2 {V1(q,k − q|�1,�2,�) + V1(k − q,q|�2,�1,�)}{V2(k, − q|�,�1,�2) + V2(k,q − k|�,�2,�1)}.
The four-magnon weighting factor �1 in Eq. (17) is defined by

�1 = �1(k,q,k|�,�1,�,�1) + �1(k,q,q|�,�1,�1,�) + �1(q,k,k|�1,�,�,�1) + �1(q,k,q|�1,�,�1,�), (A1)

while �2 in Eq. (18) is

�2 = 1
2 {�1(k,q,q

′ |�,�1,�2,�3) + �1(k,q,k + q − q
′ |�,�1,�3,�2) + �1(q,k,q

′ |�1,�,�2,�3)

+�1(q,k,k + q − q
′ |�1,�,�3,�2)}{�1(q

′
,k + q − q

′
,k|�2,�3,�,�1) + �1(q

′
,k + q − q

′
,q|�2,�3,�1,�)

+�1(k + q − q
′
,q

′
,k|�3,�2,�,�1) + �1(k + q − q

′
,q

′
,q|�3,�2,�1,�)}. (A2)

There are similar expressions for �3 and �4 that can be written down as required.

APPENDIX B: HAMILTONIAN COEFFICIENTS IN THE TRANSVERSE CASE

When the applied field is in the transverse directions, the definitions of the coefficients A(2)
n,m and B(2)

n,m appearing in Eq. (4) are
modified to

A(2)
n,m(k) =

[
− 2S

N∑
p=1

∑
α,β

χαβ
n,p(0)Qα

nQβ
p + gμBH0Q

z
n

]
δnm + S

2

∑
α,β

χαβ
n,m(k)

[
P α

n (P β
m)∗ + P β

n (P α
m)∗

]
,

B(2)
n,m(k) = S

2

∑
α,β

χαβ
n,m(k)P α

n P β
m, (B1)

where Pn and Qn are defined in terms of the angles {αn,θn} and the unit vectors along the x, y, and z axes, while the χ
αβ
n,m(k) are

dipole-exchange terms:

Pn = (cos αn sin θn + i cos θn)x − sin αny

+(cos αn cos θn − i sin θn)z,

Qn = sin αn sin θnx + cos αny + sin αn cos θnz, (B2)

χαβ
n,m(k) = 1

2

[
(gμB)2D

αβ
n,m(k) − Jn,m(k)δα,β

]
. (B3)

Similarly the redefinitions of the coefficients appearing in Eqs. (7) and (8) for the higher-order terms are

214423-10



SPIN-WAVE DAMPING IN FERROMAGNETIC STRIPES . . . PHYSICAL REVIEW B 83, 214423 (2011)

A(3)
n,m(k) = −1

4

√
S

2N
′

[{
N∑

p=1

∑
α,β

χαβ
n,p(0)

(
P α

n Qβ
p + P β

n Qα
p

) − gμBH0

S
P z

n

}
δn,m

+ 4
∑
α,β

χαβ
n,m(k)

(
P α

n Qβ
m + P β

n Qα
m

)]
,

B(3)
n,m(k) = −1

4

√
S

2N
′

[{
N∑

p=1

∑
α,β

χαβ
n,p(0)

[(
P α

n

)∗
Qβ

p + (
P β

n

)∗
Qα

p

] − gμBH0

S

(
P z

n

)∗
}

δn,m

+4
∑
α,β

χαβ
n,m(k)

{
Qα

n

(
P β

m

)∗ + Qβ
n

(
P α

m

)∗}]
, (B4)

A(4)
n,m(k) = − 1

8N
′

∑
α,β

χαβ
n,m(k)

{
P α

n

(
P β

m

)∗ + P β
n

(
P α

m

)∗}
,

B(4)
n,m(k) = 1

N
′

∑
α,β

χαβ
n,m(k)Qα

nQβ
m,

C(4)
n,m(k) = − 1

8N
′

∑
α,β

χαβ
n,m(k)

{
P α

n P β
m + P β

n P α
m

}
. (B5)
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